

P-ISSN: 2337-4993 E-ISSN: 2620-3138

Jurnal Agrotek Tropika

Journal homepage: https://jurnal.fp.unila.ac.id/index.php/JA

PEMANFAATAN TANAMAN SELA CABAI RAWIT DI KEBUN LADA BELUM MENGHASILKAN DI LAHAN KERING MASAM LAMPUNG

OPTIMIZING THE UTILIZATION OF CHILI INTERCROPS ON YOUNG PEPPER PLANTATIONS IN ACIDIC DRYLAND, LAMPUNG

Rismawita Sinaga¹, Danarsi Diptaningsari^{2*}, Nila Wardani¹, Robet Asnawi³, Ratna Wylis Arief⁴, Dewi Rumbaina Mustikawati² dan Gohan Octora Manurung⁵

- ¹ Pusat Riset Hortikultura, Badan Riset dan Inovasi Nasional (BRIN), Indonesia
- ² Pusat Riset Tanaman Pangan, Badan Riset dan Inovasi Nasional (BRIN), Indonesia
- ³ Pusat Riset Ekonomi Perilaku dan Sirkuler, Badan Riset dan Inovasi Nasional (BRIN), Indonesia
- ⁴ Pusat Riset Agroindustri, Badan Riset dan Inovasi Nasional (BRIN), Indonesia
- ⁵ Balai Penerapan Standar Instrumen Pertanian Lampung, Kementerian Pertanian, Indonesia
- * Corresponding Author. E-mail address: danarsi.diptaningsari@brin.go.id

PERKEMBANGAN ARTIKEL:

Diterima: 12 September 2024 Direvisi: 19 November 2024 Disetujui: 25 November 2024

KEYWORDS:

Capsicum frustescens, intercrops, productivity, acidic dryland

ABSTRACT

Lampung Province is one of the pepper producing centers with extensive acidic dry Idan. The use of chili as an intercrop in young pepper plantations has the potential to increase farmers' income. The aim of this study was to evaluate the growth dan productivity of chili as an intercrop with young pepper plants dan to recommend adaptive chili varieties for dry acidic ldans in Lampung. The study was conducted using a Split-Plot Design, with four replications. The main factor was the planting system, which included pepper-chili intercropping and chili monoculture. The subplots were chili varieties, consisting of three varieties (Prima Agrihorti, Rabani Agrihorti, dan Canon). The results indicated that the growth of chili as an intercrop with young pepper plants were not significantly different compared to the monoculture planting system. The productivity of intercropped chili plants was significantly lower compared to the monoculture planting system, with an effective intercropping planting area of 50%. The yield of intercropped chili plants was able to exceed 50% of the monoculture yield, indicating that chili has the potential to be developed as an intercrop in non-productive pepper plantations. The Canon variety showed the highest yield with the lowest intensity of whitefly dan snails. The Prima Agrihorti variety has the potential dan adaptive to be developed in acidic dry ldan, both in monoculture dan in the pepper-chili intercropping system.

ABSTRAK

Lada dan cabai merupakan komoditas pertanian yang dihasilkan Provinsi Lampung dengan lahan kering masam yang cukup luas. Pemanfaatan tanaman sela cabai pada tanaman lada yang belum menghasilkan (TBM) berpotensi untuk meningkatkan pendapatan petani. Tujuan studi ini yaitu untuk mengetahui pertumbuhan dan produktivitas tanaman sela cabai pada tanaman lada yang belum menghasilkan dan memperoleh rekomendasi varietas cabai yang adaptif di lahan kering masam Lampung. Penelitian disusun menggunakan rancangan Petak Terbagi (Spit Plot) dan empat ulangan. Sistem tanam sebagai petak utama, terdiri atas sistem tanam tumpang sari lada-cabai dan monokultur cabai. Anak petak yaitu varietas cabai, terdiri atas tiga varietas (Prima Agrihorti, Rabani Agrihorti dan Canon). Hasil studi menunjukkan bahwa pertumbuhan tanaman sela cabai pada tanaman lada yang belum menghasilkan tidak berbeda nyata dengan sistem tanam monokultur. Produktivitas tanaman sela cabai secara tumpang sari lebih rendah dibandingkan dengan sistem tanam monokultur, dengan lahan tanam sela efektif 50%. Hasil tanaman sela cabai mampu memberikan hasil di atas 50% dari hasil secara monokultur, menunjukkan bahwa cabai berpotensi untuk dikembangkan sebagai tanaman sela pada pertanaman lada yang belum menghasilkan. Varietas Canon menunjukkan daya hasil yang paling tinggi dengan intensitas serangan kutu kebul dan bekicot paling rendah. Varietas Prima Agrihorti memiliki potensi dan cukup adaptif untuk dikembangkan di lahan kering masam baik secara monokultur maupun tumpang sari lada-cabai.

KATA KUNCI:

Capsicum frustescens, lahan kering masam, produksi, tanaman sela

© 2024 The Author(s). Published by Department of Agrotechnology, Faculty of Agriculture, University of Lampung.

1. PENDAHULUAN

Provinsi Lampung adalah salah satu daerah penghasil lada di Indonesia. Luas areal lada Lampung mencapai 45.235 ha (BPS Provinsi Lampung, 2024), di mana 9.505 ha (21%) di antaranya merupakan tanaman belum menghasilkan (TBM). Tanaman lada umumnya mulai dipanen pada umur tiga tahun, dan umur produktif antara 3-13 tahun. Lahan di antara tanaman pokok yang masih muda atau belum produktif berpotensi untuk ditingkatkan produktivitasnya melalui pemanfaatan tanaman berumur pendek disela-sela tanaman perkebunan berumur panjang.

Rata-rata produktivitas lada di Lampung tahun 2023 hanya mencapai 0,31 ton/ha (BPS Provinsi Lampung, 2024). Salah satu faktor penyebab penurunan luas areal lada adalah kurangnya minat petani menanam lada. Banyak petani mulai mengganti tanaman lada dengan tanaman lain seperti kakao, pisang, singkong, maupun tanaman palawija lainnya yang lebih menguntungkan. Berdasarkan fakta tersebut, upaya-upaya untuk mempertahankan produksi lada perlu dilakukan dengan meningkatkan produktivitas lahan. Pengembangan tanaman sela cabai di antara tanaman lada merupakan strategi yang dapat diimplementasikan untuk tujuan tersebut. Studi terkait pemanfaatan tanaman sela di antara tanaman tahunan telah banyak dilaporkan. Beberapa manfaat dari penanaman tanaman sela antara lain adalah memberikan pendapatan tambahan bagi petani, terutama pada saat tanaman utama belum menghasilkan, menurunkan laju erosi lahan, menambah kesuburan tanah, dan bermanfaat untuk mengendalikan hama, penyakit dan gulma (Ferry dan Wardiana, 2012; Sahuri 2017; Noor, *et al.*, 2020). Namun demikian, studi mengenai pemanfaatan tanaman sela cabai di antara tanaman lada belum menghasilkan belum banyak dilaporkan.

Cabai adalah komoditas pertanian dengan nilai ekonomi yang relatif tinggi. Produktivitas cabai di Lampung masih tergolong rendah, yaitu sebesar 7,06 ton/ha pada tahun 2023 (BPS Provinsi Lampung, 2024) jika dibdaningkan dengan potensi dari varietas tersebut yang bisa mencapai 20 t/ha. Kendala penanaman cabai di lahan kering masam antara lain kandungan Al yang tinggi, sehingga penyerapan hara tanaman akan terganggu, rendahnya kandungan bahan organik, serta miskin mikroba tanah (Aprianto 2020; Ratmini & Maryana, 2021). Penanaman varietas cabai dengan karakter toleran terhadap cekaman dan adaptif di berbagai kondisi lahan merupakan salah satu solusi dalam peningkatan produksi cabai di Lampung. Varietas-varietas unggul cabai baik dari lembaga pemerintah maupun swasta telah banyak dihasilkan di Indonesia. Penyediaan varietas unggul dengan kualitas baik, produktivitas tinggi, dan sesuai dengan preferensi konsumen merupakan syarat mutlak yang harus dipenuhi untuk mendukung pengembangan cabai nasional. Perlu dikaji komoditas yang mempunyai nilai ekonomi tinggi sebagai tanaman sela dan tidak mengganggu tanaman lada.

Tujuan studi ini yaitu untuk mengetahui pertumbuhan dan produktivitas tanaman sela cabai pada tanaman lada yang belum menghasilkan, dan memperoleh rekomendasi varietas cabai yang adaptif di lahan kering masam Lampung. Hasil studi ini diharapkan dapat memberikan rekomendasi kepada petani untuk memanfaatkan tanaman sela yang dapat menguntungkan secara ekonomi selama tanaman lada belum memasuki fase produksi.

2. BAHAN DAN METODE

2.1 Agroekologi Lokasi Studi

Lokasi studi ini yaitu di Kebun Percobaan Natar, Desa Negara Ratu, Kecamatan Natar, Kabupaten Lampung Selatan, Provinsi Lampung. Ketinggian lokasi ini yaitu ±100 mdpl, rata-rata curah hujan bulanan 268,33 mm/bulan, kelembaban 86% dan rata-rata temperatur 28 °C (BMKG, 2020), di lahan kering masam dengan pH<6. Hasil analisis tanah dari lokasi studi disajikan pada Tabel 1.

Tabel 1. Hasil analisis tanah di lokasi studi pada dua sistem tanam

No	Parameter Uji	Sistem Tanam		
NO		Monokultur	Tumpang Sari	
1	pH H ₂ O	5,34 (M)	5,37(M)	
1	pH KCl	4,60 (M)	4,43 (M)	
2	% C-Organik	2,14 (S)	1,92 (R)	
3	% Nitrogen	0,05 (SR)	0,02 (SR)	
4	P Potensial (mg P ₂ O ₅ /100 gr)	37,39 (S)	29,26 (S)	
5	K Potensial (mg K ₂ 0/100 gr)	16,94 (R)	22,35 (S)	

Keterangan: M = Masam; SR = Sangat Rendah, R= Rendah, S = Sedang. Metode uji: pH (Potensiometri), % C-Organik (Kurmies), %Nitrogen (Kjeldahl), P Potensial dan K Potensial (Ekstrak HCL 25%)

2.2. Rancangan

Studi ini disusun dengan rancangan Petak Terbagi (Spit Plot) dan empat ulangan. Sistem tanam sebagai petak utama (S) dan varietas cabai sebagai anak petak (V). Sistem tanam yang digunakan yaitu ada dua perlakuan, tumpang sari lada - cabai (S1) dan monokultur cabai (S2). Sedangkan perlakuan varietas terdiri atas tiga varietas cabai, yaitu Prima Agrihorti (V1), Rabani Agrihorti (V2) dan Canon (V3).

2.3. Pelaksanaan

Benih cabai disemai menggunakan media tanam pupuk kandang dan tanah (perbandingan volume 1:1). Benih siap pindah tanam pada umur 4-5 minggu setelah semai (MSS). Lahan tumpang sari yang digunakan merupakan lahan pertanaman lada yang belum menghasilkan berumur 2 tahun, dengan jarak tanam lada 2 x 2 m. Cabai rawit ditanam di antara tanaman lada tersebut pada bedengan berukuran 1 x 23 m secara double row, dan jarak tanam 50 x 80 cm. Total plot yang digunakan sebanyak 12 satuan percobaan pada setiap sistem tanam, sehingga total satuan percobaan penelitian ini sebanyak 24 plot. Populasi tanam setiap plot sebanyak 58 tanaman. Lahan efektif yang digunakan untuk pertanaman cabai sebagai tanaman sela sebesar 50 %. Dolomit diaplikasikan sebanyak 2 ton/ha, pupuk kandang sapi 20 ton/ha, dan pupuk NPK 600 kg/ha. Aplikasi diberikan sebanyak sepertiga dosis, dan sisanya diaplikasikan secara bertahap, kemudian dipasang mulsa plastik hitam perak. Pemberian pupuk susulan sebanyak 2 g/220 ml diberikan secara dikocor setiap 10 hari. Kemudian diberikan 2 g NPK secara tugal setiap 1 bulan sekali. Pemeliharaan tanaman yang dilakukan yaitu pengairan dan pengendalian hama dan penyakit (OPT) yang disesuaikan dengan pengamatan di lapangan.

2.4. Pengamatan

Pengamatan dilakukan pada parameter pertumbuhan dan produksi. Parameter pertumbuhan yang diamati yaitu tinggi tanaman (diukur pada umur tanaman 2, 4, 6, 8, 10, dan 12 minggu setelah tanam (MST)). Komponen hasil meliputi hasil buah cabai per tanaman, hasil buah cabai per plot dan hasil buah cabai per ha. Pada pengamatan bobot buah per tanaman, ditimbang secara akumulasi sejak panen pertama hingga panen ke-8. Produksi buah per ha dicatat dengan mengkonversi hasil buah per plot tanaman. Produksi buah per ha pada sistem tanam tumpang sari dihitung dengan mengkonversi hasil buah per plot tanaman dikali 50%. Pengamatan juga dilakukan terhadap serangan hama dan penyakit, serta dihitung intensitas serangannya menggunakan formula Townsend–Heuberger (Townsend & Heuberger, 1943):

$$I(\%) = \sum (ni \times vi) / N \times V \tag{1}$$

Dimana I = Intensitas serangan hama/penyakit; ni = jumlah tanaman dalam satu kategori; vi = kategori kerusakan; N = jumlah total tanaman yang diamati; V = skor tertinggi; i = jumlah kategori.

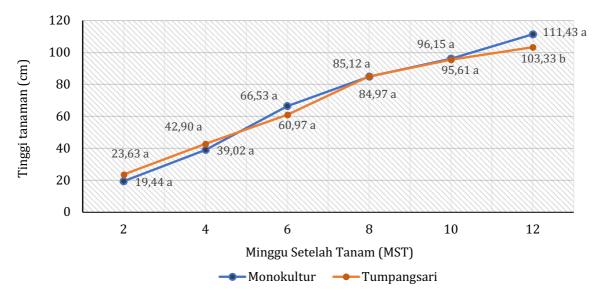
Berdasarkan hasil perhitungan menggunakan rumus tersebut, intensitas serangan hama/penyakit yang teramati dikategorikan sebagai serangan ringan jika $I \le 25\%$, sedang jika $25\% < I \le 50\%$, berat jika $50\% < I \le 75\%$, dan sangat berat jika I > 75%.

2.5. Analisis Data

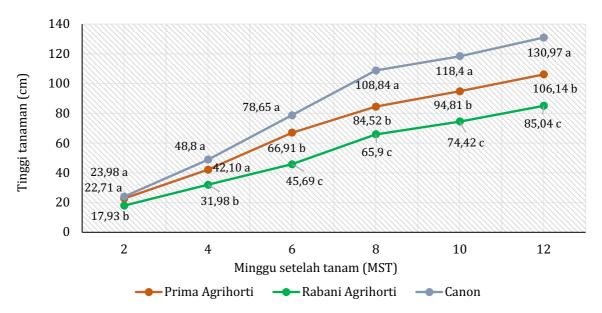
Data yang diperoleh dilakukan analisis ragam (ANOVA) dengan prog STAR (*Statistical Tool for Agricultural Research*), kemudian dilakukan uji lanjut Beda Nyata Terkecil (BNT) pada $\alpha = 0.05$.

3. HASIL DAN PEMBAHASAN

3.1 Pertumbuhan Tanaman


Selama pengujian di lapangan, tanaman cabai dan lada menunjukkan pertumbuhan vegetatif yang cukup baik (Gambar 1a dan Gambar 1b). Berdasarkan hasil analisis ragam, tidak terdapat pengaruh interaksi antara sistem tanam dengan varietas terhadap tinggi tanaman cabai. Hasil pengamatan pada parameter tinggi tanaman (Gambar 2) mengindikasikan bahwa pengaruh tunggal sistem tanam (monokultur dan tumpang sari) tidak berpengaruh signifikan terhadap tinggi tanaman cabai rawit pada umur tanaman 2, 4, 6, 8, dan 10 MST. Karakter tinggi tanaman lebih dipengaruhi oleh faktor genetik tanaman itu sendiri, serta faktor lingkungannya. Namun demikian, pada umur 12 MST terjadi perbedaan nyata terhadap tinggi tanaman, hal ini dipengaruhi oleh tanaman cabai yang sudah memasuki fase generatif dengan kebutuhan intensitas cahaya, air, dan unsur hara yang semakin tinggi, sehingga terjadi persaingan antara kedua jenis tanaman. Potensi persaingan unsur hara dapat terjadi apabila dua jenis tanaman dibudidayakan dengan jarak dekat (kurang dari satu meter) (Komansilan *et al.*, 2022).

Hasil studi yang ditampilkan pada Gambar 3 memperlihatkan bahwa cabai varietas Canon yang ditanam secara sistem tanam tumpang sari maupun monokultur memiliki postur tanaman lebih tinggi dan secara statistik signifkan dibandingkan dengan varietas lainnya, meskipun tidak berbeda nyata dengan Prima Agrihorti pada umur 2 dan 4 MST. Ketiga varietas yang diuji pada studi ini menunjukkan perbedaan nyata secara statistik terhadap tinggi tanaman. Tinggi tanaman pada ketiga varietas cabai umur 12 MST berkisar antara 85,04-130,97 cm. Varietas Rabani Agrihorti menampilkan postur paling pendek dibandingkan dengan varietas lainnya. Perbedaan karakter tinggi tanaman dapat dipengaruhi antara lain oleh faktor lingkungan seperti unsur hara, intensitas cahaya dan air, serta genotipe tanaman (Marveldani *et al.*, 2018; Aryani *et al.*, 2022).



Gambar 1. Pertanaman lada dan cabai: (a) sistem tanam tumpang sari lada-cabai; (b) sistem tanam monokultur cabai

Gambar 2. Pengaruh sistem tanam terhadap tinggi tanaman cabai

Gambar 3. Pengaruh varietas terhadap tinggi tanaman cabai

3.2 Komponen Hasil

Berdasarkan hasil analisis ragam, tidak terdapat pengaruh interaksi antara sistem tanam dengan varietas, terhadap semua parameter komponen hasil yang diuji. Namun demikian, secara mandiri perlakuan sistem tanam memiliki pengaruh nyata terhadap hasil buah cabai per tanaman, hasil buah per plot dan hasil buah per ha. Pengaruh tunggal varietas juga memiliki pengaruh nyata terhadap seluruh parameter hasil yang diamati (Tabel 2). Tabel 2 menunjukkan bahwa sistem tanam secara monokultur memperoleh hasil per tanaman yang lebih tinggi (440,99 g/ tanaman), dan berbeda secara signifikan dibandingkan dengan sistem tanam secara tumpang sari (263,57 g/tanaman). Hasil buah per plot pada sistem tanam monokultur (13,25 kg) secara signifikan lebih tinggi dibandingkan dengan sistem tanam secara tumpang sari (9,94 kg). Hal ini antara lain dipengaruhi oleh adanya persaingan unsur hara, dan terkait perbedaan intensitas sinar matahari

Tabel 2. Pengaruh tunggal sistem tanam dan varietas terhadap hasil buah per tanaman, hasil buah per plot dan potensi hasil per ha cabai di lahan kering masam

Perlakuan	Parameter				
Periakuan	Hasil buah pernaman (g)	Hasil buah per plot (kg)	Potensi hasil per ha (ton)		
Sistem Tanam					
Monokultur	440,99 a	13,25 a	5,76 a		
Tumpangsari	263,57 b	9,94 b	3,32 b		
Varietas					
Prima Agrihorti	387,78 a	10,00 b	3,90 b		
Rabani Agrihorti	173,95 b	2,79 c	1,40 c		
Canon	495,11 a	22,00 a	7,43 a		

Keterangan: Rerata dengan huruf yang sama pada masing-masing kolom tidak menunjukkan beda nyata dengan Uji BNT (P<0,05).

di kedua lokasi sistem tanam. Menurut Syakir (1994) intensitas cahaya matahari berpengaruh terhadap pertumbuhan lada. Tanaman lada di bawah naungan 25% menghasilkan indeks pertumbuhan dan laju tumbuh per tanaman lada paling baik. Beberapa faktor yang mempengaruhi produksi lada Natar 1 dan Natar 2 antara lain tingkat curah hujan, ketersediaan air, cahaya, dan kelembaban mikro. Tanaman lada membutuhkan intensitas cahaya 50-75% untuk tumbuh dengan baik (Yudiyanto et al., 2014). Pohon gamal (Gliricidia sepium (Jacq) Steud) sering digunakan petani selain sebagai tajar juga dapat mengurangi intensitas cahaya matahari pada tanaman lada. Hal ini menyebabkan tanaman cabai pada sistem tumpang sari lebih sedikit menerima cahaya matahari sehingga proses fotosintesis berlangsung kurang optimal. Tanaman lada yang ditanam secara tumpang sari dapat meningkatkan laju fotosintesis, dan menjaga efisiensi penggunaan air, tergantung jarak di antara tanaman tumpang sari (Oliveira et al., 2018).

Sistem tanam cabai secara monokultur memberikan hasil per ha (5,76 ton/ha) secara signifikan lebih tinggi dibandingkan sistem tumpang sari (3,32 ton/ ha), dengan lahan tanam sela efektif 50% (Tabel 2). Namun demikian, cabai bukan merupakan tanaman utama pada sistem tumpang sari, dan hasil tanaman sela cabai mampu memberikan hasil di atas 50% dari hasil tanaman cabai secara monokultur. Hal ini menunjukkan bahwa tanaman sela cabai mampu berproduksi dengan baik di antara tanaman lada yang belum menghasilkan.

Secara mandiri, varietas cabai memberikan pengaruh nyata terhadap hasil cabai, baik itu hasil per tanaman, per plot dan per hektar. Varietas Canon menunjukkan produksi per tanaman sebesar 495,11 g/tanaman, hasil per plot sebesar 22,00 kg/plot, dan hasil per ha sebesar 7,43 ton/ha. Hasil ini adalah tertinggi jika dibandingkan dengan varietas Prima Agrihorti dan Rabani Agrihorti. Perbedaan hasil dari semua varietas cabai yang diuji dapat dipengaruhi oleh faktor lingkungan dan faktor genetik (Kusmana, 2017).

Lahan merupakan faktor penting dalam budidaya lada dan cabai karena berperan sebagai media tumbuh dan sumber unsur hara bagi tanaman. Hasil analisis tanah pada lokasi studi di Desa Negararatu, Kecamatan Natar menunjukkan bahwa pH tanah di kedua lokasi sistem tanam yaitu sebesar 5,34-5,37 yang tergolong masam. Tanaman cabai akan tumbuh dengan baik pada pH tanah yang berkisar antara 5,5–6,5 dengan pH optimum yaitu 6,0-6,5 (Wahyudi dan Abror, 2014). Nilai pH rendah akan mengakibatkan terjadinya defisiensi fosfat (P). Hasil penelitian William (2006) menunjukkan bahwa pemberian bahan amelioran seperti kapur dolomit, atau kombinasi kapur dan pupuk kandang dapat menaikkan ph tanah secara signifikan. Kandungan C-organik tergolong rendah sampai sedang, yaitu sebesar 1,92-2,14%. Rendahnya kandungan bahan organik dapat menurunkan kapasitas tampung air tanah, permeabilitas tanah, serta dapat menurunkan kesuburan tanah (Widiatiningsih *et al.*, 2018).

Pada tanah masam dengan pH rendah, tanaman cabai masih dapat menghasilkan, namun tidak akan optimal, disebabkan adanya beberapa unsur hara yang sulit diserap oleh tanaman. Pada tanah masam, tanaman mengalami keracunan aluminium yang berdampak terhadap kerusakan pada akar tanaman, pH rendah juga menyebabkan defisiensi fosfat (P) sehingga akan mengganggu pertumbuhan tanaman (Jamilah *et al.*, 2016). Hasil pengujian ini menunjukkan Canon adalah varietas dengan karakter yang cukup adaptif dan berpotensi dikembangkan pada lahan kering masam Lampung, dengan hasil produktivitas paling tinggi dibdaningkan varietas lainnya.

3.3 Intensitas Serangan Hama dan Penyakit

Intensitas serangan beberapa Organisme Pengganggu Tumbuhan (OPT) utama pada tanaman cabai di lahan kering masam Natar, Lampung Selatan ditampilkan pada Tabel 3. Sistem tanam memiliki pengaruh yang cukup signifikan terhadap intensitas serangan beberapa OPT pada cabai. Pada sistem tanam monokultur (S1), intensitas serangan kutu kebul dan penyakit virus kuning tergolong sedang, masing-masing sebesar 36,52% dan 36,42%, sedangkan dengan sistem tumpang sari (S2) intensitas serangannya tergolong rendah (masing-masing yaitu 7,02% dan 9,93%). Sistem tanam secara monokultur cenderung dapat meningkatkan risiko serangan hama dan penyakit karena rendahnya keberagaman tanaman, yang mengakibatkan tidak adanya tanaman penghalang atau inang alternatif (Altieri *et al.*, 2003).

Intensitas serangan bekicot tergolong sedang pada sistem tumpang sari dan tergolong ringan pada sistem monokultur. Bekicot merupakan hama yang bersifat polifag, dan dapat menimbulkan kerusakan pada tanaman cabai maupun lada. Hama ini dapat merusak pucuk daun muda pada cabai, ujung-ujung sulur, dan akar panjat pada lada. Tingginya intensitas serangan bekicot pada tanaman tumpang sari juga dipengaruhi oleh lingkungan yang lebih teduh dan rimbun pada petak percobaan tumpang sari dibandingkan dengan monokultur, sehingga memberikan habitat yang lebih kondusif bagi bekicot. Pohon yang banyak dan kondisi tanaman lada yang rimbun pada sistem tumpang sari menciptakan mikroklimat yang lebih lembab, yang mendukung populasi bekicot (Reddy *et al.*, 2016). Sementara itu, tidak terdapat perbedaan yang signifikan pada serangan layu Fusarium antara kedua sistem tanam, yang menunjukkan bahwa faktor lain seperti kondisi tanah dan genotipe tanaman mungkin lebih berperan dalam penyebaran penyakit ini (Chitwood, 2002).

Tabel 3. Intensitas serangan OPT cabai pada lahan kering masam Natar, Lampung Selatan

	Intensitas serangan OPT utama yang diamati				
Perlakuan	Kutu kebul (%)	Bekicot (%)	Virus kuning (%)	Layu Fusarium (%)	
Sistem Tanam					
Monokultur (S1)	36,52 a	0,50 a	36,42 a	11,92 a	
Tumpang sari (S2)	7,02 b	30,10 b	9,93 b	8,91 a	
Varietas Cabai					
Prima Agrihorti (V1)	30,83 a	12,21 a	27,04 a	8,75 a	
Rabani Agrihorti (V2)	22,50 a	17,16 a	20,79 a	11,54 a	
Canon (V3)	11,97 a	2,75 b	21,70 a	10,97 a	

Keterangan: Sistem Tanam (Faktor 1): S1 = Sistem tanam secara monokultur; S2 = Tumpang sari lada, Varietas Cabai (Faktor 2): V1 = Varietas Prima Agrihorti; V2 = Varietas Rabani Agrihorti; V3 = Varietas Canon. Rerata yang diikuti huruf yang sama pada masing-masing kolom tidak berbeda nyata berdasarkan Uji BNT (P<0,05).

Intensitas serangan kutu kebul pada varietas Canon (V3) dan Rabani Argrihorti (V2) tergolong ringan, meskipun tidak berbeda nyata dibandingkan intensitas serangan pada varietas Prima Agrihorti yang tergolong sedang. Intensitas serangan bekicot pada varietas Canon juga lebih rendah dibdaningkan varietas lainnya, meskipun tidak berbeda nyata dibdaningkan dengan varietas Prima Agrihorti. Intensitas penyakit virus kuning tidak menunjukkan beda nyata dari ketiga varietas yang ditanam. Intensitas serangan penyakit layu Fusarium pada ketiga varietas tergolong ringan. Varietas Prima Agrihorti memiliki intensitas serangan penyakit layu Fusarium yang lebih kecil dibandingkan dengan dua varietas lainnya.

Varietas cabai Prima Agrihorti adalah varietas unggul yang dikembangkan Kementerian Pertanian. Varietas Prima Agrihorti ini dirancang untuk memenuhi kebutuhan petani dan pasar dengan berbagai keunggulan yang adaptif terhadap kondisi agroekosistem yang beragam, dengan potensi hasil yang tinggi, mencapai 1,5-2 kg per tanaman atau sekitar 15-20 ton per hektar tergantung pada teknik budidaya dan kondisi lingkungannya (Kementerian Pertanian, 2017; Putra et al., 2020). Prima Agrihorti memiliki ketahanan yang baik terhadap beberapa penyakit penting pada cabai, seperti layu Fusarium (Fusarium oxysporum) dan patek atau antraknosa (Colletotrichum spp.) (Nugroho et al., 2019). Namun demikian, varietas ini masih rentan terhadap serangan kutu kebul dan virus kuning. Varietas Prima Agrihorti menunjukkan adaptasi yang baik pada berbagai sifat fisik dan kimia tanah, termasuk pada lahan kering masam. Varietas cabai Canon dikenal memiliki ketahanan yang baik terhadap beberapa hama dan penyakit utama cabai. Ketahanan ini menjadikan Canon sebagai pilihan populer di kalangan petani yang mencari varietas yang dapat menghasilkan panen yang stabil meskipun dihadapkan pada tekanan hama dan penyakit (Naibaho et al., 2021; Lagiman & Supriyanta, 2021).

Pada budidaya tanaman cabai, pemilihan sistem tanam dan varietas cabai yang tepat dapat menjadi strategi yang efektif dalam mengendalikan OPT utama pada lahan kering masam. Penggunaan sistem tumpang sari serta varietas yang memiliki ketahanan tinggi dapat membantu mengurangi tingkat serangan OPT pada cabai. Namun demikian, penanaman tanaman sela sebaiknya tidak dilakukan dengan tanaman sela secara tunggal (monokultur) dalam jangka panjang, karena hal ini dapat menyebabkan peningkatan risiko peningkatan intensitas serangan hama, penyakit, dan gulma, meningkatkan laju degradasi lahan, serta mengurangi produksi, yang berakibat meningkatnya risiko dalam usaha tani (Thankamani *et al.*, 2011; Yulius *et al.*, 2012). Berdasarkan hasil studi ini, disarankan untuk menggunakan pola tanam yang melibatkan beberapa jenis tanaman sela dan dilakukan secara bergiliran (rotasi tanaman). Selain tanaman cabai, kacang tanah dapat dimanfaatkan di antara tanaman lada selama fase vegetatif, sementara kacang hijau dapat dibudidayakan pada fase generatif. Prasmatiwi *et al.* (2022) melaporkan bahwa kebun kopi dan lada yang ditanam secara tumpang sari mampu memperoleh hasil yang lebih tinggi dibandingkan dengan sistem tanam secara monokultur.

4. KESIMPULAN

Pertumbuhan tanaman sela cabai pada tanaman lada yang belum menghasilkan tidak berbeda nyata dengan sistem tanam monokultur. Produktivitas tanaman sela cabai secara tumpang sari (3,32 ton/ha) lebih rendah dibandingkan dengan sistem monokultur (5,76 ton/ha), dengan lahan tanam sela efektif 50%. Namun demikian, hasil tanaman sela cabai mampu memberikan hasil di atas 50% dari hasil tanaman cabai secara monokultur, menunjukkan bahwa tanaman sela cabai berpotensi untuk dikembangkan di antara tanaman lada yang belum menghasilkan. Varietas Canon menampilkan daya hasil yang paling tinggi dengan intensitas serangan kutu kebul dan bekicot paling

rendah. Varietas Prima Agrihorti memiliki potensi dan cukup adaptif untuk dikembangkan di lahan kering masam baik secara monokultur maupun tumpang sari lada-cabai.

5. UCAPAN TERIMA KASIH

Ucapan terima kasih disampaikan kepada Balai Pengkajian Teknologi Pertanian Lampung, Kementerian Pertanian, yang telah membiayai dan membantu pelaksanaan penelitian di lapangan (SK Nomor 19/Kpts/TU.040/H.12.9/01/2020).

6. DAFTAR PUSTAKA

- Altieri, M.A., & C.I. Nicholls. 2003. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. *Soil and Tillage Research*. 72(2):203-211.
- Aprianto, F., R. Rosliani, & Liferdi, L. 2020. Korelasi antara serapan P tanaman cabai (*Capsicum annum* L.) dengan metode penetapan P tersedia tanah ordo inceptisol Subang. *Jurnal Tanah dan Sumberdaya Lahan*. 7(2):321-327.
- Aryani, R.D., I.F. Basuki, I. Budisantoso, & A. Widyastuti. 2022. Pengaruh Ketinggian Tempat terhadap Pertumbuhan dan Hasil Tanam Cabai Rawit (*Capsicum frutescens* L.). *Agriprima: Journal of Applied Agricultural Sciences*. 6(2):202-211.
- BMKG 2020. Badan Meteorologi, Klimatologi dan Geofisika. Laporan Iklim Bulanan 2020. https://dataonline.bmkg.go.id/home (diakses 2 Juli 2022).
- BPS Provinsi Lampung. (2024). Provinsi Lampung Dalam Angka 2024. https://lampung.bps.go.id/id/publication/2024/02/28/8520af3c58678b072a61386c/provinsi-lampung-dalam-angka-2024.html (diakses 26 Agustus 2024).
- Chitwood, D.J. 2002. Phytochemical based strategies for nematode control. *Annual review of phytopathology*. 40(1):221-249.
- Ferry, Y. & E. Wardiana. 2012. Pengaruh jarak tanam dan jenis tanaman sela terhadap pertumbuhan lada perdu serta hasil tanaman sela. *Journal of Industrial dan Beverage Crops.* 3(2):151-156.
- Jamilah, M., P. Purnomowati, & U. Dwiputranto. 2017. Pertumbuhan cabai merah (*Capsicum annuum* L.) pada tanah masam yang diinokulasi mikoriza vesikula arbuskula (MVA) campuran dan pupuk fosfat. Majalah Ilmiah Biologi *Biosfera: A Scientific Journal.* 33(1):37-45.
- Kementerian Pertanian. 2017. Deskripsi Varietas Unggul Cabai. Jakarta: Pusat Perlindungan Varietas Tanaman dan Perizinan Pertanian.
- Komansilan, O., J.M. Paulus, & J.E. Rogi. 2022. Pemberian plant growth promoting rhizobacteria (PGPR) untuk meningkatkan produksi padi gogo dan jagung dalam sistem tumpang sari. *Jurnal MIPA*. 12(1):1-10.
- Kusmana, Y.K. & D.Djuariah. 2017. Uji daya hasil tujuh genotipe cabai rawit pada ekosistem dataran tinggi Pangalengan, Jawa Barat. *Jurnal Hortikultura*. 2:147-154.
- Lagiman, L. & B. Supriyanta. 2021. Karakterisasi morfologi dan pemuliaan tanaman cabai.
- Marveldani, M., E. Maulana, & D. Maulida. 2018. Evaluasi daya hasil lima varietas cabai (*Capsicum annuum* L.) dengan penggunaan mulsa plastik dan paranet saat transplanting. In *Prosiding Seminar Nasional Pengembangan Teknologi Pertanian*.
- Naibaho, A.Y., M. Heviyanti, M. Murdhiani, & R. Manarany. 2021. Uji adaptasi lima varietas unggul cabai merah keriting di lahan kering dengan teknologi proliga. *Jurnal Agroqua: Media Informasi Agronomi dan Budidaya Perairan.* 19(1):159-167.

- Noor, M.I.F., Y. Bakhtiar, & A. Saleh. 2020. Pemanfaatan tanaman sela pada lahan budidaya jambu kristal (*Psidium guajava* L.) di Desa Neglasari. *Jurnal Pusat Inovasi Masyarakat (PIM*). 2(5):763-770.
- Nugroho, K., R.T. Terryana, I. Manzila, T.P. Priyatno, & P. Lestari. 2019. The use of molecular markers to analyze the genetic diversity of Indonesian pepper (*Capsicum* spp.) varieties based on anthracnose resistance. *Makara Journal of Science*. 23(3):4.
- Oliveira, M.G., G. Oliosi, F.L. Partelli, & J.C. Ramalho. 2018. Physiological responses of photosynthesis in black pepper plants under different shade levels promoted by intercropping with rubber trees. *Ciência e Agrotecnologia*. 42(5):513-526.
- Prasmatiwi, F.E., R. Evizal, O. Nawansih, N. Rosanti, R. Qurniati, & P. Sanjaya. 2022. Keragaman tanaman dan sumbangan penerimaan tumpangsari kopi dan lada di Kabupaten Tanggamus Provinsi Lampung. *Jurnal Agrotek Tropika*. 11(1):45-53.
- Putra, I., Y. Yusrizal, S. Septidanar, W. Hadianto, N. Ariska, & A. Resdiar. 2021. Respon pemberian pupuk organik cair (POC) bonggol pisang terhadap pertumbuhan dan produksi beberapa varietas cabe rawit (*Capsicum frutencens* L var. *Cengek*). *Jurnal Agrista*. 25(1):39-49.
- Ratmini, N.P.S. & Y.E. Maryana. 2021. Pengelolaan kesuburan lahan kering masam mendukung ketahanan pangan nasional. In Seminar Nasional Lahan Suboptimal. Desember, pp. 80-88.
- Reddy, P.P. 2015. Plant protection in tropical root dan tuber crops (No. 11591). New Delhi, India: Springer India.
- Sahuri, S. 2017. Pengaruh tanaman sela sorgum manis terhadap pertumbuhan tanaman karet belum menghasilkan. *Jurnal Agroteknologi*. 8(1):1-10.
- Yudiyanto, Y., A. Rizali, A. Munif, D. Setiadi, & I. Qayim. 2015. Environmental factors affecting productivity of two Indonesian varieties of black pepper (*Piper nigrum L.*). *Agrivita Journal of Agricultural Science*. 36(3):278-284.
- Syakir, M., 1994. Pengaruh naungan, unsur hara P dan Mg terhadap iklim mikro, indeks pertumbuhan dan laju tumbuh tanaman lada. *Buletin Penelitian Tanaman Rempah dan Obat.* 9(2):106-114.
- Townsend, G.R. & J.W. Heubergeb. 1943. Methods for estimating losses caused by diseases in fungicide experiments. 27:340-343.
- Thankamani, C.K., Kdaniannan, K., Madan, M.S., Raju, V.K., Hamza, S. dan Krishnamurthy, K.S., 2011. Crop diversification in black pepper gardens with tuber dan fodder crops. *Journal of Plantation Crops.* 39 (3): 358-362.
- Wahyudi, I. & M. Abror. 2014. Effect of height dan type of nursery shade on vigor of big red chili (*Capsicum annum* L.). *Nabatia*. 2(1):1-10.
- Widiatiningsih, A., M. Mujiyo, M. & S. Suntoro. 2018. Study of Soil Degradation Status at Jatipurno District, Keduang Sub-Watersheds, Wonogiri Regency, Central Java. *Sains Tanah-Journal of Soil Science dan Agroclimatology.* 15(1):1-14.
- William, E. 2006. Pengaruh pemberian bahan amelioran terhadap pertumbuhan dan hasil cabai merah (*Capsicum annum* L.) di lahan sulfat masam. *Indonesian Journal of Agronomy.* 34(3).