Analisis pengendalian kualitas produk keripik tempe Deny menggunakan pendekatan six sigma DMAIC terintegrasi fuzzy FMEA

[Analysis of the quality control of Deny's tempe chips using a six sigma DMAIC-integrated fuzzy FMEA approach]

Siti Asmaul Mustaniroh* dan Nadya Prabaningtias

Jurusan Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Universitas Brawijaya, Jalan Veteran. Malang 65145 * Email korespondensi: asmaul m@ub.ac.id

Diterima: 30 Desember 2020, Disetujui: 26 Oktober 2021, DOI: 10.23960/jtihp.v27i1.12-23

ABSTRACT

Deny Tempe Chips is one of the leading MSME chips products in Malang City. The tighter business competition encourages MSMEs to increase their competitive advantage through increasing production quality and minimizing production defects. The purpose of the study was to identify and analyze the factors causing defects in the production of tempeh chips. The research used the six sigma DMAIC (define, measure, improve, analyze, control) method with fuzzy FMEA integration. The results showed that highest defect percentage as the main priority for improving the production process (CTQ) was oily tempe chips (82.04%). The processing capability of frying tempeh chips has a final yield value of 64.87%. The frying process sigma value was 1.88, very uncompetitive level and required process improvement. The sources of the problems in the frying process were human factors, methods, and production facilities. The value of FRPN as the highest risk priority for tempe chips product defects was the limited number of skilled workers in the frying process that affected the number of defects in tempeh products. The corrective action strategy proposed was human resource planning to meet the needs of the SME workforce, including the provision of training, scheduling production supervision, and adding skilled workers in the production process.

Keywords: product defects, Deny tempe chips, six sigma DMAIC method, quality control.

ABSTRAK

Keripik Tempe Deny merupakan salah satu produk keripik unggulan UMKM di Kota Malang. Persaingan usaha yang semakin ketat mendorong UMKM untuk meningkatkan keunggulan kompetitif, melalui peningkatan kualitas produksi serta minimasi terjadinya cacat produksi. Tujuan penelitian untuk mengidentifikasi dan menganalisis faktor-faktor penyebab cacat pada produksi keripik tempe. Penelitian menggunakan metode six sigma DMAIC (define, measure, improve, analyze, control) terintegrasi fuzzy FMEA. Hasil penelitian menunjukkan bahwa persentase cacat tertinggi sebagai prioritas utama perbaikan proses produksi (CTQ) adalah keripik tempe berminyak (82,04%). Kapabilitas proses penggorengan keripik tempe memiliki nilai final yield sebesar 64,87%. Nilai sigma proses penggorengan sebesar 1,88 termasuk tingkat pencapaian sigma yang sangat tidak kompetitif dan memerlukan perbaikan proses. Sumber permasalahan proses penggorengan terdapat pada faktor manusia, metode, dan fasilitas produksi. Nilai FRPN sebagai prioritas risiko tertinggi cacat produk keripik tempe adalah kurangnya jumlah tenaga kerja yang ahli dalam proses penggorengan sehingga berpengaruh terhadap jumlah cacat produk tempe. Strategi tindakan perbaikan yang diusulkan adalah perencanaan SDM untuk memenuhi kebutuhan tenaga kerja UKM antara lain pengadaan pelatihan, penjadwalan pengawasan produksi, dan penambahan tenaga kerja ahli dalam proses produksi.

Kata kunci: cacat produk, keripik tempe Deny, metode six sigma DMAIC, pengendalian kualitas,

Pendahuluan

Agroindustri kreatif di Kota Malang telah mengalami perkembangan, dibuktikan dengan meningkatnya kegiatan sektor industri pengolahan makanan, salah satunya keripik tempe. Keripik tempe sebagai produk unggulan daerah di Kota Malang telah mengalami peningkatan level kualitas menjadi buah tangan khas Kota Malang. Produsen keripik tempe merupakan industri skala mikro hingga menengah (UMKM) yang berpusat di Jl. Sanan, Blimbing, Kota Malang. Hingga tahun 2019, sebanyak 308 industri keripik tempe masih menjalankan usahanya (Disperindag Kota Malang, 2014). Salah satu UMKM produsen keripik tempe adalah UKM Deny, yang menghasilkan produk "Keripik Tempe Deny".

Persaingan usaha yang semakin ketat mendorong UMKM untuk meningkatkan keunggulan kompetitif, salah satunya melalui efisiensi produksi dengan meningkatkan kualitas produksi dan menekan timbulnya cacat produk, serta melakukan kontrol terhadap kualitas produk yang dihasilkan (Almansur et al., 2017). Kualitas produk yang perlu dikontrol oleh UKM Deny diantaranya keripik tempe yang berminyak (kandungan minyak berlebih pasca penggorengan), tekstur (kerenyahan) dan keseragaman warna keripik. Penelitian Irawan et al. (2017) menyatakan, proses produksi keripik tempe menjadi salah satu faktor risiko yang berdampak pada kualitas hasil produk keripik tempe. Dalam rangka meningkatkan kualitas produk untuk menghadapi kompetisi pasar, UKM Deny perlu melakukan evaluasi kualitas dan penyusunan strategi pengendalian kualitas untuk mengurangi cacat produk. Penggunaan metode six sigma dianggap sebagai metode paling relevan dalam pengambilan keputusan untuk meningkatkan kualitas mutu produksi serta mengurangi jumlah cacat produk akhir (Hairiyah et al., 2020). Integrasi metode *Six Sigma* DMAIC merupakan salah satu alat analisis yang digunakan untuk pengendalian kualitas produk.

Six sigma didasarkan pada enam prinsip utama yang harus diterapkan pada perusahaan yang ingin mengembangkan dan meningkatkan posisinya di pasar (Smętkowska & Mrugalska, 2018). Penerapan six sigma dilakukan berdasarkan pada data dan fakta aktual, serta berdasarkan perbaikan secara terusmenerus terhadap semua aspek pengembangan yang berfungsi dalam organisasi (Smętkowska & Mrugalska, 2018). Pengembangan model six sigma (DMAIC) telah digunakan untuk mengurangi variasi proses dan tingkat produk cacat yang tinggi dalam program kualitas industri pangan, sehingga mengarah pada proses yang efektif (Azalanzazllay & Lim, 2018). Melalui metode Define, Measure, Analyze, Improve, Control (DMAIC) dalam pendekatan six sigma, memungkinkan perusahaan untuk mengidentifikasi waste yang terjadi pada kegiatan-kegiatan tidak bernilai tambah, salah satunya jumlah cacat produksi. Hasil identifikasi waste dapat digunakan untuk meningkatkan kecepatan proses dan kualitas produksi perusahaan. Penerapan six sigma ditujukan untuk meningkatkan kinerja perusahaan hingga mencapai tingkat kinerja enam sigma (Setyawan et al., 2017), yang pada UKM Deny melalui peningkatan kualitas keripik tempe secara kontinyu.

Penelitian terdahulu menunjukkan penerapan six sigma dan kaizen telah berhasil memperbaiki kualitas roti manis UD CJ Bakery, (Hairiyah et al., 2020), dan metode six sigma dan FMEA yang diintegrasikan dengan metode fuzzy dalam mengidentifikasi waste untuk meningkatkan kualitas leather di Sumber Rejeki, Magetan (Roesmasari et al., 2018). Penelitian Irawan et al., (2017) menunjukkan, risiko pada proses produksi keripik tempe menyebabkan hasil produksi keripik tempe yang tidak bagus seperti, bentuk keripik tempe yang tidak bulat sempurna, tekstur keripik tempe yang tidak renyah dan tingginya kadar minyak pada keripik tempe. Variabel warna digunakan sebagai indikator kualitas keripik karena menjadi parameter yang penting untuk persepsi konsumen (Gaikwad & Athmaselvi, 2016). Identifikasi awal di UKM Deny menunjukkan bahwa tahap penggorengan dan penirisan berpengaruh terhadap kenampakan (bentuk, warna, tekstur dan kandungan minyak) keripik tempe. Berdasarkan penelitian terdahulu dan hasil identifikasi awal pada UKM Deny, penelitian ini bertujuan untuk mengidentifikasi dan menganalisis faktorfaktor penyebab cacat dalam produksi keripik tempe. Faktor-faktor tersebut kemudian digunakan sebagai dasar pengendalian kualitas untuk minimasi cacat dengan menggunakan metode six sigma DMAIC yang diintegrasikan dengan FMEA.

Bahan dan metode

Metode penelitian

Penelitian dilakukan di UKM Deny, Kota Malang melalui wawancara dan pengamatan proses produksi keripik tempe. Penggunaan sampel pada kurun waktu 1 bulan (26 hari) produksi dengan asumsi produk cacat yang ditimbulkan sebanyak 5% per hari. Asumsi produk cacat ditentukan oleh responden berdasarkan data produksi sebelum terjadi pandemi. Dari dasar tersebut, diperoleh jumlah sampel

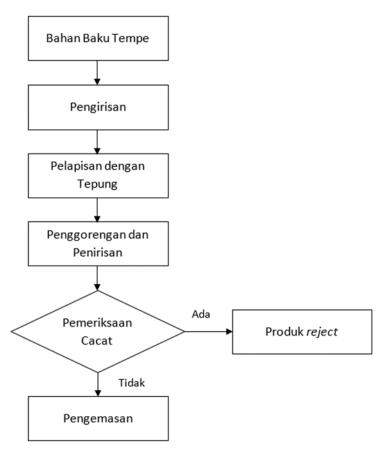
diperiksa sebanyak 390kg dan jumlah produk cacat dari 3 kategori (berminyak, cacat tekstur dan warna) sebanyak 137kg.

Metode penelitian yang digunakan adalah six sigma DMAIC, terdiri dari: define (pendefinisian), measure (pengukuran), analyze (analisis), improve (perbaikan), dan control (pengawasan) yang secara sistematis membantu organisasi dalam memecahkan masalah dan meningkatkan tahapan proses organisasi (Rahman et al., 2017). Implementasi penggunaan Six Sigma dalam tahap perbaikan (Improve) akan di integrasikan dengan metode fuzzy FMEA untuk menganalisis tingkat besar kecilnya risiko untuk memperbaiki kualitas produk (Winanto & Santoso, 2017). Fuzzy FMEA disusun berdasarkan diagram sebab akibat dengan hasil akhir berupa ranking FRPN yang menunjukkan prioritas untuk rencana tindakan perbaikan (Roesmasari et al., 2018). Penilaian dan pengisian kuesioner fuzzy FMEA dilakukan oleh responden pakar (pemilik UKM).

Tahapan six sigma DMAIC sebagai berikut: (1) Define merupakan tahap mengidentifikasikan permasalahan, mendefiniskan spesifikasi pelanggan, dan menentukan tujuan (pengurangan cacat/biaya dan target waktu). Teknis yang dilakukan dengan membuat diagram SIPOC (supplier, input, process, output, customer) dan menentukan critical to quality (CTQ) proses produksi keripik tempe di UKM Deny. (2) Measure merupakan tahap untuk memvalidasi permasalahan, mengukur/menganalisis permasalahan dari data yang ada. Teknis yang dilakukan meliputi pembuatan peta kendali dalam produksi keripik tempe, menghitung nilai DPMO (Defect Per Million Opportunity) serta nilai level sigma. (3) Analysis merupakan tahap untuk menentukan faktor – faktor yang paling mempengaruhi proses serta mencari faktor jika diperbaiki akan memperbaiki proses secara dramatis. Teknis yang dilakukan meliputi menganalisa cacat dominan pada produksi keripik tempe dan membuat diagram sebab akibat/fishbone. (4) Improve merupakan tahap mendiskusikan ide-ide untuk memperbaiki sistem kita berdasarkan hasil analisa terdahulu, melakukan percobaan untuk melihat hasilnya. Pada tahap ini diintegrasikan dengan Fuzzy FMEA untuk menentukan nilai FRPN (Fuzzy Risk Priority Number). (5) Control merupakan tahap membuat rencana dan desain pengukuran agar hasil yang sudah bagus dari perbaikan team kita bisa berkesinambungan. Teknisnya untuk membuat usulan pengendalian proses produksi terkait dengan kualitas keripik tempe.

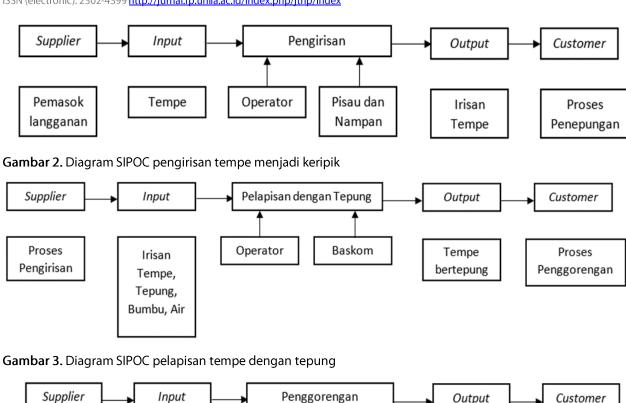
Hasil dan pembahasan

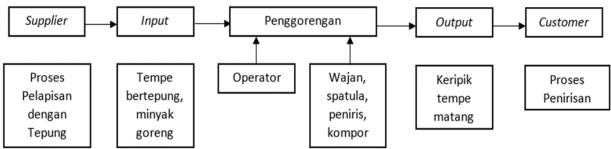
Profil UKM Deny

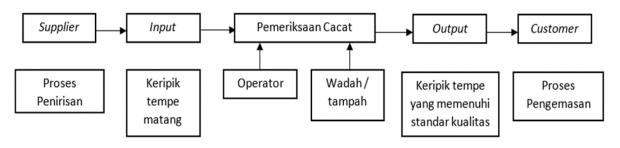

UKM Deny memiliki kapasitas produksi tiap bulannya mencapai 30 kwintal tempe yang diolah menjadi keripik tempe dalam berbagai varian rasa. Bahan baku tempe dan bahan tambahan diperoleh dari kemitraan dengan pemasok di daerah sekitar Sanan dan Kota Malang. UKM Deny telah memiliki P-IRT dan sertifikat halal sebagai salah satu upaya jaminan kualitas produk bagi konsumen. Berdasarkan klasifikasi usaha, UKM Deny ini termasuk skala kecil yang mengacu pada Undang-Undang No.20/2008 tentang Usaha Mikro, Kecil dan Menengah. Kriteria UKM kecil adalah UKM dengan maksimal omzet dalam 1 tahun senilai lebih dari Rp300.000.000,00 sampai dengan Rp2.500.000.000,00. Berdasarkan data dari LPPI dan BI tahun 2015, bahwa industri pengolahan kecil merupakan kegiatan ekonomi yang memiliki 5 sampai 19 orang pekerja dengan kegiatan utama yaitu melakukan pengolahan bahan mentah menjadi barang dengan nilai yang lebih tinggi. Klasifikasi UKM melalui pembentukan klaster akan dapat menumbuhkan profesional kerja, transformasi teknologi dan pengetahuan, serta meningkatkan daya saing (Silalahi et al., 2019).

Pengendalian kualitas UKM Deny dengan DMAIC

Penerapan konsep six sigma dalam pengendalian kualitas dilakukan melalui tahapan DMAIC yaitu, define, measure, analysis, improvement, dan control dengan hasil implementasi pada UKM Deny sebagai berikut.


1) Tahap define

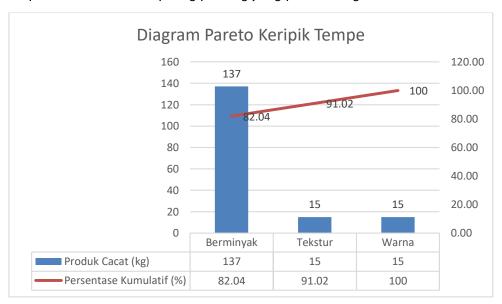

Tahap define digunakan untuk mengindentifikasi proses produksi (gambar 1) dan permasalahan terkait kualitas produk serta pendefinisian critical to quality (CTQ) yang berperan sebagai batasan kriteria produk cacat. Proses yang berlangsung di UKM Deny dimulai dari tahap pengirisan, penepungan, penggorengan, dan pengemasan. Permasalahan terkait kualitas produk yang terjadi di UKM Deny diantaranya keripik tempe yang berminyak, tekstur dan warna keripik yang perlu diatasi untuk mempertahankan kualitas produknya. Kandungan minyak berlebih pasca penggorengan disebabkan proses penirisan secara manual dan proses penggorengan yang tidak konsisten dalam pengaturan panasnya minyak sehingga masih ada sebagian minyak pada keripik tempe. Tekstur terkait dengan tingkat kerenyahan akibat kondisi kemasan yang tidak rapat sehingga produk tidak renyah (melempem). Warna yang beragam disebabkan proses penggorengan yang tidak konsisten dalam penentuan lamanya waktu penggorengan dengan keragaman antar tenaga kerja. Ketiga masalah tersebut bersumber dari proses penggorengan. Kandungan minyak goreng yang berlebihan setelah proses penggorengan dapat berpengaruh terhadap kenampakan produk dan mempercepat proses timbulnya bau tengik (Rianingsih et al., 2018).


Gambar 1. Diagram alir proses produksi keripik tempe UKM Deny

Tahap selanjutnya adalah pembuatan diagram SIPOC yang terdiri dari supplier, input, process, output, dan customer yang menggambarkan keseluruhan proses produksi yang berlangsung di UKM Deny (gambar 2-6). SIPOC merupakan metodologi sistematis yang dapat digunakan untuk mengkategorikan bagaimana berbagai entitas berinteraksi dengan masing-masing proses. SIPOC dapat digunakan untuk menganalisis tahapan-tahapan proses pergantian dan output yang sesuai, pelanggan yang menerima output, input yang dibutuhkan dan pemasok dari input (Krishnaiyer et al., 2018). Diagram SIPOC setiap tahapan proses produksi tempe menjadi keripik tempe terlihat pada Gambar 2 sampai Gambar 6.

Gambar 4. Diagram SIPOC penggorengan

Gambar 5. Diagram SIPOC pemeriksaan keripik tempe setelah penggorengan

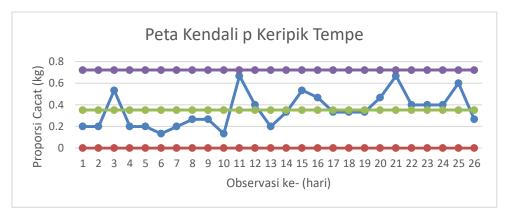

Gambar 6. Diagram SIPOC pengemasan keripik tempe

Output akhir hasil produksi dari UKM Deny adalah keripik tempe dalam kemasan dengan rasa original dan varian rasa lain, berbentuk lingkaran pipih, bertekstur renyah, dan berwarna kuning-keemasan hingga coklat muda. Karakteristik yang diiinginkan konsumen (CTQ) yang berperan sebagai batasan kriteria produk cacat dapat dilihat pada Tabel 1.

_	No	CTQ	Cacat
		Keripik tempe tanpa minyak atau dengan sedikit minyak	Cacat kandungan minyak berlebih (permukaan keripik tempe mengkilap, terlihat
		,	berminyak)
	2	Tekstur renyah	Cacat tekstur keras (sulit patah) dan
			melempem (tidak renyah cenderung lembek)
	3	Warna kuning keemasan	Cacat warna cokelat gelap hingga gosong

Tabel 1. Karakteristik yang diiinginkan konsumen (CTQ)

Cacat keripik tempe yang paling penting tersaji pada Gambar 7 dalam bentuk diagram Pareto. Diagram pareto dapat digunakan dalam penggambaran masalah-masalah yang terjadi (Smetkowska & Mrugalska, 2018), digunakan untuk menentukan produk cacat yang paling penting (Rahman et al., 2017; Pereira et al., 2019), dan memprioritaskan masalah paling penting yang perlu ditangani (Rahman et al., 2017).


Gambar 7. Diagram Pareto pada Parameter Cacat Produk Keripik Tempe

Persentase cacat tertinggi sebagai prioritas utama perbaikan atau CTQ (persentase kumulatif) yaitu cacat produk keripik tempe yang berminyak (82,04%). Aturan diagram Pareto memenuhi aturan 80/20 yang artinya, 20% jenis kecacatan dapat menyebabkan 80% kegagalan proses digunakan dalam peningkatan kualitas (Devani & Wahyuni, 2016). Penyebab utama terjadinya cacat berminyak terdapat pada proses penggorengan yang membutuhkan keahlian dan pengalaman pekerja. Penggorengan dilakukan dalam 3 tahap rentang waktu yang sesuai untuk menghasilkan keripik tempe bertekstur renyah tanpa menimbulkan kandungan minyak berlebih. Pemasukan adonan keripik tempe pada suhu minyak yang masih rendah menyebabkan keripik tempe yang berminyak, ukuran mengecil, dan tekstur yang keras. Mutu makanan yang digoreng ditentukan oleh kualitas bahan baku dan suhu penggorengan, frekuensi pemakaian minyak, kontrol kelembaban, serta reduksi kandungan minyak.

2) Tahap measure

Tahapan *measure* diinformasikan dalam bentuk peta kendali p, penentuan nilai kapabilitas proses, nilai DPMO, dan nilai *Sigma*. Peta kendali p digunakan untuk menganalisis kecacatan dari *output* suatu proses. Peta kendali p dapat dibentuk dari sebuah proses produksi dan merangkum data berupa banyaknya unit ketidaksesuaian (Arsyad et al., 2017). (Arsyad et al., 2017). Analisis peta kendali p untuk cacat produk keripik dilihat pada Gambar 8. Peta kendali p bersifat fluktuatif karena proses pengolahan produk belum stabil,

dilihat dari beberapa faktor seperti operator, mesin dan metode yang digunakan (Pasmawati & Zahri, 2016).

Gambar 8. Hasil analisis peta kendali p keripik tempe

Kapabilitas proses merupakan ukuran kerja kritis yang menunjukkan kemampuan proses dalam menghasilkan *output* sesuai dengan spesifikasi produk yang ditetapkan oleh manajemen dan ekspektasi pelanggan (Rimantho & Athiyah, 2019). Proses dikatakan kapabel ketika proses produksi dalam keadaan terkendali, memenuhi batas spesifikasi, serta mempunyai akurasi dan presisi yang tinggi (Bianti & Retnaningsih, 2016).

Nilai kapabilitas proses dengan data atribut dilihat dari hasil persentase *final yield* dari suatu proses. Standar internasional proses dikatakan baik ketika nilai % *final yield* \geq 99,99% dan standar Indonesia \geq 69,2% (Sucipto et al., 2018). Dalam penelitian ini, nilai *final yield* dari proses penggorengan keripik tempe yang terdapat pada Tabel 2 memiliki hasil sebesar 64,87% sehingga, masih berada di bawah batas standar Indonesia dan dapat dikatakan proses belum dilakukan dengan cukup baik. Nilai *final yield* selanjutnya dikonversi ke dalam bentuk nilai DPMO dengan tabel konversi dapat dilihat pada Tabel 3.

Tabel 2. Perhitungan Fnal Yield keripik tempe

Proses	Rumus penentuan Final Yield	Hasil
Penggorengan	$1 - \frac{\text{Total Produk Cacat}}{\text{Total Sampel}} \times 100\%$ $= 1 - \frac{137}{390} \times 100\%$	64,87%

Tabel 3. Konversi Six Sigma Sederhana

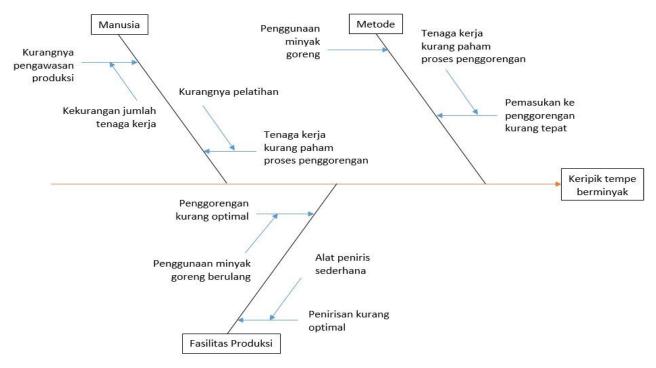
Yield	DPMO	Level Sigma
30,9	690.000	1
69,2	308.000	2
93,3	66.800	3
99,4	6.210	4
99,98	320	5
99,9997	3,4	6

Nilai DPMO digunakan untuk mengetahui penyimpangan keripik tempe berminyak dari proses penggorengan. Jumlah sampel diperiksa sebanyak 390kg dengan produk cacat dihasilkan sebanyak 137kg. Perhitungan *Defect per Unit* (DPU) sebesar 0,35128205 dan DPMO sebesar 351.282.05. Nilai sigma dihasilkan dari konversi nilai DPMO ke dalam tabel pencapaian level sigma. Selanjutnya, nilai DPMO dikonversikan ke dalam nilai sigma, sehingga diperoleh hasil nilai sigma sebesar 1,88 yang berarti tingkat

pencapaian sigmanya sangat tidak kompetitif. Standar pencapaian level sigma ada pada Tabel 4 dan perhitungan nilai sigma dapat dilihat pada Tabel 5.

Tabel 4. Tabel pencapaian level sigma (Krisnaningsih & Hadi, 2020)

Tingkat Pencapaian Sigma	DPMO	
1	691.462 (sangat tidak kompetitif)	_
2	308.538 (rata-rata industri Indonesia)	
3	66.807	
4	6.210 (rata-rata industri USA)	
5	233	
6	3,4 (industri kelas dunia)	


Tabel 5. Perhitungan Nilai Sigma

No	Tindakan	Persamaan	Hasil Perhitungan
1	Proses yang ingin diketahui		Penggorengan
2	Jumlah unit yang diperiksa		390kg
3	Jumlah unit cacat		137kg
4	Hitung DPO	Total Cacat Produksi	0,35128205
_		DPU = Total Produksi	
5	Hitung DPMO	$DPMO = DPU \times 1.000.000$	351.282,05
6	Konversi nilai DPMO ke nilai sigma		1,88
7	Buat kesimpulan		Tingkat pendapaian sigma sangat tidak kompetitif

Berdasarkan Tabel 5, nilai *sigma* untuk proses penggorengan keripik tempe sebesar 1,88 yang berarti nilai *sigma* ≤ 2, hal tersebut disebabkan oleh cacat produk keripik tempe berminyak dengan penyebab utama permasalahan adalah tahap penggorengan. Nilai *sigma* tersebut menunjukkan bahwa, UKM Deny tergolong dalam tingkat pencapaian sangat tidak kompetitif, sedangkan untuk nilai *sigma* rata-rata industri di Indonesia berada ditingkat 2-*sigma*. Berdasarkan nilai sigma tersebut menunjukkan bahwa perlu dilakukan evaluasi dan perbaikan bagi UKM Deny dalam memproduksi keripik tempenya. Nilai *sigma* yang kecil menunjukkan indikasi perbaikan proses untuk meningkatkan kapabilitas proses dan kualitas produk (Sucipto et al., 2018).

3) Tahap analyze

Pada tahap *analyze* digunakan analisis diagram sebab akibat (*fishbone*) untuk mengetahui akar permasalahan dari proses penggorengan keripik tempe. Penyusunan diagram sebab akibat hanya dilakukan pada hasil diagram pareto yang menunjukkan persentase ≥80% dari keseluruhan total cacat. Penentuan faktor penyebab masalah dari suatu kegagalan produk dapat dihubungkan pada berbagai faktor yang meliputi faktor manusia (*man*), alat dan mesin produksi (*machine*), metode dalam proses produksi (*method*), bahan baku yang digunakan (*material*), dan faktor lingkungan kerja (*environment*) (Agustina et al., 2020). Diagram sebab akibat cacat produk keripik tempe yang berminyak dapat dilihat pada Gambar 9.

Gambar 9. Diagram sebab akibat cacat produk keripik tempe

Faktor manusia yang menjadi penyebab produk cacat yaitu, kurangnya pemahaman tenaga kerja terkait proses produksi dan kurangnya pengawasan karena keterbatasan jumlah karyawan. Proses pengawasan bisa diminimalkan ketika tenaga kerja mampu menguasai proses produksi dengan baik, sehingga produktivitas UKM dan pekerja dapat ditingkatkan, serta penyimpangan-penyimpangan yang terjadi antara lain melalui pelatihan. Rendahnya kualitas SDM masih menjadi salah satu masalah UMKM karena produktivitas yang dihasilkan juga tidak maksimal. Budaya kualitas harus dikembangkan diantara para pekerja dan pelatihan yang sesuai juga harus diberikan kepada pekerja (Ishak et al., 2019). Adanya kebutuhan pengembangan kinerja juga bertujuan untuk meningkatkan keterampilan SDM yang berdampak langsung pada produktivitas tenaga kerja dan kinerja daya saing (Blaga, 2020).

Faktor metode memiliki akar masalah berupa rendahnya tingkat pemahaman proses produksi oleh tenaga kerja berdampak pada proses produksi yang dijalankan tidak optimal dan timbulnya cacat produk. Oleh karena itu, dalam rangka mengoptimalkan jalannya metode penggorengan diperlukan pelatihan bagi tenaga kerja untuk meningkatkan pemahaman mengenai proses penggorengan yang tepat. Pengetahuan organisasi dan proses produksi yang baik oleh tenaga kerja dapat mewujudkan percepatan pencapaian target kinerja (Zulyanti, 2016). Akar masalah kedua dari faktor metode adalah penggunaan minyak goreng secara berulang. Pemanasan minyak menimbulkan reaksi oksidasi, hidrolisis dan dekomposisi minyak, yang ketiganya dipengaruhi oleh tingginya suhu dan lama pemanasan. Minyak goreng yang digunakan secara berulang mengakibatkan rusaknya kandungan asam lemak tak jenuh, minyak berwarna kecoklatan, tekstur yang lebih kental, berbusa, berasap, dan meninggalkan *odor* yang tidak disukai pada makanan (Herlina et al., 2017) sehingga menurunkan kualitas minyak goreng (Manurung et al., 2018). Penggunaan minyak goreng berulang juga memengaruhi hasil akhir keripik tempe menjadi lebih berminyak, menurunkan *lightness* dan tekstur keripik.

Pada faktor fasilitas produksi, akar masalahnya adalah frekuensi penggunaan minyak goreng yang mengakibatkan ketidakoptimalan proses penggorengan dan alat peniris yang sederhana. Keripik tempe dikatagorikan berminyak karena setelah proses penggorengan kandungan minyak masih cukup banyak sehingga berpengaruh terhadap kenampakan dan mutu keripik tempe.. Proses penggorengan menyebabkan bahan makanan mengabsorbsi minyak goreng sebanyak 5-40% (Herlina et al., 2017). Semakin lama proses penggorengan, semakin tinggi kandungan minyak dalam makanan (Sopianti et al.,

2017). UKM Deny melakukan penghematan biaya produksi dengan penggunaan minyak goreng terkadang berulang kali untuk menghasilkan keripik tempe yang renyah serta sesuai standar UKM dan harapan konsumen. Penggunaan minyak goreng secara kontinyu pada suhu tinggi disertai adanya kontak dengan air dan udara akan menurunkan kualitas minyak dan meningkatkan kerusakan minyak. Kerusakan minyak goreng berdampak pada penurunan nilai gizi, dan mutu produk (struktur, kenampakan, cita rasa), dan bau produk akhir kurang menarik (Sopianti et al., 2017). Selain itu, UKM Deny menggunakan alat peniris masih sederhana sehingga belum optimal mengurangi kadar minyak. Penggunaan metode penirisan yang tepat pada makanan gorengan dapat mengurangi kadar minyak dan meningkatkan ketahanannya terhadap reaksi oksidasi (Rianingsih et al., 2018).

4) Tahap improve

Tahapan *improve* diintegrasikan dengan *fuzzy* FMEA, yang mencakup pemilihan faktor-faktor pengukuran yang selanjutnya akan diperbaiki dan menyediakan struktur untuk mengevaluasi kinerja saat ini serta, menilai, membandingkan dan mengawasi perbaikan selanjutnya dan kapabilitasnya (Rahman et al., 2017). Analisis FMEA memungkinkan perusahaan mengetahui penyebab potensial yang memerlukan tindakan perbaikan dengan segera (Roesmasari et al., 2018). Hasil perhitungan nilai FRPN untuk cacat produk keripik tempe dapat dilihat pada Tabel 6.

Tabel 6. Nilai FRPN cacat kerip	oik tempe berminyak
---------------------------------	---------------------

No	Jenis Risiko	FRPN	Peringkat	Kategori
1	Kekurangan jumlah tenaga kerja	7,739481	1	High (H)
2	Kurangnya pengawasan produksi	5,336243	3	Moderate (M)
3	Kurangnya pelatihan tenaga kerja	3,993867	6	Low-Moderate (LM)
4	Penggunaan minyak goreng berulang	3,256564	7	Low(L)
5	Tenaga kerja kurang paham proses penggorengan	4,621013	4	Moderate (M)
6	Penggorengan kurang optimal	4,039776	5	Low-Moderate (M)
7	Alat peniris kurang optimal (sederhana)	6,432392	2	Moderate-High (MH)

Tabel 6 menunjukkan bahwa prioritas risiko tertinggi pada cacat produk keripik tempe yang berminyak adalah kurangnya jumlah tenaga kerja dengan nilai FRPN sebesar 7,739481. Penggorengan secara manual dipengaruhi oleh keahlian tenaga kerja berakibat pada terbatasnya tenaga kerja yang mampu menggoreng keripik tempe dengan hasil penggorengan sesuai yang standar UKM (keripik tempe yang tidak berminyak, bertekstur renyah dan berwarna kuning-keemasan atau coklat muda khas keripik tempe). Dalam hal ini UKM masih bergantung pada tenaga kerja tertentu untuk pengerjaan proses penggorengan, sehingga menimbulkan kurangnya jumlah tenaga kerja yang ahli dalam proses penggorengan. Kekurangan jumlah tenaga kerja yang ahli pada tahap penggorengan dapat meningkatkan cacat produk keripik tempe yang berminyak, bertekstur keras, dan berwarna coklat-kehitaman.

5) Tahap control

Tahapan *control* (pengawasan) merupakan tahap operasional dalam peningkatan kualitas untuk menyajikan usulan-usulan perbaikan dalam proses dan aspek yang terkait, serta dapat diikuti dengan pengimplementasian usulan perbaikan (Setyawan et al., 2017). Usulan tindakan perbaikan untuk cacat produk keripik tempe yang berminyak disusun berdasarkan jenis-jenis risiko dari analisis *fuzzy* FMEA. Analisis *fuzzy* FMEA memungkinkan perusahaan mengetahui penyebab cacat potensial yang memerlukan tindakan perbaikan segera, dengan hasil yang dicantumkan dalam bentuk nilai FRPN. Berdasarkan nilai FRPN tertinggi, sumber permasalahan produk keripik tempe yang berminyak adalah kurangnya jumlah tenaga kerja. Ranking FRPN diurutkan berdasarkan kegagalan dengan nilai tertinggi dan akan digunakan sebagai prioritas untuk rencana tindakan perbaikan (Roesmasari et al., 2018). Tindakan perbaikan yang diusulkan yaitu perencanaan SDM untuk memenuhi kebutuhan tenaga kerja UKM. Perencanaan tenaga

kerja yang dapat dilakukan pada UKM keripik tempe Deny diantaranya pengadaan pelatihan, penjadwalan pengawasan produksi, dan penambahan tenaga kerja ahli dalam proses produksi. Pengadaan pelatihan dilakukan untuk meningkatkan keterampilan pekerja dalam melakukan proses produksi, khususnya tahap penggorengan. Adanya kebutuhan pengembangan kinerja juga bertujuan untuk meningkatkan keterampilan SDM yang berdampak langsung pada produktivitas tenaga kerja dan kinerja daya saing (Blaga, 2020).

Kesimpulan

Analisis pengendalian kualitas keripik tempe Deny menggunakan six sigma DMAIC menunjukkan bahwa prioritas permasalahan utama (CTQ) terdapat pada cacat produk keripik tempe berminyak (82,04%). Kapabilitas proses penggorengan keripik tempe memiliki nilai final yield sebesar 64,87% (masih di bawah nilai standar proses Indonesia 69,2%). Nilai sigma proses penggorengan sebesar 1,88 masih berada di bawah standar industri di Indonesia 2-sigma, termasuk dalam tingkat pencapaian sigma yang sangat tidak kompetitif dan memerlukan perbaikan proses. Akar rmasalah dari proses penggorengan meliputi tenaga kerja yang kurang paham proses produksi, minimalnya pengawasan produksi (manusia), ketidakmampuan tenaga kerja dalam menjalankan metode penggorengan dengan baik (metode) serta frekuensi penggunaan minyak goreng dan alat peniris yang masih sederhana (fasilitas produksi). Nilai FRPN sebagai prioritas risiko tertinggi pada cacat produk keripik tempe yang berminyak adalah kurangnya jumlah tenaga kerja. Strategi yang diusulkan untuk perbaikan adalah perencanaan SDM untuk pemenuhuan tenaga kerja melalui pelatihan, penjadwalan pengawasan produksi, dan penambahan tenaga kerja terampil.

Ucapan terima kasih

Penulis menyampaikan terima kasih kepada Fakultas Teknologi Pertanian, Universitas Brawijaya yang telah mendukung materi dan immaterial dalam Hibah Penelitian Doktor Non Lektor Kepala tahun 2020 serta UKM Deny produksi keripik tempe yang telah berkomitmen mendukung penelitian dengan harapan dapat mengurangi risiko kecacatan dalam proses produksi dan meningkatkan kinerja.

Daftar pustaka

- Agustina, Y., Mulyo, J. H., & Waluyati, L. R. (2020). Analisis pengendalian mutu bahan baku utama susu kambing bubuk di bumiku hijau yogyakarta. *Jurnal Teknosains*, *9*(2), 127–138.
- Almansur, A. M., Sukardi, S., & Machfud, M. (2017). Improving performance of biscuit production process through lean six-sigma at pt xyz. *Indonesian Journal of Business and Entrepreneurship*, *3*(2), 77–89. https://doi.org/10.17358/ijbe.3.2.77
- Arsyad, A. G., Ferdinant, P. F., & Ekawati, R. (2017). Analisis peta kendali p yang distandarisasi dalam proses produksi regulator set fujiyama (studi kasus: pt . xyz). *Jurnal Teknik Industri*, *5*(1), 86–92.
- Bianti, G. N., & Retnaningsih, S. M. (2016). Analisis kapabilitas proses produk transformator hermetically sealed 100 kva di pt. "x." *Jurnal Sains Dan Seni ITS*, *5*(2), 384–389.
- Blaga, P. (2020). The Importance of human resources in the continuous improvement of the production quality. *Procedia Manufacturing*, *46*, 287–293. https://doi.org/10.1016/j.promfg.2020.03.042
- Devani, V., & Wahyuni, F. (2016). Pengendalian kualitas kertas dengan menggunakan statistical process control di paper machine 3. *Jurnal Ilmiah Teknik Industri, 15*(2), 87–93.
- Gaikwad, K. Y., & Athmaselvi, K. A. (2016). Effect of soaking pre-treatments on different characteristics of fried potato chips. *Biosciences Biotechnology Research Asia*, *13*(2), 1133–1136. https://doi.org/10.13005/bbra/2142
- Hairiyah, N., Amalia, R. R., & Nugroho, I. K. (2020). Penerapan six sigma dan kaizen untuk memperbaiki kualitas roti di ud cj bakery. *Jurnal Teknologi & Industri Hasil Pertanian*, *25*(1), 35–43.
- Herlina, Astriyaningsih, E., Windarti, W. S., & Nurhayati. (2017). Tingkat kerusakan minyak kelapa selama

- penggorengan vakum berulang pada pembuatan ripe banana chips (rbc). *Jurnal Agroteknologi*, 11(02), 186–193.
- Irawan, J. P., Santoso, I., & Mustaniroh, S. A. (2017). Model analysis and mitigation strategy of risk in tempe chips production. *Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 6*(2), 88–96. https://doi.org/10.21776/ub.industria.2017.006.02.5
- Ishak, A., Siregar, K., Asfriyati, & Naibaho, H. (2019). Quality control with six sigma dmaic and grey failure mode effect analysis (fmea): a review. *IOP Conference Series: Materials Science and Engineering*, *505*, 1–9. https://doi.org/10.1088/1757-899X/505/1/012057
- Krishnaiyer, K., Chen, F. F., Burgess, B., & Bouzary, H. (2018). D3s model for sustainable process excellence. *Procedia Manufacturing*, *26*, 1441–1447. https://doi.org/10.1016/j.promfg.2018.07.100
- Krisnaningsih, E., & Hadi, F. (2020). Strategi mengurangi produk cacat pada pengecatan boiler steel structure dengan metode six sigma di pt. cigading habeam center. *Jurnal InTent: Jurnal Industri Dan Teknologi Terpadu*, *3*(1), 11–24.
- Manurung, M., Suaniti, N. M., & Putrha, K. G. D. (2018). Perubahan kualitas minyak goreng akibat lamanya pemanasan. *Jurnal Kimia*, *12*(1), 59–64.
- Pasmawati, Y., & Zahri, A. (2016). Peningkatan kualitas produk dengan pendekatan metode six sigma. *Jurnal TEKNO*, *13*(1), 23–34.
- Pereira, A. M. H., Silva, M. R., Domingues, M. A. G., & Sá, J. C. (2019). Lean six sigma approach to improve the production process in the mould industry: a case study. *Quality Innovation Prosperity*, *23*(3), 103–121. https://doi.org/10.12776/QIP.V23I3.1334
- Rahman, A., Shaju, S. U. C., Sarkar, S. K., Hashem, M. Z., Hasan, S. M. K., Mandal, R., & Islam, U. (2017). A case study of six sigma define-measure-analyze-improve-control (dmaic) methodology in garment sector. *Independent Journal of Management & Production*, 8(4), 1309–1323. https://doi.org/10.14807/ijmp.v8i4.650
- Rianingsih, L., Amalia, U., Wijayanti, I., & Suharto, S. (2018). Aplikasi mesin spinner berkecepatan rendah untuk menurunkan kadar air dan minyak keripik ikan ukuran besar di ukm berkah. *Jurnal Teknologi Hasil Pertanian, XI*(2), 69–72.
- Rimantho, D., & Athiyah. (2019). Analisis kapabilitas proses untuk pengendalian kualitas air limbah di industri farmasi. *Jurnal Teknologi, 11*(1), 1–8.
- Roesmasari, R. A., Santoso, I., & Sucipto. (2018). Strategi peningkatan kualitas leather dengan metode lean six sigma dan fuzzy fmea (studi kasus di sumber rejeki). *Jurnal Teknologi Pertanian*, *19*(3), 183–192.
- Setyawan, Y. P., Handayani, N. U., & Suliantoro, H. (2017). Analisis pemborosan (waste) material pada proses produksi aqua kemasan 240ml di pt. tirta investama klaten. *Jurnal Online Engineering Industrial*, *6*(2), 1–9.
- Smętkowska, M., & Mrugalska, B. (2018). Using Six sigma dmaic to improve the quality of the production process: a case study. *Procedia Social and Behavioral Sciences*, *238*, 590–596. https://doi.org/10.1016/j.sbspro.2018.04.039
- Sopianti, D. S., Herlina, & Saputra, H. T. (2017). Penetapan kadar asam lemak bebas pada minyak goreng. *Jurnal Katalisator, 2*(2), 100–105. https://doi.org/10.1021/j100341a009
- Sucipto, S., Ardiyati, I., & Effendi, U. (2018). Evaluasi kualitas keripik buah nangka dengan metode six sigma. *Jurnal Teknologi Pertanian Andalas, 22*(2), 126–138. https://doi.org/10.25077/jtpa.22.2.126-138.2018
- Winanto, E. A., & Santoso, I. (2017). Integrasi metode fuzzy fmea dan ahp dalam analisis dan mitigasi risiko rantai pasok bawang merah. *Jurnal Teknologi Industri & Hasil Pertanian*, 22(1), 21–32.
- Zulyanti, N. R. (2016). Analisis pengaruh kualitas alat produksi, harga bahan baku, pemakaian bahan baku, jumlah tenaga kerja terhadap volume produksi (studi kasus pada industri sarung tenun di desa parengan maduran). *Jurnal Penelitian Ekonomi Dan Akuntansi, I*(3), 159–170.