

Jurnal Agrotek Tropika

Journal homepage: https://jurnal.fp.unila.ac.id/index.php/JA

P-ISSN: 2337-4993 E-ISSN: 2620-3138

PENGARUH JENIS MULSA DAN PUPUK TERHADAP PERTUMBUHAN GULMA DAN TANAMAN SERTA PRODUKSI PAKCOY (*Brassica rapa* Subsp. Chinensis)

THE EFFECT OF TYPES OF MULCH AND FERTILIZER ON WEED GROWTH AND PLANTS AS WELL AS PRODUCTION PAKCOY (Brassica rapa Subsp. Chinensis)

Widia Putri Rahayu¹, R. A. Diana Widyastuti^{1*}, Liska Mutiara Septiana², Hidayat Pujisiswanto³, dan Rugayah¹

- ¹ Jurusan Agroteknologi, ² Jurusan Ilmu Tanah, ³ Jurusan Agronomi dan Hortikultura, Fakultas Pertanian, Universitas Lampung, Indonesia
- * Corresponding Author. E-mail address: rdiana.widyastuti@fp.unila.ac.id

PERKEMBANGAN ARTIKEL:

Diterima: 17 November 2023 Direvisi: 5 Desember 2023 Disetujui: 10 Januari 2024

KEYWORDS:

Fertilizer, mulch, production, weed

ABSTRACT

Increasing the productivity of pak choy can be done by controlling weeds and improving the microclimate through the application of organic mulch and fertilization through the application of fertilizer. The purpose of this research is to determine the use of mulch and fertilizer and the interaction between the two which influence the growth of weeds and plants as well as pak choy production. The research was carried out in January-April 2023 at the Integrated Field Laboratory (IFL), University of Lampung. This research was designed in a factorial Randomized Block Design (RBD) consisting of two factors, namely mulch application (B0, B1, B2) and fertilizer application (P0, P1, P2) and was repeated three times with a total of 27 experimental units. The data from the research were tested for homogeneity using the Barlett test and the data additivity test using the Tukey test. If the assumptions are met, the data is analyzed using analysis of variance and the 5% Least Significant Difference (LSD) test. The research results showed that the use of reed mulch at 4 MST and the interaction of reed mulch with chicken manure at 6 MST were able to suppress weed growth. Meanwhile, using a combination of urea fertilizer and chicken manure increases the fresh weight production of plants. Meanwhile, the types of weeds that dominate the use of mulch and fertilizer are Cleome rutidosperma, Cyperus kyllingia, Euphorbia hirta, and. Richardia scabra.

ABSTRAK

KATA KUNCI:
Gulma, mulsa, produksi,
nunuk

Dalam meningkatkan produktifitas pakcoy dapat dilakukan dengan pengendalian gulma dan memperbaiki iklim mikro melalui aplikasi mulsa organik serta pemupukan melalui aplikasi pupuk. Tujuan dari dilakukannya penelitian ini untuk mengetahui penggunaan jenis mulsa dan pupuk serta interaksi antar keduanya berpengaruh terhadap pertumbuhan gulma dan tanaman serta produksi pakcoy. Penelitian dilaksanakan pada bulan Januari-April 2023 di Laboratorium Lapang Terpadu (LTPD), Universitas Lampung. Penelitian ini dirancang dalam Rancangan Acak Kelompok (RAK) faktorial yang terdiri dari dua faktor yaitu pemberian mulsa (B0, B1, B2) dan pemberian pupuk (P0, P1, P2) dan diulang sebanyak sebanyak tiga kali dengan total sebanyak 27 satuan percobaan. Data hasil penelitian dilakukan uji homogenitas yang diuji dengan uji Barlett dan uji Aditivitas data dengan dilakukan uji Tukey. Bila asumsi terpenuhi, data dianalisis dengan analisis ragam dan uji Beda Nyata Terkecil (BNT) 5%. Hasil penelitian menunjukkan bahwa penggunaan jenis mulsa alang-alang pada 4 MST dan interaksi mulsa alang-alang dengan pupuk kandang ayam pada 6 MST mampu menekan pertumbuhan gulma. Sedangkan, penggunaan kombinasi pupuk urea dengan pupuk kandang ayam meningkatkan produksi bobot segar tanaman. Sementara itu, jenis gulma yang mendominasi dalam penggunaan jenis mulsa dan jenis pupuk yaitu Cleome rutidosperma, Cyperus kyllingia, Euphorbia hirta, dan. Richardia scabra.

© 2024 The Author(s). Published by Department of Agrotechnology, Faculty of Agriculture, University of Lampung.

1. PENDAHULUAN

Tanaman sayuran yang mudah untuk dibudidayakan karena memiliki waktu tanam cukup singkat yaitu Pakcoy (*Brassica rapa* subsp. chinensis). Pakcoy sendiri memiliki kandungan gizi seperti vitamin, mineral, serat pangan dan nutrisi lainnya yaitu 15 kal energi; 1,8 g protein; 0,2 g lemak; 2,5 g karbohidrat; 0,6 g serat; 31 mg fosfor; 225 mg kalium dan kandungan air sebanyak 92,4 g (Rachmatika *et al.*, 2013). Selain itu, pakcoy memiliki banyak manfaat khususnya bagi kesehatan, sehingga hal tersebut dapat memberikan peluang bisnis yang cukup tinggi bagi para petani karena budidaya yang dilakukan mudah dan permintaan pasar yang cukup tinggi (Rizal, 2017).

Produktivitas pakcoy dapat ditingkatkan dengan memperbaiki cara budidaya seperti pengolahan tanah, penggunaan varietas yang unggul, pengendalian gulma, hama dan penyakit, serta pemupukan (Zainuddin, 2011). Pertumbuhan tanaman pakcoy tidak terlepas dari gangguan gulma yang dapat merugikan tanaman dari segi pemanfaatan unsur hara dalam tanah, air dan cahaya matahari. Tanaman dan gulma yang tumbuh pada lahan budidaya akan saling berkompetisi dalam memperebutkan sarana tumbuh tersebut. Pencegahan terjadinya kompetisi dapat dilakukan dengan mengendalikan pertumbuhan gulma dengan menggunakan mulsa (Fitriani, 2015).

Mulsa digunakan untuk menutupi permukaan tanah guna mencegah kehilangan air karena penguapan dan untuk mengendalikan pertumbuhan gulma. Mulsa berperan dalam memperbaiki kondisi tanah serta meningkatkan pertumbuhan dan produksi tanaman. Mulsa terdiri dari mulsa organik dan anorganik. Mulsa anorganik berupa mulsa plastik hitam perak yang penggunaannya lebih praktis namun tidak menambah kesuburan tanah karena memiliki sifat sulit terurai dan membutuhkan biaya yang besar. Sementara itu, mulsa organik yang berasal dari sisa tanaman atau bahan alami yang memiliki sifat mudah terurai (Yetnawati & Hasnelly, 2021).

Mulsa organik digunakan untuk mengubah lingkungan fisik. Mulsa yang berasal dari hasil sisa panen atau tanaman seperti jerami padi dan alang-alang memiliki banyak keuntungan dan tersedia cukup banyak, sementara itu petani kurang memanfaatkan bahan tersebut. Mulsa organik dapat memperbaiki struktur dan kesuburan tanah, mempertahankan temperatur dan kelembaban tanah. Kemampuan tanah dalam menyerap air dan aerasi tanah juga akan lebih baik apabila digunakan mulsa organik (Yudhisthira *et al.*, 2014).

Faktor lain yang mempengaruhi keberhasilan pertumbuhan pakcoy adalah pemberian pupuk. Tanaman membutuhkan pupuk sebagai sumber nutrisi seperti nitrogen (N), fosfor (P), dan kalium (K). Pupuk terdiri dari pupuk anorganik dan pupuk organik. Pupuk anorganik mengandung unsur nitrogen seperti urea yang dapat meningkatkan produksi tanaman pakcoy. Nitorgen dapat memperbesar ukuran daun tanaman dan membuat daun berwarna lebih hijau sehingga meningkatkan kualitas tanaman tersebut (Wahyudin, 2017).

Pupuk organik seperti kotoran ayam memiliki sifat alami, sehingga penggunaannya tidak merusak tanah. Penggunaan pupuk kandang ayam dapat memberikan peningkatan unsur hara makro seperti nitrogen. Sementara itu, pupuk kandang ayam juga membantu dalam meningkatkan daya serap air tanah, aktivitas mikroba dalam tanah, kapasitas tukar kation, dan struktur tanah. Penggunaan pupuk organik kotoran ayam dapat meningkatkan kandungan bahan organik dalam tanah, permeabilitas tanah dan mengurangi erosi tanah (Kurniawan, 2017).

Penelitian ini bertujuan untuk mempelajari penggunaan jenis mulsa dan jenis pupuk serta interaksi antara keduanya terhadap pertumbuhan gulma dan tanaman serta produksi pakcoy.

2. BAHAN DAN METODE

Penelitian ini dilakukan di Laboratorium Lapangan Terpadu (LTPD), Universitas Lampung pada bulan Januari-April tahun 2023 dan analisis tanah dilakukan pada bulan Maret 2023. Penelitian

(3)

dirancang menggunakan RAK Faktorial. Faktor pertama adalah jenis mulsa dan faktor kedua jenis pupuk. Kombinasi perlakuan tersebut adalah B0P0 (tanpa mulsa+pupuk urea), B0P1 (mulsa jerami padi+pupuk kandang ayam), B0P2 (tanpa mulsa+pupuk urea dan pupuk kandang ayam), B1P0 (mulsa jerami padi+pupuk urea), B1P1 (mulsa jerami padi+pupuk kandang ayam), B1P2 (mulsa jerami padi+pupuk urea dan pupuk kandang ayam), B2P0 (mulsa alang-alang+pupuk urea), B2P1 (mulsa alang-alang+pupuk kandang ayam), dan B2P2 (mulsa alang-alang+pupuk urea dan pupuk kandang ayam). Tata letak percobaan disusun secara acak dengan sembilan perlakuan dan tiga kali ulangan sehingga total satuan percobaan sebanyak 27. Homogenitas data diuji dengan Uji Bartlett dan aditivitasnya diuji dengan Uji Tukey. Jika asumsi terpenuhi, dilanjutkan dengan melakukan analisis ragam dan diuji lebih lanjut dengan Uji Beda Terkecil (BNT) 5%.

Penelitian diawali dengan pengolahan lahan dengan membersihkan sisa tanaman atau gulma pada lahan dengan cara mencangkul tanah kurang lebih 30 cm hingga tanah menjadi gembur. Selanjutnya, dibuat petakan dengan luas 150 cm x 80 cm. Penyiapan mulsa organik didapatkan dari petani sekitar dan dikeringudarakan hingga kadar air yang terdapat pada jerami padi 59% dan alangalang 55%. Pupuk urea dan pupuk kandang ayam yang digunakan memiliki ciri-ciri seperti wujud asli tidak nampak, bersuhu dingin, dan baunya sudah berkurang. Pupuk kandang ayam dikeringkan pada suhu ruang sebelum diaplikasikan. Penyemaian benih pakcoy dilakukan di dalam wadah *tray* yang berisi media tanam berupa tanah dan arang sekam dengan perbandingan 1:1.

Pengaplikasian mulsa jerami padi dan alang-alang dengan dosis 7 ton ha⁻¹ dilakukan dengan cara dihamparkan secara merata sampai areal pertanaman tertutupi dan terbuka pada bagian lubang tanam. Sementara itu, pengaplikasian pupuk urea diberikan dengan dosis 200 kg ha⁻¹ menggunakan teknik kocor pada saat tanaman berumur 4 MST, sedangkan pupuk kandang ayam dilakukan sebanyak satu kali setelah olah tanah dengan dosis 20 ton ha⁻¹ diberikan sebelum pemberian mulsa dan dilakukan inkubasi selama 2 minggu. Pengaplikasian pupuk kandang ayam dilakukan dengan cara dilarik secara merata.

Penanaman dilakukan dengan jarak tanam 15 cm x 20 cm. Bibit yang ditanam memiliki 2-3 helai daun sempurna yaitu berumur dua minggu setelah tanam (2 MST). Pemeliharaan tanaman seperti penyiraman, penyulaman dan pengendalian hama penyakit tanaman. Penyulaman dilakukan pada tanaman berumur 2 MST. Pengamatan dilakukan pada saat tanaman pakcoy berumur tiga minggu setelah tanam (MST). Pengamatan yang dilakukan seperti variabel tinggi tanaman, jumlah daun, diameter batang, panjang daun dan lebar daun. Pengamatan gulma dilakukan untuk mengetahui semua jenis gulma yang tumbuh pada petak percobaan menggunakan kuadrat berukuran 0,5 x 0,5 m, kemudian ditimbang dan diamati bobot kering gulma total. Sedangkan pada minggu ke-6, dilakukan pengamatan bobot segar tanaman yang diambil pada saat panen.

Jenis dan dominansi gulma yang tumbuh pada lahan budidaya pakcoy ditentukan dengan nilai SDR (*Summed Dominan Ratio*). Gulma yang telah diambil pada 4 dan 6 MST, dipisahkan berdasarkan spesiesnya. Kemudian, gulma tersebut dioven dengan suhu 80°C selama 48 jam. Sehingga, mencapai bobot kering gulma dan ditimbang. Selanjutnya, pada masing-masing spesies gulma pada petak percobaan ditentukan nilai SDR dengan rumus (Tjitrosoedirdjo *et al.*, 1984):

Dominan Mutlak (DM) : Bobot kering spesies gulma tertentu dalam petak contoh (1)

Dominansi Nisbi : (DN)
$$\frac{DM\ Satu\ Spesies}{DM\ Semua\ Spesies}\ X\ 100\%$$
 (2)

Frekuensi Mutlak (FM): Jumlah kemunculan gulma tertentu pada setiap ulangan pada petak percobaan sebanyak 3 ulangan

Frekuensi Nisbi (FN) : $\frac{FM \ Jenis \ Gulma \ tertentu}{Total \ FM \ Semua \ Jenis \ Gulma} \ X \ 100\%$ (5)

Nilai Penting : Jumlah Nilai peubah Nisbi yang digunakan (DN + FN) (6)

Summed Dominance Ratio (SDR):
$$\frac{Nilai\ Penting}{Jumlah\ Nilai\ Peubah} = \frac{NP}{2}$$
 (7)

Panen dilakukan pada saat tanaman pakcoy berumur 6 MST. Pakcoy dapat dipanen jika memiliki daun yang tumbuh subur, berwarna hijau segar, dan pangkal daun sehat. Panen dilakukan dengan cara manual.

3. HASIL DAN PEMBAHASAN

3.1 Jenis dan Tingkat Dominansi Gulma

Data jenis dan tingkat dominansi gulma (SDR) disajikan pada Tabel 1 dan 2. Jenis gulma yang mendominasi pada 4 MST adalah gulma *Cyperus kyllingia*, *Euphorbia hirta*, dan *Cleome rutidosperma*. Sedangkan, gulma yang mendominasi pada 6 MST adalah *Cyperus kyllingia*, *Euphorbia hirta*, dan *Richardia brasiliensis*. Gulma tersebut termasuk golongan jenis gulma teki dan daun lebar. Gulma dengan golongan berdaun lebar mudah beradaptasi dan dapat hidup dalam kondisi tanah sedikit lembap, sedangkan gulma jenis golongan teki dapat lebih beradaptasi pada lahan terbuka seperti kebun ataupun pinggir jalan (Palandi, 2022).

Gulma yang tumbuh dapat menghambat pertumbuhan tanaman pakcoy. Gulma tersebut memiliki daya adaptasi tinggi karena mampu bertahan hidup dalam lingkungan yang memiliki kelembaban tinggi, kering maupun tergenang air, sehingga penyebaran gulma jenis teki dan daun lebar sangat luas (Palandi, 2022). Gulma daun lebar dapat berkembang biak dengan menggunakan biji, membutuhkan cahaya matahari yang tinggi untuk tumbuh dan mampu berbunga sepanjang tahun. Dengan demikian, penyebaran gulma jenis ini sangat tinggi dan menjadi faktor penghambat pertumbuhan dan produksi tanaman karena adanya persaingan (Tustiyani, *et al.*, 2019).

Penggunaan jenis mulsa dan jenis pupuk tidak memiliki pengaruh pada jenis dan tingkat dominansi gulma. Keberadaan gulma pada lahan pertanaman bergantung pada kondisi lingkungan mikro seperti unsur hara. Menurut Habibah (2016), komposisi gulma yang tidak sama pada setiap umur panen, perbedaan umur tanaman menyebabkan terjadinya pergeseran dominansi gulma.

Tabel 1. Jenis dan tingkat dominansi gulma (SDR) pada pengaruh pemberian jenis mulsa dan jenis pupuk pada 4 MST

Jenis Gulma	Perlakuan								
	B0P0	B0P1	B0P2	B1P0	B1P1	B1P2	B2P0	B2P1	B2P2
	%								
Asystasia gangetica	8(4)	8(4)	5(6)	11(3)	11(4)	11(4)	6(5)	0	8(4)
Cleome rutidosperma	15(3)	12(3)	14(3)	11(3)	13(3)	15(3)	16(3)	8(3)	15(3)
Commelina benghalensis	15(3)	14(2)	8(5)	0	6(6)	4(7)	0	8(3)	21(2)
Cynodon dactylon	0	0	0	0	0	8(6)	13(4)	0	0
Cyperus kyllingia	35(1)	38(1)	48(1)	34(1)	39(1)	30(1)	36(1)	15(2)	50(1)
Digitaria ciliaris	7(5)	6(5)	0	0	7(5)	10(5)	0	39(1)	0
Eleusine indica	0	0	10(4)	0	0	0	0	0	0
Erigeron canadensi	0	8(4)	0	0	0	0	0	0	6(5)
Euphorbia hirta	20(2)	14(2)	15(2)	22(2)	24(2)	17(2)	23(2)	15(2)	0
Imperata cylindrica	0	0	0	8(4)	0	0	0	0	0
Praxelis clematidea	0	0	0	8(4)	0	4(7)	6(5)	15(2)	0
Total	100	100	100	100	100	100	100	100	100

Keterangan: angka dalam kurung () menunjukkan urutan dominansi gulma.

Tabel 2. Jenis dan tingkat dominansi gulma (SDR) pada pengaruh pemberian mulsa dan jenis pupuk pada 6 MST

Jania Culma	Perlakuan								
Jenis Gulma	B0P0	B0P1	B0P2	B1P0	B1P1	B1P2	B2P0	B2P1	B2P2
					%				
Asystasia gangetica	0	0	10(3)	5(6)	11(5)	4(7)	5(4)	9(3)	5(4)
Axonopus compressus	8(4)	4(6)	0	6(5)	0	0	0	0	5(4)
Cleome rutidosperma	3(6)	11(3)	0	4(7)	14(3)	12(3)	7(3)	6(4)	5(4)
Commelina benghalensis	4(5)	10(4)	0	8(4)	12(4)	5(6)	12(2)	6(4)	4(5)
Cyperus kyllingia	48(1)	39(1)	47(1)	38(1)	42(1)	39(1)	45(1)	46(1)	49(1)
Digitaria ciliaris	0	0	0	0	0	0	0	0	0
Eleusine indica	13(2)	7(5)	5(5)	5(6)	6(6)	0	0	9(3)	4(5)
Euphorbia hirta	13(2)	14(2)	16(2)	13(2)	15(2)	13(2)	12(2)	10(2)	9(2)
Paspalum conjugatum	0	0	5(5)	0	0	7(5)	5(4)	0	5(4)
Praxelis clematidea	0	0	7(4)	4(7)	0	8(4)	0	90	0
Richardia brasiliensis	11(3)	11(3)	10(3)	9(3)	0	12(3)	7(3)	9(3)	7(3)
Synedrella nodiflora	0	4(6)	0	8(4)	0	0	7(3)	5(5)	7(3)
Total	100	100	100	100	100	100	100	100	100

Keterangan: angka dalam kurung () menunjukkan urutan dominansi gulma.

Tabel 3. Pengaruh pemberian jenis mulsa dan jenis pupuk terhadap variabel bobot kering gulma total (g/0,5 m²) pada 4 MST

Perlakuan -	Bobot Kering Gulma Total (g/0,5 m²) 4 MST			
Jenis Mulsa				
Tanpa Mulsa	21,87 a			
Mulsa Jerami Padi	22,12 a			
Mulsa Alang-Alang	12,37 b			
BNT 0,05	5,68			
Jenis Pupuk				
Pupuk Urea	14,65			
Pupuk Kandang Ayam	21,23			
Pupuk Urea+Pupuk Kandang Ayam	20,47			

Keterangan: Nilai tengah pada baris yang sama diikuti oleh huruf kecil yang sama tidak berbeda nyata pada taraf uji BNT 5%.

3.2 Bobot Kering Gulma Total

Data pada Tabel 2 menunjukkan bahwa bobot kering gulma total (4 MST) pada perlakuan tanpa mulsa dan mulsa jerami padi berbeda dengan perlakuan mulsa alang-alang. Sedangkan, pada 6 MST terdapat interaksi perlakuan berbagai jenis mulsa dan pupuk (Tabel 3). Pemberian pupuk kandang ayam dengan mulsa alang-alang menunjukkan pengaruh berbeda nyata dan memiliki bobot kering gulma total terendah dibandingkan perlakuan lainnya. Hal tersebut diduga bahwa mulsa alang-alang dapat menekan pertumbuhan gulma yang ada lahan budidaya. Menurut Mulyono (2015), alang-alang memiliki kandungan selulose yang tinggi sehingga alang-alang sulit untuk terurai. Selama pertumbuhan tanaman berlangsung, mulsa alang-alang masih tetap utuh, tidak terdekomposisi dan dapat menutupi permukaan tanah dalam jangka waktu yang cukup lama, sehingga penggunaan alang-alang sebagai mulsa dapat menekan pertumbuhan gulma.

Pemberian jenis pupuk pada penelitian ini tidak memberikan pengaruh berbeda nyata. Hal tersebut diduga bahwa pemberian pupuk pada tanaman juga diserap oleh gulma untuk melakukan proses fotosintesis. Hal tersebut menyebabkan bobot kering pada gulma meningkat. Menurut Pujisiswanto *et al.* (2015), bobot kering gulma mencerminkan pola gulma dengan mengumpulkan

Perlakuan	Bobot Segar Tanaman (g/1,2 m²)					
		Jenis Pupuk				
Jenis Mulsa	Pupuk Urea	Pupuk Kandang Ayam	Pupuk Urea+Pupuk Kandang Ayam			
Tanpa Mulsa	69,78 a	59,72 a	59,91 a			
	A	В	В			
Mulsa Jerami Padi	55,39 c	99,69 b	136,41 a			
	A	A	A			
Mulsa Alang-Alang	53,11 a	79,02 a	80,18 a			
	A	В	В			
RNT 0.05			28.45			

Tabel 4. Pengaruh interaksi pemberian mulsa dan pupuk terhadap variabel bobot segar tanaman $(g/1,2 \text{ m}^2)$ pada 6 MST

Keterangan: Nilai tengah pada baris yang sama diikuti oleh huruf kecil yang sama tidak berbeda nyata pada taraf uji BNT 5%.

hasil dari proses fotosintesis. Semakin berat bobot kering pada gulma maka gulma yang tumbuh semakin baik dan memiliki daya saing tinggi terhadap tanaman.

3.3 Produksi Bobot Segar Tanaman

Data pada Tabel 4 menunjukkan bahwa perlakuan pada bobot segar tanaman dipengaruhi oleh jenis mulsa, jenis pupuk maupun interaksi antar keduanya. Antara jenis mulsa dengan jenis pupuk terjadi interaksi dalam mempengaruhi bobot segar tanaman pakcoy. Perlakuan mulsa jerami padi dan pupuk kandang ayam maupun kombinasi perlakuan pupuk urea dengan pupuk kandang ayam menunjukkan pengaruh berbeda dan memiliki bobot segar tanaman tertinggi. Sedangkan, kombinasi perlakuan pupuk urea dengan pupuk kandang ayam dan mulsa jerami padi menunjukkan pengaruh berbeda dan memiliki bobot segar tanaman tertinggi dibandingkan dengan perlakuan lainnya. Hal tersebut karena ketersediaan unsur hara dalam tanah yang tinggi dan keseimbangan hara tanah yang dapat mempengaruhi hasil tanaman terutama pada bobot segar tanaman.

Kandungan bahan organik yang terdapat dalam setiap perlakuan membuat kandungan unsur hara dan daya ikat air tanah tinggi. Dengan demikian, tanaman akan lebih mudah menyerap unsur hara guna meningkatkan produksi (Widyastuti, *et al* 2022), tanaman karena laju fotosintesis dikendalikan oleh ketersediaan unsur hara dan air yang digunakan untuk menentukan hasil produksi tanaman.

Menurut Anjani, *et al.* (2020), semakin tinggi tanaman dan lebar permukaan daun, maka akan mempengaruhi bobot segar tanaman karena terdapat kandungan air yang membuat bobot segar tanaman meningkat. Semakin lebar permukaan daun, maka akan meningkatkan laju fotosintesis sehingga akan membentuk pertumbuhan tanaman dengan baik.

Tanaman yang tercukupi unsur hara nitrogennya, dapat membentuk helai dan panjang daun yang memiliki kandungan klorofil tinggi. Dengan demikian, tanaman dapat menghasilkan asimilat dalam jumlah cukup untuk menopang pertumbuhan vegetatif tanaman yang dipengaruhi oleh faktor lingkungan seperti cahaya matahari (Kasini, 2012). Sinar matahari berperan cukup penting dalam pertumbuhan tanaman pakcoy, terutama pada fotosintesis. Tanaman pakcoy memerlukan intensitas penyinaran yang cukup selama pertumbuhan dan berproduksi. Penyinaran yang dibutuhkan minimal sekitar 70% dalam sehari.

4. KESIMPULAN

Berdasarkan hasil penelitian dan pembahasan diperoleh kesimpulan bahwa pengaruh jenis mulsa alang-alang dan interaksi antara mulsa alang-alang dengan pupuk kandang ayam dapat menekan pertumbuhan gulma sedangkan, jenis pupuk tidak menekan pertumbuhan gulma. Pengaruh interaksi antara jenis mulsa dan jenis pupuk pada bobot segar tanaman dapat meningkatkan produksi tanaman pakcoy sebesar 136,41 g, dibandingkan dengan perlakuan tanpa mulsa dan pupuk urea yang hanya sebesar 53,11 g. Sehingga, selisih antar keduanya sebesar 83,3 g atau 157%.

5. DAFTAR PUSTAKA

- Anjani, B. P. T., B. B. Santoso & Sumarjan. 2020. Pertumbuhan dan hasil sawi pakcoy (*Brassica rapa* L. var. *chinensis*) sistem tanam wadah pada berbagai dosis pupuk kascing. *Jurnal Ilmiah Mahasiswa Agrokomplek*. 1(1):1–9.
- Fitriani. 2015. Pengaruh penyiangan gulma terhadap pertumbuhan dan hasil sawi hijau (*Brassica rapa convar*). *Jurnal Pertanian Terpadu*. 3(2):1–16.
- Habibah, N. 2016. Pemetaan gulma berdasarkan stadia pertumbuhan tanaman nanas (*Ananas comosus* L.). *Skripsi*. Universitas Lampung.
- Kasini. 2012. Pengaruh Bokasi Jerami Padi Terhadap Pertumbuhan dan Hasil Tanaman Bayam Pada Tanah Aluvial. *Skripsi*. Universitas Tanjung Pura.
- Kurniawan, A. 2017. Pengaruh aplikasi pupuk N dan K terhadap pertumbuhan dan hasil tanaman pakcoy (*Brasica rapa* var. chinensis) Falamingo F1. *Jurnal Produksi Tanaman*. 5(2): 281-289.
- Mulyono, 2015. Pengaruh penggunaan mulsa alang-alang, kenikir dan kirinyu terhadap pertumbuhan dan hasil bawang merah di tanah mediteran pada musim penghujan. *Planta Tropika Journal of Agro Science*. 3(2):73–77.
- Palandi, R. R. 2022. Identifikasi gulma pada lahan pertanian tanaman jagung (*Zea mays*, L.) Di Desa Woloan Kecamatan Tomohon Barat. *Majalah InfoSains*. 3(2):72–80.
- Pujisiswanto, H., P. Yudono., E. Sulistyaningsih & B. H. Sunarminto. 2015. *Analisis Pertumbuhan Gulma pada Aplikasi Asam Asetat sebagai Herbisida Pascatumbuh*. Universitas Lampung Press. Lampung.
- Rachmatika, A., N. Hanani & A. W. Muhaimin. 2013. Analisis penyediaan pangan di Kabupaten Malang. *AGRISE*. 8(3):207–220.
- Rizal, S. 2017. Pengaruh Nutrisi yang di berikan terhadap Pertumbuhan Tanaman Sawi Pakcoy (*Brassica rapa* L.) yang di tanam secara hidroponik. *Jurnal Sainmatika*. 14(1):38-44.
- Tjitrosoedirdjo, S., I.H. Utomo, J. Wiroatmodjo. 1984. Pengelolaan gulma di Perkebunan. Gramedia. Jakarta.
- Tustiyani, I., D. R. Nurjanah., S. S. Maesyaroh & J. Mutakin. 2019. Identifikasi keanekaragaman dan dominansi gulma pada lahan pertanaman jeruk (*Citrus* sp.). *Jurnal Kultivasi*. 18(1): 779–783.
- Wahyudin, D. P. 2017. Respon pertumbuhan dan produksi tanaman sawi pakcoy (*Brassica rapa* L.) terhadap perlakuan pupuk organik Dofosf G-21 dan air kelapa tua. *Jurnal Agrium*. 21(1):8–19.
- Widyastuti, R.A.D., R. Budiarto, I. Listiana, H. Yanfika, P. Sanjaya, A. Rahmat, & A. Mutolib. 2022. Agronomical Characters Of Red Chili (*Capsicum annum*) in Response to Different Doses of Biofertilizer and Alkaline Based Multi Nutrient Fertilizer. International Journal Of Agriculture and Biology. 28(6): 413–418.
- Yetnawati & Hasnelly. 2021. Pengaruh beberapa jenis mulsa organik terhadap pertumbuhan dan hasil tanaman terung (*Solanum melongena* L). *Jurnal Sains Agro*. 6(1): 69–76.
- Yudhistira, G. P., M. Roviq & T. Wardiyanti. 2014. Pertumbuhan dan produktivitas sawi pakchoy (*Brasica rapa* L.) pada umur transplanting dan pemberian mulsa organik. *Jurnal Produksi Tanaman*. 2(1):41–49.
- Zainuddin, O. 2011. Respon pertumbuhan dan produksi tanaman kedelai pada sistem olah tanah yang berbeda. *Jurnal Agronomika*. 1(2):92–98.