Karakterisasi mutu minuman jeli okra nanas dengan perbedaan konsentrasi kombinasi karagenan-konjak

[Characterization of pineapple okra jelly drink quality with different concentrations of carrageenan-konjac combination]

Julfi Restu Amelia¹, Shanti Pujilestari ^{1*}, Hamidatun Hamidatun¹, dan Putri Monica¹

- ¹ Program Studi Teknologi Pangan, Fakultas Teknologi Pangan dan Kesehatan, Universitas Sahid
- * Email korespondensi: shanti_pujilestari@usahid.ac.id

Diterima: 25 Juni 2022, Disetujui: 30 Januari 2023, DOI: 10.23960/jtihp.v28i2.140-150

ABSTRACT

Okra-pineapple jelly drink requires hydrocolloid as a gelling agent. The combination of carrageenan-konjac hydrocolloid used was 75:25 in order to produce acceptable and good quality jelly drink characteristics. This study aimed to characterize the quality of pineapple okra jelly drink with the addition of hydrocolloid (carrageenan-konjac combination). The concentration treatments of the carrageenan-konjac combination 75: 25 in this study were 0.6%, 0.7%, 0.8%, 0.9% and 1%. The research was carried out using a completely randomized design (CRD) experimental method with one factor and 3 replications. Data were analyzed statistically with ANOVA and Duncan multiple range test. The results showed that the concentration of the carrageenan-konjac combination had a significant effect on viscosity, water content, total dissolved solids, hedonic and scoring texture quality tests, but had no significant effect on pH, hedonic and scoring tests for color, taste and aroma. The best concentration of carrageenan-konjac combination in pineapple okra jelly drink was a concentration of 0.9% which had characteristics: viscosity 2488.33 cP, pH 4.05, water content 94.22%, total dissolved solids 5.10° Brix and sensory score from 3.9-4.2 (like) for color, aroma, taste and texture. This best treatment had greenish yellow color, fragrant aroma, sweet taste and slightly chewy texture. The supporting test in the form of antioxidant activity test (IC50) was 16.47 ppm indicated in the very strong category.

Keywords: Carrageenan, jelly drink, konjac, okra, pineapple

ABSTRAK

Minuman jeli okra nanas membutuhkan hidrokoloid sebagai bahan pembentuk gel. Kombinasi hidrokoloid karagenan-konjak yang digunakan sebesar 75:25 agar menghasilkan karakteristik minuman jeli yang masih dapat diterima dan bermutu baik. Penelitian ini bertujuan untuk melakukan karakterisasi mutu minuman jeli okra nanas dengan penambahan hidrokoloid (kombinasi karagenan-konjak). Perlakuan konsentrasi kombinasi karagenan-konjak 75:25 pada penelitian adalah 0,6%, 0,7%, 0,8%, 0,9% dan 1%. Penelitian dilaksanakan dengan metode eksperimental rancangan acak lengkap (RAL) dengan satu faktor dan dilakukan 3 kali ulangan. Data dianalisis secara statistik dengan ANOVA dan uji Duncan. Hasil penelitian menunjukkan bahwa konsentrasi kombinasi karagenan-konjak berpengaruh nyata terhadap viskositas, kadar air, total padatan terlarut, hedonik dan uji skoring tekstur, namun tidak berpengaruh nyata terhadap pH, hedonik dan uji skoring, rasa dan aroma. Konsentrasi kombinasi karagenan-konjak yang terbaik pada minuman jeli okra nanas yaitu konsentrasi 0,9% dengan karakteristik viskositas 2488,33 cP, pH 4,05, kadar air 94,22%, total padatan terlarut 5,10°Brix dan skor sensori 3,9-4,2 untuk warna, aroma, rasa dan tekstur 4. Dengan karakteristik warna kuning kehijauan, aroma wangi, rasa manis dan tekstur agak kenyal. Uji penunjang berupa uji aktivitas antioksidan (IC₅₀) sebesar 16,47 ppm termasuk katagori sangat kuat.

Kata kunci: Karagenan, konjak, minuman jeli, nanas, okra

Pendahuluan

Minuman jeli didefinisikan minuman berbentuk gel yang bersifat elastis tetapi memiliki kekuatan gel yang lebih lemah dibandingkan dengan jeli agar (Widjaja et al., 2018). Minuman jeli pada umumnya terbuat dari sari buah dan bahan tambahan seperti hidrokoloid, asam sitrat, pektin, dan sukrosa (Yowandita, 2018). Selain buah, sayuran juga dapat diolah menjadi produk minuman jeli. Salah satu produk minuman jeli yang sedang dikembangkan adalah minuman jeli okra. Okra merupakan sayuran yang berbentuk seperti buah, memiliki biji dan berlendir, dengan kandungan energi mencapai 33 kkal; karbohidrat 7,45 g; serat pangan 3,2 g; lemak 0,19 g; dan protein 2 g per 100 g (Afrizal, 2021). Okra juga

mengandung indeks glikemik yang rendah (20) sehingga baik untuk penderita diabetes (Zaenab, 2018). Penelitian (Sabrina et al., 2021) membuktikan bahwa minuman okra berpotensi menjadi anti-diabetes dan anti-hiperkolesterolemia dibuktikan dengan adanya penurunan kadar glukosa darah dan kolesterol total pada tikus uji.

Berdasarkan penelitian Giyatmi et al. (2022), nilai sensori okra kurang baik karena rasanya hambar dan aromanya langu. Semakin tinggi konsentrasi okra pada pembuatan puding, tingkat kesukaan panelis pada rasa dan aroma semakin menurun. Artinya, puding dengan penambahan jus okra dinilai memiliki rasa hambar dan berbau langu oleh panelis. Untuk mengatasi kelemahan tersebut diperlukan bahan tambahan lain misalnya dengan penambahan nanas. Nanas memiliki rasa yang manis sampai agak masam segar karena mengandung asam sitrat, asam askorbat, dan gula (Yusrina, et al. 2019). Aroma nanas yang khas, berasal dari senyawa terpen, keton, aldehid, dan ester (Erika, et al. 2020) diharapkan dapat memperbaiki aroma dari minuman jeli okra nanas.

Seperti halnya minuman jeli lainnya, jeli okra nanas membutuhkan hidrokoloid sebagai bahan pembentuk gel misalnya karagenan. Namun, tekstur gel yang dibuat oleh karagenan cenderung rapuh dan mudah mengalami sineresis sehingga memerlukan bahan tambahan yang dapat menguatkan tekstur. Penambahan konjak dapat memperkuat tekstur dengan elastisitas yang tetap terjaga sehingga sifat-sifat gel dari karagenan dapat diperbaiki (Mayasari, 2019). Nastiti (2018) menyatakan bahwa penggunaan kombinasi karagenan-konjak (75:25) dengan konsentrasi 0,5% dapat menghasilkan karakteristik gel yang mudah disedot dan memiliki kepaduan gel yang baik. Penelitian tentang penambahan kombinasi karagenan-konjak yang berbeda pada minuman jeli okra nanas belum pernah dilakukan. Konsentrasi kombinasi karagenan-konjak yang tepat diperlukan untuk membentuk gel pada minuman jeli okra nanas sehingga tingkat penerimaan konsumen dapat meningkat. Kombinasi bahan pembentuk gel yang karagenan-konjak 75:25 telah dilakukan dengan konsentrasi 0,5% (Nastiti, 2018), tetapi kombinasi karagenan-konjak yang berbeda terhadap mutu minuman jeli okra nanas belum diteliti. Penelitian ini bertujuan untuk melakukan karakterisasi mutu minuman jeli okra nanas dengan penambahan hidrokoloid berupa kombinasi karagenan-konjak yang berbeda ditinjau dari karakteristik mutu fisik, kimia serta sensory.

Bahan dan metode

Bahan dan alat

Bahan yang digunakan pada penelitian adalah okra, nanas madu, air, stevia, kappa karagenan, konjak, Ca(OH)₂, asam sitrat, dan bahan analisis lainnya. Okra yang digunakan diperoleh dari salah satu supermarket di Jakarta dengan spesifikasi bahan berwarna hijau tua, utuh, segar, sudah matang, berwarna dan memiliki tekstur buah yang agak lunak. Nanas yang digunakan merupakan nanas madu varietas Queen yang diperoleh dari pasar di daerah Tambun Selatan. Stevia dengan merek Leafia, karagenan merek Indogum, dan konjak diperoleh dari lokapasar dalam jaringan.

Pembuatan minuman jeli okra nanas menggunakan beberapa alat seperti wadah baskom, pisau, sendok, talenan, gelas ukur, timbangan, blender, kain saring, kompor, oven, alat gelas, pH meter, refraktometer, viskometer, serta formulir uji hedonik dan uji skoring.

Metode penelitian

Penelitian dilakukan dengan Rancangan Acak Lengkap (RAL) satu faktor dengan lima taraf yakni 0,6%, 0,7%, 0,8%, 0,9% dan 1,0% masing-masing dilakukan hingga tiga kali ulangan. Analisis statistik dilakukan dengan oneway ANOVA 5%. Uji lanjut dilakukan dengan *Duncan multiple range test* (DMRT) dengan tingkat signifikansi 5%.

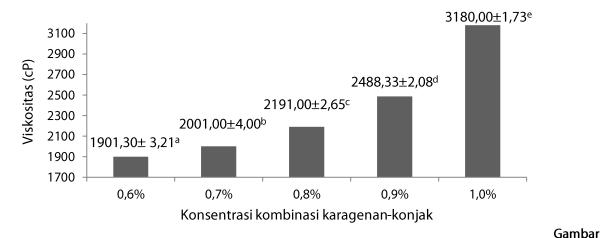
Pelaksanaan penelitian

Proses pembuatan minuman jeli okra nanas mengacu pada penelitian (Widawati & Hardiyanto, 2016) dengan modifikasi. Proses pertama dalam pembuatan minuman jeli okra nanas yaitu pembuatan sari nanas dan sari okra. Nanas dikupas kulitnya, dibersihkan mata nanasnya, lalu dicuci. Okra dan nanas yang sudah dicuci selanjutnya dipotong sebesar $\pm 2~$ cm $\times 2~$ cm menggunakan pisau. Kemudian dilakukan pemblansiran pada suhu 80° C selama lima menit. Penghancuran dengan blender berkecepatan tinggi dilakukan selama lima menit dengan perbandingan buah dan air yang digunakan yaitu 1:1 (b/b). Bubur okra dan nanas yang telah halus masing-masing disaring menggunakan kain saring berukuran 50~ cm $\times 50~$ cm untuk dibuang ampasnya. Sari buah yang didapat kemudian diproses lebih lanjut hingga terbentuk produk minuman jeli. Sari okra dan sari nanas dicampur dengan perbandingan 50:50~ dengan penambahan bubuk stevia 0,065% dan diaduk hingga rata secara manual. Selanjutnya dilakukan pemanasan pada suhu 75° C selama tiga menit.

Pencampuran karagenan-konjak (75:25) sebanyak 0,6%, 0,7%, 0,8%, 0,9% dan 1% w/v dilakukan Sesuai taraf pengujian, kemudian ditambahkan Ca(OH)₂ 0,4% w/v dan asam sitrat 0,15% w/v. Pembentukan jeli dilakukan dengan proses pemanasan pada suhu 90°C selama lima menit dengan pengadukan terus menerus secara manual menggunakan sendok. Selanjutnya minuman jeli okra nanas dimasukkan ke dalam *cup* dan didinginkan dengan diangin-anginkan pada suhu ruang. Setelah uapnya habis, *cup* ditutup dan didiamkan sekitar 3 jam hingga produk terbentuk menjadi minuman jeli.

Parameter penelitian

Parameter minuman jeli okra nanas dengan penambahan karaganen-konjak meliputi karakteristik fisik, kimia, organoleptik, dan penunjang. Karakteristik fisik berupa viskositas diuji menggunakan viskometer (Brookfield digital viscometer *operating instructions* manual). Karakteristik kimia (AOAC, 2012) meliputi derajat keasaman/pH, kadar air, dan total padatan terlarut. Karakteristik organoleptik meliputi uji hedonik dan uji skoring atribut rasa, warna, dan tekstur (skala penilaian 1-5) dengan 25 orang panelis tidak terlatih. Skala hedonik yang digunakan yaitu angka 1-5 mulai dari sangat tidak suka pada skor terendah hingga sangat suka pada skor tertinggi. Skala yang digunakan pada uji skoring meliputi warna, aroma, rasa dan tekstur dengan lima skala hedonik. Uji penunjang dilakukan dengan pengamatan aktivitas antioksidan pada perlakuan terbaik menggunakan metode DPPH (2,2-Difenill-1-Pikrilhidrazil) dan besarnya aktivitas antioksidan ditandai dengan nilai IC₅₀.

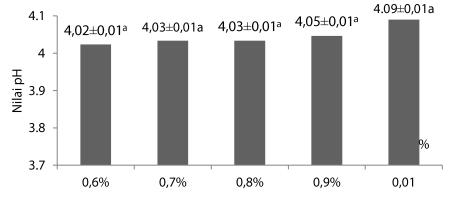

Hasil dan pembahasan

Viskositas

Hasil viskositas untuk minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak berkisar antara 1901,30 cP hingga 3180,00 cP (Gambar 1). Konsentrasi kombinasi karagenan-konjak berpengaruh nyata terhadap viskositas minuman jeli (p<0,05). Hasil uji DMRT menunjukkan bahwa semua perlakuan berbeda antara satu dan yang lain. Konsentrasi kombinasi karagenan-konjak 1% menghasilkan viskositas minuman jeli okra nanas tertinggi.

Hasil menunjukkan bahwa semakin tinggi konsentrasi kombinasi karagenan-konjak maka semakin tinggi pula viskositas minuman jeli okra nanas. Hal tersebut karena karagenan-konjak memiliki sifat mengikat air (Banerjee & Bhattacharya, 2011). Karagenan mampu membentuk gel dimana rantai polimer membentuk jaring tiga dimensi yang berkesinambungan. Jaring tersebut mampu memobilisasi air di dalamnya dan membentuk struktur yang kuat dan kaku. Hal ini sejalan dengan riset Widjaja et al. (2019) yang menyatakan bahwa nilai viskositas minuman jeli akan meningkat seiring dengan meningkatnya

konsentrasi hidrokoloid (karagenan). Konjak juga memiliki sifat larut dan mengembang dalam air. Konjak yang berinteraksi dengan air akan mengembang sehingga larutan menjadi kental dan viskositas juga mengalami peningkatan.

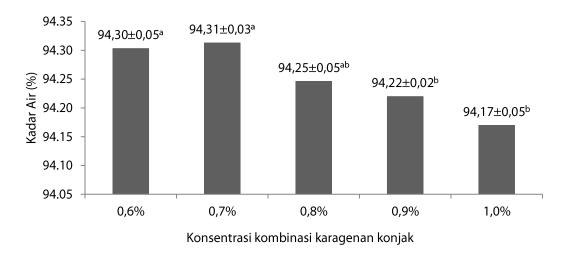


1. Grafik rata-rata viskositas (cP) minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak yang berbeda

Syarat mutu SNI untuk minuman jeli belum ada. Sebagai pembanding, digunakan minuman jeli yang sudah dikomersialisasikan yaitu Okky Jelly Drink. Hasil pengujian menunjukkan bahwa produk Okky Jelly Drink memiliki nilai viskositas sebesar 2348 cP sehingga diketahui bahwa minuman jeli okra nanas dengan kombinasi karagenan-konjak 0,9% dengan viskositas 2488,33 cP adalah yang paling mendekati karakteristik minuman jeli komersial.

Derajat keasaman (pH)

Data nilai pH (Gambar 2) menunjukkan bahwa konsentrasi kombinasi karagenan-konjak tidak berpengaruh nyata terhadap nilai pH minuman jeli okra nanas (p>0,05). Nilai pH minuman jeli okra nanas berkisar antara 4,02-4,09 termasuk katagori asam, yang diduga berasal dari nanas yang ditambahkan. Nanas mengandung asam sitrat, asam askorbat, dan gula (Yusrina, et al. 2019). Jumlah nanas yang ditambahkan sama antar perlakuan sehingga pH minuman jeli okra nanas tidak berbeda antar perlakuan konsentrasi karagenan-konjak. Minuman jeli okra nanas memiliki pH antara 4,02-4,09 menunjukkan bahwa derajat keasamannya masih berada pada kisaran optimal karagenan-konjak sebagai pembentuk gel yaitu pada pH 3-5 (Glicksman, 1983) dan konjak pada pH 4-7 (Atmaka et al., 2013).

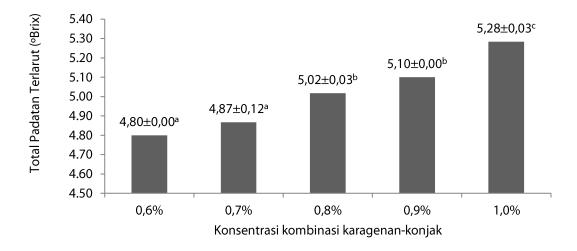


Konsentrasi Kombinasi Karagenan-Konjak

Gambar 2. Grafik rata-rata pH minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak yang berbeda

Kadar air

Hasil pengujian menunjukkan bahwa minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak memiliki kadar air antara 94,17% - 94,31% (Gambar 3). Hasil ANOVA menunjukkan bahwa konsentrasi kombinasi karagenan-konjak berpengaruh nyata terhadap kadar air minuman jeli. Minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak 0,6-0,8% miliki kadar yang lebih tinggi dibandingkan dengan konsentrasi yang lain. Hal ini diduga karena hidrokoloid total yang terdiri dari karagenan dan konjak merupakan bahan pembentuk gel dengan kemampuan yang tinggi dalam mengikat air (Farikha et al., 2013). Semakin banyak karagenan-konjak yang ditambahkan maka air yang terikat dan terperangkap juga semakin banyak sehingga produk bersifat lebih kental dan kadar air menurun.



Gambar 3. Grafik rata-rata kadar air (%) minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak yang berbeda

Total padatan terlarut (TPT)

Hasil uji total padatan terlarut minuman jeli okra nanas dengan kombinasi karagenan-konjak berkisar antara 4,80 - 5,28 °Brix (Gambar 4). Konsentrasi kombinasi karagenan-konjak berpengaruh nyata (p<0,05) terhadap total padatan terlarut minuman jeli okra nanas. Data menunjukkan bahwa semakin tinggi konsentrasi kombinasi karagenan-konjak maka total padatan terlarut minuman jeli okra nanas akan semakin meningkat. Hasil penelitian ini sesuai dengan penelitian Ardin & Syahrumsyah (2015) bahwa semakin banyak karagenan yang ditambahkan maka total padatan terlarut minuman jeli nanas akan semakin meningkat. Karagenan bersama konjak merupakan bahan pembentuk gel dengan kemampuan yang tinggi untuk mengikat air, dan semakin bnyk karagenan-konjak maka semakin besar massa padatannya..

Hasil uji lanjut DMRT menunjukkan bahwa total padatan terlarut pada konsentrasi karagenan-konjak konjak 1%. 0,8%, 0,9%, dan mempumnyai total padatan lebih tinggi dari perlakuan 0,6% dan 0,7% Ikatan hidrokoloid dari kombinasi karagenan dan konjak akan membentuk gel yang lebih baik daripada hanya menggunakan satu jenis hidrokoloid saja (Banerjee & Bhattacharya, 2011). Williams (2009) menjelaskan bahwa interaksi yang terjadi pada struktur karagenan dan molekul konjak melalui ikatan hidrogen dapat menghasilkan tekstur gel yang kuat. Pembentukan gel yang mengikat partikel pada minuman jeli okra dipengaruhi oleh karagenan (Jariyah et al., 2021). Semakin banyak karagenan yang digunakan maka akan semakin banyak partikel yang terperangkap dalam sistem sehingga membuat endapan yang terbentuk akan berkurang (Al-Nahdi et al., 2019; Wicaksono & Zubaidah, 2015).

Gambar 4. Grafik rata-rata total padatan terlarut minuman jeli okra nanas dengan konsentrasi kombinasi karagenankonjak yang berbeda

Uji hedonik

Nilai hedonik minuman jeli okra nanas (Tabel 1) menunjukkan bahwa perlakuan konsentrasi kombinasi karagenan-konjak (0,6-1%) tidak berpengaruh terhadap kesukaan warna, aroma dan rasa kecuali pada tekstur. Skor tertinggi dari nilai hedonik tekstur didapatkan dari perlakuan dengan konsentrasi karagenan-konjak 0,9%. Hal tersebut dapat dilhat dari nilai hedonik yang diperoleh sebesar 4,0 (suka). Nilai hedonik atribut warna minuman jeli okra nanas berkisar antara 3,8–3,9 (agak suka). Sedangkan nilai hedonik terhadap aroma dan rasa secara berturut-turut berada pada skor 4,2 (suka) dan 4-4,1 (suka). Panelis menyukai aroma harum dari nanas yang digunakan pada minuman jeli okra nanas. Chauliyah & Murbawani (2015) menyatakan bahwa aroma nanas mengandung terpen, keton, aldehid, dan ester yang khas dan menarik. Panelis juga menyukai rasa minuman jeli yang diperoleh dari rasa khas nanas yang digunakan. Nanas yang digunakan adalah jenis nanas madu varietas Queen yang mempunyai tingkat kemanisan lebih tinggi dibandingkan nanas biasa dan memiliki kandungan gula reduksi sebesar 8,66 %.

Tabel 1. Rata-rata skor uji hedonik minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak yang berbeda

Parameter —	Konsentrasi kombinasi karagenan-konjak					
	0,6%	0,7%	0,8%	0,9%	1,0%	
Warna	3,8±0,3ª	3,8±0,3°	3,8±0,1 a	3,9±0,1 ª	3,9±0,1 a	
Aroma	4,2±0,1 a	4,2±0,2°	4,2±0,1 a	4,2±0,1 a	4,2±0,1 a	
Rasa	4,0±0,1 a	4,0±0,1 a	4,0±0,1 a	4,0±0,1 a	4,1±0,1 a	
Tekstur	3,3±0,1 ^a	3,7±0,1 ^c	3,8±0,1°	4,0±0,1 ^d	3,5±0,1 ^b	

Keterangan : Notasi huruf yang berbeda menunjukkan adanya perbedaan nyata (α <0,05). Skor yang diberikan adalah (1) sangat tidak suka, (2) tidak suka, (3) agak suka, (4) suka, (5) sangat suka.

Uji skoring

Uji skoring merupakan uji deskripsi organoleptik yang memberikan kesan lebih spesifik produk pangan. Hasil ANOVA (Tabel 2) menyatakan bahwa penambahan karagenan-konjak tidak berpengaruh nyata (p>0,05) terhadap atribut warna, aroma, dan rasa, kecuali pada parameter tekstur yang ditandai dengan notasi huruf yang berbeda.

Tabel 2. Rata-rata skor uji skoring minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak yang berbeda

Parameter —	Konsentrasi kombinasi karagenan-konjak					
	0,6%	0,7%	0,8%	0,9%	1,0%	
Warna	4,0±0,1 ^a	4,0±0,1 ^a	4,0±0,1 ^a	4,1±0,1 ^a	4,1±0,1 a	
Aroma	4,2±0,2 ^a	4,2±0,1 a	4,3±0,1 ^a	4,2±0,1 ^a	4,2±0,1 a	
Rasa	4,1±0,2°	4,1±0,1 ^a	4,1±0,1 ^a	4,1±0,1 ^a	4,1±0,1 a	
Tekstur	$2,7\pm0,2^{a}$	2,9±0,1 ^a	3,6±0,1 ^b	3,9±0,1 ^c	3,7±0,2 ^{bc}	

Keterangan : Notasi huruf yang berbeda menunjukkan adanya perbedaan nyata (α <0,05). Skor warna: (1) hijau, (2) hijau muda, (3) hijau agak kekuningan, (4) kuning kehijauan, (5) kuning. Skor aroma: (1) sangat tidak wangi, (2) tidak wangi, (3) agak wangi, (4) wangi, (5) sangat wangi. Skor rasa: (1) sangat tidak manis, (2) tidak manis, (3) agak manis, (4) manis, (5) sangat manis. Skor tekstur: (1) sangat tidak kenyal, (2) tidak kenyal, (3) agak kenyal, (4) kenyal, (5) sangat kenyal.

Hasil uji skoring warna, aroma, dan rasa minuman jeli okra nanas secara berturut-turut memiliki nilai rata-rata 4,0-4,1 (kuning kehijauan), 4,2-4,3 (aroma nanas kuat-sangat kuat), dan 4,1 (manis). Warna yang dihasilkan dari minuman jeli okra nanas cenderung berwarna kuning kehijauan sesuai dengan warna dari bahan baku. Penggunaan karagenan-konjak dengan rentang konsentrasi kecil tidak memengaruhi warna. Menurut Novidahlia *et al.* (2019), karagenan tidak memiliki warna sedangkan konjak berwarna kuning kecoklatan. Karagenan-konjak juga merupakan hidrokoloid yang tidak memiliki flavor (Vania et al., 2017) sehingga ketika dicampurkan tidak mempengaruhi aroma minuman jeli okra nanas.

Panelis membari skor rasa manis pada minuman jeli okra nanas karena manis dari sari nanas yang digunakan. Nanas yang digunakan pada penelitian adalah nanas madu yang memiliki rasa yang lebih manis dibandingkan dengan nanas biasa. Kandungan gula nanas madu 10 kali lebih banyak dibandingkan dengan jenis nanas lain (Putri, 2017). Produk ini juga menggunakan stevia dengan konsentrasi rendah sebagai bahan pemanis. Sedangkan diketahui tingkat kemanisan stevia dapat mencapai 300 kali sukrosa (Marlina & Widiastuti, 2015).

Nilai skor tekstur minuman jeli okra nanas berkisar antara 2,7-3,9 (tidak kenyal-agak kenyal). Skor tinggi didapatkan dari perlakuan dengan konsentrasi karagenan-konjak 0.8%-1%. Konsentrasi 0,8, 0,9 dan 1% karagenen-konjak menghasilkan tekstur lebih kenyal dibandingkan perlakuan konsentrasi 0,6 maupun 0,7%. Tekstur minuman jeli yang kenyal dipengaruhi oleh hidrokoloid yang membentuk tekstur yang kenyal (Herawati, 2018).

Penentuan perlakuan terbaik

Perlakuan terbaik ditentukan berdasarkan hasil uji organoleptik, uji kimia, dan uji fisik (Tabel 3). Perlakuan terbaik minuman jeli okra nanas yang didapatkan yaitu perlakuan konsentrasi kombinasi karagenan-konjak 0,9%. Perlakuan tersebut dipilih karena memiliki nilai tekstur yang paling disukai oleh panelis dibandingkan dengan perlakuan yang lain.

Parameter Mutu

Viskositas

pH

4,05

Kadar air

Nilai

2488,33 Cp

4,05

Tabel 3. Karakteristik minuman jeli okra nanas konsentrasi kombinasi karagenan-konjak 0,9%

94,22% **TPT** 5,10°Brix Warna 3,9 (suka) Aroma 4,3 (suka) Rasa 4,0 (suka) **Tekstur** 4,0 (suka) Warna kuning kehijauan Aroma aroma nanas kuat Rasa manis Tekstur agak kenyal

Analisis aktivitas antioksidan dilakukan pada sampel perlakuan terbaik untuk melihat kandungan nilai aktivitas antioksidan dalam produk minuman jeli. Aktivitas antoksidan diteliti dengan metode IC₅₀ sehingga didapatkan hasil aktivitas antioksidan minuman jeli okra nanas dengan konsentrasi karagenan-konjak 0,9% yakni sebesar 16,47 ppm. Nilai IC₅₀ tersebut menyatakan bahwa aktivitas antioksidan minuman jeli okra nanas dengan penambahan karagenan-konjak sangat kuat sebagaimana pernyataan Sarfina et al. (2017) bahwa senyawa dengan nilai IC₅₀< 50 ppm dikatagorikan memiliki antioksidan yang sangat kuat. Antioksidan yang terkandung dalam produk berasal dari okra yang kaya akan senyawa fenolik dan flavonoid (Utami, 2018). Nanas juga berkontribusi terhadap aktivitas antioksidan karena kaya akan kandungan vitamin C dan polifenol (Sanggih et al., 2019).

Kesimpulan

Minuman jeli okra nanas dengan konsentrasi kombinasi karagenan-konjak yang berbeda berpengaruh nyata terhadap parameter viskositas, total padatan terlarut, nilai hedonik tekstur, dan nilai skoring tekstur. Berdasarkan uji fisik, uji kimia dan mutu organoleptik, minuman jeli okra nanas dengan mutu terbaik yaitu yang diberi perlakuan konsentrasi kombinasi karagenan-konjak sebesar 0,9%. Karakteristik fisik dan kimianya yaitu viskositas 2488,33 cP, pH 4,05, kadar air 94,22%, dan total padatan terlarut 5,10°Brix. Sedangkan karakteristik organoleptiknya antara lain nilai uji hedonik warna 3,9 (agak suka), aroma 4,3 (suka), rasa 4 (suka), dan tekstur 4 (suka). Karakteristiknya berdasarkan uji skoring yaitu warnanya kuning kehijauan, aroma nanas kuat, rasanya manis dan teksturnya agak kenyal. Uji mutu penunjang berupa uji aktivitas antioksidan didapatkan nilai 16,47 ppm (sangat kuat).

Daftar pustaka

Afrizal, F. (2021). Pengaruh limbah cair pabrik kelapa sawit dan pupuk NPK phonska terhadap pertumbuhan dan produksi tanaman okra (*Abelmoschus esculentus*). Skripsi Universitas Islam Riau.

Al-Nahdi, Z. M., Al-Alawi, A., & Al-Marhobi, I. (2019). The effect of extraction conditions on chemical and thermal characteristics of kappa-carrageenan extracted from *Hypnea bryoides*. *Journal of Marine Biology*, (2019). https://doi.org/10.1155/2019/5183261

AOAC. (2012). AOAC official methods of analysis (18th ed.). Gaithersburg, USA: AOAC international.

Ardin, G. B. H., & Syahrumsyah, H. (2015). Pengaruh karagenan terhadap sifat kimia dan sensoris minuman jeli sari buah nanas (*Ananas comosu*s L . Merr). *Jurnal Teknologi Pertanian Universitas Mulawarman*, 10(1), 18–22.

Atmaka, W., Nurhartadi, E., & Karim, M. M. (2013). Pengaruh penggunaan campuran karaginan dan konjak terhadap karakteristik permen jelly temulawak (*Curcuma Xanthorrhiza* Roxb.). *Jurnal Teknosains Pangan*, 2(2), 66–74.

- Banerjee, S., & Bhattacharya, S. (2011). Compressive textural attributes, opacity and syneresis of gels prepared from gellan, agar and their mixtures. *Journal of Food Engineering*, 102(3), 287–292. https://doi.org/10.1016/j.jfoodeng.2010.08.025
- Chauliyah, A. I. N., & Murbawani, E. A. (2015). Analisis kandungan gizi dan aktivitas antioksidan es krim nanas madu. *Journal of Nutrition College, 4.* 1-28
- Erika, R., Maulida, R. G., & Nurlena. (2020). Nanas madu sebagai subtitusi gula pada pembuatan healthy cheesecake. *E-Proceeding of Applied Science*, 6(2), 2211–2218.
- Farikha, I. N., Anam, C., & Widowati, E. (2013). Pengaruh jenis dan konsentrasi bahan penstabil alami terhadap karakteristik fisikokimia sari buah naga merah (*Hylocereus polyrhizus*) selama penyimpanan. *Jurnal Teknosains Pangan*, 2(1), 30–38.
- Giyatmi, Zakiyah, D., & Hamidatun. (2022). Karakteristik mutu puding pada berbagai perbandingan tepung agar-agar dan jus okra. *Jurnal Teknologi Pangan Kesehatan*, 4(1), 11–19.
- Glicksman, M. (1983). Food hydrocolloids (2nd ed.). CRC Press, Boca Raton.
- Herawati, H. (2018). Potensi hidrokoloid sebagai bahan tambahan pada produk pangan dan nonpangan bermutu. *Jurnal Penelitian Dan Pengembangan Pertanian*, 37(1), 17–25. https://doi.org/10.21082/jp3.v37n1.2018.p17-25
- Jariyah, Arofah, E. M. N., & Sarofa, U. (2021). Characteristics and anti-diabetics activity of jelly drink okra mucus (*Abelmoschus Escullentus* L.). *Journal of Physics: Conference Series*, 1899(1), 3–9. https://doi.org/10.1088/1742-6596/1899/1/012023
- Marlina, A., & Widiastuti, E. (2015). Pembuatan gula cair rendah kalori dari daun stevia rebaudiana bertoni secara ekstraksi padat-cair. *Industrial Research Workshop and National Seminar*, 149–154.
- Mayasari, R. (2019). Pengaruh penambahan spirulina platensis dengan konsentrasi berbeda terhadap kualitas permen jelly dari karagenan dan konjak. Skripsi Universitas Brawijaya.
- Nastiti, A. S. (2018). Optimasi penambahan gelling agent kombinasi karagenan dan tepung porang (*Amorphophillus muerelli* Blume) serta Ca(OH)2 pada pembuatan minuman jelly (jelly drink). Skripsi Universitas Brawijaya.
- Novidahlia, N., Rohmayanti, T., & Nurmilasari, Y. (2019). Karakteristik fisikokimia jelly drink daging semangka, albedo semangka, dan tomat dengan penambahan karagenan dan tepung porang (Amorphophallus muelleri Blume). *Jurnal Agroindustri Halal*, 5(1), 057–066. https://doi.org/10.30997/jah.v5i1.1694
- Putri, N.D., Sutanto, A., & Noor, R. (2017). Perbandingan Hasil Pertumbuhan Nanas Queen Dan Nanas Madu (Cayenne) Sebagai Sumber Belajar Biologi Berupa Panduan Praktikum Materi Pertumbuhan Dan Perkembangan. In *Prosiding Seminar Nasional Pendidikan, Lampung: Universitas Muhammadiyah Metro* (pp. 117-122).
- Sabrina, N., Pujilestari, S., Azni, I. N., Amelia, J. R., Surbakti, F. H., & Rismawati, A. (2021). Anti diabetic and anti hypercholesterolemia potential of *Abelmoschus esculentus* (okra) functional beverage with ginger extract in streptozotocin-induced diabetic mice. *Nat. Volatiles & Essent. Oils*, 8(5), 4405–4412.
- Sanggih, P., Wahyudo, R., & Ginarana, A. (2019). Efek buah nanas (*Ananas comosus* L. merr) terhadap penurunan kadar kolesterol pada penyakit jantung koroner (PJK). *Jurnal Kedokteran Universitas Lampung*, 3(1), 205–209.
- Sarfina, J., Nurhamidah, N., & Handayani, D. (2017). Uji aktivitas antioksidan dan antibakteri ekstrak daun *Ricinus communis* L (jarak kepyar). *Jurnal Pendidikan Dan Ilmu Kimia*, 1(1), 66–70. https://doi.org/10.33369/atp.v1i1.2725
- Utami, R. P. (2018). Kandungan gizi, total fenol, kuersetin, dan kapasitas antioksidan total pada berbagai pemasakan okra (*Abelmoschus esculentus* L.). Doctoral dissertation Bogor Agricultural University (IPB).
- Vania, J., Utomo, A. R., & Trisnawati, C. Y. (2017). Pengaruh perbedaan konsentrasi karagenan terhadap karakteristik fisikokimia dan organoleptik jellyy drink pepaya. *Jurnal Teknologi Pangan Dan Gizi*, 16(1), 8–13. https://doi.org/DOI: 10.33508/jtpg.v16i1.1385
- Wicaksono, G. S., & Zubaidah, E. (2015). Effect of carrageenan and soursop leaf duration boiling time on the quality and characteristics of soursop leaf jelly drink. *Jurnal Pangan Dan Agroindustri*, 3(1), 281–291.
- Widawati, L., & Hardiyanto, H. (2016). Pengaruh konsentrasi karagenan terhadap sifat fisik, kimia dan organoleptik minuman jeli nanas (*Ananas comosus* L. Merr). *Agritepa,* 2(2), 144-152.
- Widjaja, W. P., Sumartini, & Rifani. (2018). Pengaruh konsentrasi jelly powder terhadap karakteristik minuman jeli ikan lele (*Clarias* sp.). *Pasundan Food Technology Journal*, *4*(3), 197–207.

https://doi.org/10.23969/pftj.v4i3.648

- Widjaja, W. P., Sumartini, & Salim, K. N. (2019). Karakteristik minuman jeli ikan lele (clarias sp.) yang dipengaruhi oleh pemanis dan karagenan. *Pasundan Food Technology Journal*, 6(1), 73–82. https://doi.org/10.23969/pftj.v6i1.1544
- Williams, P. A. (2009). Molecular interactions of plant and algal polysaccharides. *Structural Chemistry*, 20, 299-308. https://doi.org/10.1007/s11224-009-9420-5
- Yowandita, R. (2018). Pembuatan jelly drink nanas (*Ananas comocus* L) kajian tingkat kematangan buah nanas dan konsentrasi penambahan karagenan terhadap sifat fisik, kimia dan organoleptik. *Jurnal Pangan dan Agroindustri*, 6(2), 63–73. https://doi.org/10.21776/ub.jpa.2018.006.02.7
- Yusrina, I. H., Purwasih, R., & Fathurohman, F. (2019). Pemanfaatan limbah keju mozzarella sebagai minuman fungsional dengan penambahan rasa nanas dan jeruk siam. *Bulletin of Applied Animal Research*, 1(1), 1–7. https://doi.org/10.36423/baar.v1i1.157
- Zaenab, S. (2018). Pengaruh pemberian air infus buah okra (*Abelmoschus esculentus*) dengan frekuensi yang berbeda terhadap kadar gula darah tikus putih (*Rattus norvegicus*) hiperglikemia. *Prosiding Seminar Nasional IV*, 237–245.