e-Jurnal Rekayasa dan Teknologi Budidaya Perairan

Volume IX No 1 Oktober 2020

p-ISSN: 2302-3600, e-ISSN: 2597-5315

EFFECT OF PLANTS MEAL FROM Eeichhornia crassipes AND Salvinia molesta ON GROWTH OF Pangasius sp.

Retno Cahya Mukti*1, Ria Octaviani1

ABSTRACT

Plant meals from Eichhornia crassipes and Salvinia molesta can be used as alternative ingredients for feed in aquaculture. The purpose of this study was to determine the effect of the use of plant meals as a feed on the growth of Pangasius. The experimental designed consist of three treatments and triplicates: P0: commercial feed (control); P1: feed with the addition of 25% Eichhornia crassipes; P2: feed with the addition of 25% Salvinia molesta. The results showed that plant meals in feed showed significantly different results on the growth of body weight, specific growth rate, and efficiency of Pangasius feed. The recommended treatment was the addition of Salvinia molesta with a weight growth value of 3.84 g, a specific growth rate of 2.07%, and feed efficiency of 59.96%.

Keywords: Water hyacinth, kiambang, feed, catfish

Pendahuluan

Pakan merupakan faktor penting dalam kegiatan budidaya ikan. Sekitar 50 – 60% biaya produksi berasal dari pakan. Tingginya harga pakan di pasar disebabkan karena bahan baku yang digunakan masih berasal dari impor (Mukti et al., 2019). Dengan harga pakan yang tinggi dan harga jual ikan yang rendah menyebabkan keuntungan diperoleh pembudidaya ikan juga Oleh karena itu perlu rendah. dilakukan upaya untuk mengurangi penggunaan pakan komersil yaitu dengan penggunaan bahan alternatif sebagai bahan pakan ikan. Bahan pakan alternatif yang digunakan sebagai pakan ikan harus memenuhi beberapa persyaratan yaitu mengandung nutrisi yang cukup,

harganya terjangkau dan mudah diperoleh (Suprayudi, 2011).

Eceng gondok (Eichhornia crassipes) dan kiambang (Salvinia *molesta*) merupakan jenis tanaman air yang dapat dijadikan sebagai bahan pakan artenatif. Menurut Astuti dan Indriatmoko (2018), eceng gondok dan kiambang merupakan jenis tanaman air yang banyak tumbuh di perairan yang berfungsi sebagai filter biologis akan tetapi pertumbuhan kedua jenis tanaman ini tergolong dan dapat menyebabkan cepat blooming sehingga tanaman tersebut juga seringkali dianggap sebagai gulma perairan. Eceng gondok dan kiambang belum banyak dimanfaatkan dengan baik oleh masyarakat sehingga berpotensi untuk dijadikan pakan ikan. Selain itu eceng gondok dan kiambang juga mengandung nutrisi yang cukup

^{*} E-mail: retnocahyamukti@unsri.ac.id

¹ Program Studi Budidaya Perairan, Fakultas Pertanian, Universitas Sriwijaya

Jl. Palembang-Prabumulih KM 32, Indralaya, Ogan Ilir, Sumatera Selatan

tinggi. Eceng gondok mengandung protein 12,40%, lemak 4,72%, BETN 30,81%, dan serat kasar 19,9% (Yuniati *et al.*, 2018) sedangkan kiambang mengandung nutrisi yaitu protein 19,56%, lemak 3,25%, karbohidrat 21,98%, serat kasar 15,24%, abu 14,74% dan air 49,19% (Iskandar dan Elrifadah, 2015)

Tanaman eceng gondok dan kiambang sudah banyak digunakan pakan Beberapa sebagai ikan. menunjukkan bahwa penelitian penggunaan eceng gondok dalam menghasilkan pakan ikan pertumbuhan yang tinggi diantaranya pada ikan gurame (Osphronemus gouramy L) dengan dosis 25% menggantikan tepung kedelai (Sulhi, 2015) dan pada ikan nila (Oreochromis niloticus) dengan dosis 10% (Razikin et al., 2019) sedangkan penggunaan kiambang terfermentasi juga sudah dilakukan pada ikan nila pada dosis 10% (Warasto et al., 2013) dan pada ikan betok (Anabas testudineus Block) dengan dosis 20% (Ramadhana, 2020).

Ikan patin (*Pangasius* sp.) merupakan ikan omnivora yang dapat memanfaatkan pakan nabati. Oleh karena itu perlu dilakukan penelitian tentang pemanfaatan eceng gondok dan kiambang pada pakan terhadp

pertumbuhan dan kelangsungan hidup ikan patin (*Pangasius* sp.).

Metode

Tempat dan Waktu

Penelitian ini dilaksanakan pada bulan September — Oktober 2019. Pemeliharaan ikan dilakukan di Laboratorium Dasar Perikanan, Program Studi Budidaya Perairan, Universitas Sriwijaya.

Alat dan Bahan

Alat yang digunakan berupa akuarium berukuran 30 x 30 x 30 cm, aerator, selang aerasi, batu aerasi, termometer, pH meter, baskom, oven, blender, timbangan digital, penggaris, saringan, selang sipon, dan mesin pencetak pelet. Sedangkan bahan yang digunakan antara lain ikan patin dengan rata-rata ukuran panjang 7±0,5 cm dan berat 4±0,5 g, pakan komersil, eceng gondok, dan kiambang.

Rancangan Penelitian

Rancangan penelitian berupa rancangan acak lengkap dengan tiga perlakukan dengan masing-masing tiga ulangan. Perlakuan yang digunakan adalah penggunaan tanaman air yang berbeda pada pakan ikan (Tabel 1).

Tabel 1. Komposisi dan proksimat pakan ikan patin

Bahan	Komposisi (%)			
	P0	P1	P2	
Pakan komersil	100	75	75	
Eceng gondok	-	25	-	
Kiambang	-	-	25	
Total	100	100	100	

Proksimat pakan				
Protein (%)	26,04	23,26	24,63	
Lemak (%)	4,31	4,25	2,13	
BETN ¹ (%)	53,14	53,09	53,05	
Serat kasar (%)	4,78	6,87	6,54	
Kadar abu(%)	11,72	12,53	13,65	
GE ² (kkal/kg)	4042,68	3878,27	3754,54	

Keterangan: ¹BETN: bahan ekstrak tanpa nitrogen;

²GE: *gross energy* dihitung berdasarkan 1 g protein= 5,6 kkal; 1 g karbohidrat (BETN)= 4,1 kkal; 1 g lemak= 9,4 kkal (NRC, 1993)

Persiapan Wadah

Wadah yang digunakan berupa akuarium sebanyak 9 unit. Sebelum digunakan, wadah dibersihkan terlebih dahulu dengan cara dicuci menggunakan sabun kemudian dibilas dengan air hingga bersih, kemudian akuarium dan peralatan yang digunakan seperti selang aerasi dan batu aerasi direndam menggunakan kalium permanganat (PK) selama 24 jam, kemudian dibilas dengan kembali air mengalir. Akuarium kemudian diisi air setinggi 20 cm dan aerasi dipasang. Sebelum digunakan air dan sistem aerasi dibiarkan berjalan selama 24 jam untuk mensuplai kandungan oksigen dalam akuarium.

Persiapan Tepung Eceng Gondok dan Kiambang

Eceng gondok dan kiambang diperoleh dari perairan rawa yang ada di daerah Indralaya dan sekitarnya. Eceng gondok dan kiambang yang dipilih merupakan tanaman yang masih segar berwarna hijau dan yang diambil hanya bagian daun saja. Sebelum digunakan, eceng gondok dan kiambang dibersihkan terlebih dahulu dari kotoran yang menempel kemudian dipisahkan antara bagian daun dan dipotong-potong dengan ukuran 3 cm kemudian dikeringkan menggunakan oven selama 24 jam. Daun yang sudah kering kemudian

dihaluskan menggunakan blender hingga halus, dan diayak sebelum digunakan.

Pembuatan Pakan Perlakuan

Pembuatan pakan perlakuan dilakukan dengan cara mencampur pelet komersil yang sudah dihaluskan dengan tepung eceng gondok dan kiambang sesuai perlakuan hingga homogen. Kemudian ditambahkan air hangat sebanyak 40% secara perlahan hingga adonan pakan kalis. Setelah itu, pakan dicetak menggunakan mesin pencetak pakan dan dikeringkan dibawah sinar matahari selama 2 hari. Setelah kering, pakan disimpan dalam wadah tertutup dan terhindar dari matahari langsung untuk menghindari pakan teroksidasi.

Pemeliharaan Ikan

Pemeliharaan ikan dilakukan di dengan akuarium padat sebanyak 20 ekor per akuarium. Sebelum ditebar, ikan diadaptasikan terhadap pakan terlebih dahulu di akuarium stok selama 7 hari sampai ikan mau makan. Kemudian ikan dipuasakan selama 24 jam dan dihitung bobot dan panjangnya. Ikan diberikan pakan sesuai perlakan secara at satiation (sampai dengan ikan kenyang) sebanyak tiga kali sehari yaitu pukul 08.00, 12.00, dan 16.00 WIB. Pemeliharaan ikan dilakukan dilakukan selama 30 hari.

Setiap 10 hari sekali dilakukan sampling untuk melihat pertumbuhan ikan. Setiap pagi hari dilakukan pengukuran kualitas air dan sifon untuk membuang sisa feses yang mengendap di dasar akuarium. Jika ada ikan yang mati, dilakukan penimbangan bobot dan diukur panjangnya.

Parameter

Jumlah konsumsi pakan

Jumlah konsumsi pakan (JKP) ikan patin selama pemeliharaan dihitung menggunakan rumu sebagai berikut:

JKP = jumlah pakan awal – jumlah pakan akhir

Pertumbuhan bobot mutlak

Pertumbuhan bobot mutlak selama pemeliharaan dihitung dengan menggunakan rumus, sebagai berikut:

$$W = Wt - W_0$$

Keterangan:

W = Pertumbuhan bobot mutlak ikan (g)

Wt = Bobot ikan pada akhir pemeliharaan (g)

 $W_0 = Bobot$ ikan pada awal pemeliharaan (g)

Laju pertumbuhan spesifik (SGR)

Laju pertumbuhan spesifik selama pemeliharaan dihitung dengan menggunakan rumus, sebagai berikut:

$$SGR = \frac{(InWt - InW0)}{t} \times 100\% \times$$

Keterangan:

SGR = Laju pertumbuhan spesifik (%)

Wt = Bobot ikan akhir (g)

W₀ = Bobot ikan uji awal (g) t = Lama waktu pemeliharaan

= Lama waktu pemelinaraan (hari)

Efisiensi Pakan

Efisiensi pakan selama pemeliharaan dihitung dengan menggunakan rumus, sebagai berikut:

$$EP = \frac{[(Wt + Wd) - Wo]}{F} \times 100\%$$

Keterangan:

EP = Efisiensi pakan (%)

Wt = Biomassa ikan akhir pemeliharaan (g)

Wd = Biomassa ikan mati saat pemeliharaan (g)

 $W_0 = Biomassa$ ikan awal pemeliharaan (g)

F = Jumlah total pakan yang dikonsumsi (g)

Survival Rate (SR)

Survival Rate atau kelangsungan hidup selama pemeliharaan dapat dihitung menggunakan rumus sebagai berikut:

$$SR = \frac{Nt}{No} x 100\% x$$

Keterangan:

SR = Kelangsungan hidup (%)

Nt = Jumlah ikan pada akhir pemeliharaan (g)

 $N_0 =$ Jumlah ikan pada awal pemeliharaan (g)

Analisis Data

Data jumlah konsumsi pakan, pertumbuhan bobot mutlak, laju pertumbuhan spesifik, efisiensi pakan, dan kelangusungan hidup ikan yang diperoleh diolah menggunakan program microsoft excel, kemudian dianalisis ragam. Apabila terdapat

perbedaan nyata maka dilanjutkan dengan uji lanjut BNT dengan taraf kepercayaan 95%.

Hasil dan Pembahasan

Berdasarkan hasil penelitian diperoleh data jumlah konsumsi

pakan, pertumbuhan bobot mutlak, laju pertumbuhan spesifik, efisiensi pakan, dan kelangsungan hidup ikan patin (Tabel 2). Hasil penelitian menunjukkan bahwa jumlah konsumsi pakan tidak berbeda nyata pada semua perlakuan.

Tabel 2. Jumlah konsumsi pakan (JKP), pertumbuhan bobot mutlak (W), laju pertumbuhan spesifik (SGR), efisiensi pakan (EP) dan kelangsungan hidup (SR) ikan patin selama pemeliharaan

Parameter -	Perlakuan			
	P0	P1	P2	
JKP (g)	$119,99 \pm 5,06^{a}$	$119,71 \pm 0,50^{a}$	$117,95 \pm 3,34^{a}$	
W(g)	$2,46 \pm 0,37^{a}$	$2,78 \pm 0,09^{a}$	$3,84 \pm 0,83^{b}$	
SGR %	$1,49 \pm 0,19^{a}$	$1,65 \pm 0,12^{a}$	$2,07 \pm 0,28^{b}$	
EP (%)	$41,17 \pm 6,13^{a}$	$42,88 \pm 4,86^{a}$	$59,96 \pm 9,14^{b}$	
SR(%)	100 ± 0.00^{a}	$96,67 \pm 5,77^{a}$	$90,00\pm 8,66^{a}$	

Keterangan: Huruf superskrip yang berbeda pada baris yang sama menunjukkan nilai yangberbeda nyata (P<0.05)

Jumlah konsumsi pakan dipengaruhi oleh palatabilitas ikan terhadap pakan. Faktor yang mempengaruhi palatabilitas diantaranya bau atau aroma, tekstur dan rasa (Putranti et al., 2017). memiliki Diduga semua pakan palatabilitas yang sama sehingga mempengaruhi tidak jumlah konsumsi pakan.

Pertumbuhan bobot mutlak ikan yang dihasilkan pada penelitian ini menunjukkan hasil yang berbeda nyata. Nilai pertumbuhan bobot mutlak ikan patin tertinggi terdapat pada perlakuan P2 sebesar 3,84 g sedangkan pada perlakuan P0 dan P1 menunjukkan hasil yang tidak berbeda nyata yaitu masing-masing sebesar 2,46 g dan 2,78 g. Laju pertumbuhan spesifik tertinggi terdapat perlakuan P2 pada kiambang) (penambahan sebesar 2,07% sedangkan pada perlakuan P0 dan P1 masing masing sebesar 1,49%

dan 1,65% menunjukkan hasil yang tidak berbeda nyata. Ikan mengalami pertumbuhan apabila pakan yang dikonsumsi mampu memenuhi kebutuhan nutrisinya.

Pertumbuhan ikan terjadi karena adanya kelebihan energi hasil pencernaan makanan yang digunakan untuk maintenance. Pertumbuhan ikan pada perlakuan P2 lebih tinggi dikarenakan ikan patin lebih mampu memanfaatkan pakan mengandung kiambang dibandingkan yang mengandung eceng gondok. Hal ini dikarenakan perbedaan nutrisi yang terkandung dalam kiambang dan gondok. Kiambang mengandung protein yang lebih tinggi dan serat kasar yang lebih rendah dibandingkan eceng gondok sehingga pertumbuhan ikan pada perlakuan P2 lebih tinggi dibandingkan P1. Protein berperan terhadap pertumbuhan yang digunakan sebagai energi utama yang dimanfaatkan ikan. Menurut Khalil et al. (2015) melaporkan bahwa ikan nila yang diberikan pakan berupa tanaman air yang berbeda pertumbuhan menghasilkan yang juga berbeda. Permana et al. (2015) menyatakan bahwa kandungan serat kasar yang tinggi akan mempengaruhi daya cerna ikan dan penyerapan sehingga energi dalam pakan menghasilkan pertumbuhan yang rendah. Pada perlakuan P0 menghasilkan pertumbuhan yang rendah diduga karena kandungan nutrisi pakan komersil yang digunakan belum mencukupi untuk kebutuhan nutrisi ikan patin.

pakan Efisiensi merupakan perbandingan pertumbuhan bobot ikan dengan jumlah pakan yang dikonsumsi. Nilai efisiensi pakan yang tinggi menunjukkan bahwa semakin efisien ikan dalam memanfaatkan pakan yang untuk dikonsumsi pertumbuhan (Amin et al., 2020). Berdasarkan analisis ragam, nilai efisiensi pakan menunjukkan hasil yang berbeda pakan tertinggi Efisiensi nyata. terdapat pada perlakuan P2 yaitu sebesar 59,96% sedangkan pada perlakuan P1 dan P2 masing-masing sebesar 41,17%, dan 42,88% menunjukkan hasil yang tidak berbeda nyata. Nilai efisiensi pakan penambahan perlakuan dengan kiambang menghasilkan efisiensi yang tinggi karena lebih dari 50%. Craig dan Helfrich (2002) **Faziel** (2017)dalam et al. menyatakan bahwa pakan dapat dikatakan baik bila nilai efisiensi pemberian pakan lebih dari 50% atau bahkan mendekati 100%. Nilai efisiensi pakan yang tinggi pada perlakuan P2 menunjukkan bahwa pakan tersebut memiliki kualitas yang baik. Salah satu parameter suatu pakan dikatakan baik apabila mengandung nutrisi yang diperlukan oleh tubuh baik jumlah maupun jenisnya. Salah satu nutrisi tersebut adalah kandungan asam amino. Kiambang mengandung asam amino esensial yang lebih lengkap dibandingkan eceng gondok. Menurut Leterme et al. (2009) dalam Ridhwan (2019) kiambang memiliki asam amino esensial dan non esensial diantaranya metionin, valin, trytofan, theonin, leusin, dan lysine, isoleusin, histidin. arginin dan penilalanin sedangkan eceng gondok mengandung asam amino metionin, valin, trytofan, tyrosin, leusin, dan lysine (Nyananyo et al., 2007 dalam Wijaya *et al.*, 2015)

Berdasarkan hasil analisis ragam bahwa kelangsungan hidup pada penelitian ini menghasilkan hasil yang tidak berbeda nyata. Kelangsungan hidup dipengaruhi oleh pakan dan kondisi lingkungan. membuktikan Hal gondok penambahan eceng kiambang tidak mempengaruhi kualitas lingkungan ikan patin. Suhu pada media pemeliharaan berkisar 25,8 – 27,5 °C sedangkan pH berkisar 6,16 – 7,0 masih dalam kisaran toleransi pemeliharaan ikan patin. Berdasarkan Septimesy et al. (2016) menyatakan bahwa suhu 26 - 28 °C dan pH 6 - 7 masih masuk kisaran kualitas air yang normal untuk ikan patin.

Kesimpulan

Penambahan eceng gondok (P1) pada pakan tidak memberikan pengaruh sedangkan penambahan kiambang (P2) memberikan pengaruh

nyata terhadap pertumbuhan bobot mutlak, laju pertumbuhan spesifik, efisiensi pakan ikan patin (Pangasius sp.). Penambahan eceng gondok dan kiambang masingmasing sebesar 25% pada pakan mampu mengurangi penggunaan pakan komersil. Penambahan kiambang pakan (P2) pada merupakan perlakuan yang terbaik menghasilkan pertumbuhan bobot mutlak 3,84 g, laju pertumbuhan spesifik 2,07%, dan efisiensi pakan 59,96%.

Daftar Pustaka

- Amin, M., Taqwa, F.T, Yulisman, Mukti, R.C., Rarassari, M.A., Antika. R.M. 2020. dan Efektivitas Pemanfaatan Bahan Baku Lokal Sebagai Pakan Ikan Terhadap Peningkatan Produktivitas Budidaya Ikan Lele (Clarias sp.) di Desa Sakatiga, Kecamatan Indralaya, Kabupaten Ogan Ilir, Sumatera Selatan. Journal of Aquaculture and Fish Health, 9(3): 222-231
- Astuti, L.P, dan Indriatmoko. 2018.

 Kemampuan Beberapa
 Tumbuhan Air dalam
 Menurunkan Pencemaran
 Bahan Organik dan Fosfat
 untuk Memperbaiki Kualitas
 Air. Jurnal Teknologi
 Lingkungan, 19(2): 183-190
- Faziel, M., Yulvizar, C., dan Hasri, I. 2017. Pengaruh Suplemen Dan Probiotik Pada Pakan Terhadap Pertumbuhan Dan Kelangsungan Hidup Larva Ikan Peres (Osteochilus viittatus). Jurnal Ilmiah Mahasiswa Kelautan Dan Perikanan, 2(1): 158-168

- Iskandar, R., dan Elrifadah. 2015.
 Pertumbuhan dan Efisiensi
 Pakan Ikan Nila (*Oreochromis*niloticus) yang Diberi Pakan
 Buatan Berbasis Kiambang.
 Jurnal Ziraa"ah, 40(1): 18-24
- Khalil, M., Maulana, R., dan Rusydi, R. 2015. Efektifitas Beberapa Jenis Tanaman Air sebagai Pakan Alam Terhadap Pertumbuhan Benih Ikan Nila Gesit (*Oreochromis niloticus*). Samudera, Jurnal Penelitian Ilmu-Ilmu Alam Dan Teknik, 9(2): 89-102
- R.C, Yonarta, Mukti, D., dan 2019. Pangawikan, A.D. Pemanfaatan Daun Indigofera Sebagai Bahan zollingeriana Pakan Ikan Patin Pangasius sp. **DEPIK** Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan, 8(1): 18-25
- NRC (National Research Council).
 1993. Subcommite on
 Warmwater Fish Nutrition..
 Nutrient requirements of fish.
 Washington DC: National
 Academy of science, 114 pp.
 Peres H. dan Teles A.O.
- Permana, N.A., Cahyoko, Y., dan Arief, M. 2015. Substitusi Tepung Ikan Dengan Tepung Limbah Ikan Hiu (*Carcharhinus* sp.) Terhadap Pertumbuhan, Efisiensi Pakan Dan Survival Rate Ikan Lele Dumbo. *Jurnal Ilmiah Perikanan Dan Kelautan*, 7(2): 199-206
- Putranti, G.P., Subandiyono, dan Pinandoyo. 2017. Pengaruh Protein dan Energi yang berbeda pada Pakan Buatan Terhadap Efisiensi Pemanfaatan Pakan dan

- Pertumbuhan Ikan Mas (Cyprinus carpio). Journal of Aquaculture Management and Technology, 4(3): 95-100.
- Ramadhana, S. 2020. Penambahan Ekstrak Kiambang (Salvina molest D.S. Mitchell) pada Pellet Industri Dengan Persentase Yang Berbeda Terhadap Pertumbuhan Ikan Betok (Anabas testudineus). Prosiding Seminar Nasional Lingkungan Lahan Basah, 5(3): 32-34
- Razikin, M., Sumahirdewi, L.G., dan Liliyanti, M.A. 2019. Pemanfaatan Eceng Gondok sebagai Bahan Baku Pakan Buatan untuk Benih Ikan Nila (Oreochomis niloticus). Indonesian Journal ofAquaculture and *Fisheries* (*IJAF*), 1(1): 55-66
- Ridhwan, M. 2019. Kandungan Fraksi Serat Silase Tanaman Kiambang (Salvinia molesta) Yang Difermentasi Dengan Effective Microorganisme (EM4) Dengan Level Yang Berbeda. Skripsi. Universitas Islam Negeri Sultan Syarif Kasim, Riau.
- Septimesy, A., Jubaedah, D., dan Sasanti, A.D. 2016.
 Pertumbuhan dan Kelangsungan Hidup Ikan Patin (*Pangasius* sp) di Sistem Resirkulasi dengan Padat Tebar Berbeda. *Jurnal Akuakultur Rawa Indonesia*, 4(1): 1-8
- Suprayudi, M.A., 2010. Bahan Baku Lokal: Tantangan dan Harapan Akuakultur Masa Depan. Prosiding Simposium Nasional Bioteknologi Akuakultur III. IPB

- International Convention Center, Bogor, Oktober 2010. Hal 31
- Sulhi, M. 2015. Substitusi Tepung Kedelai dengan Tepung Eceng Gondok Hasil Fermentasi Formulasi Pakan dalam terhadap Pertumbuhan dan Sintasan Benih Gurame (Osphronemus gouramy Lac.). Inovasi Prosiding Forum Teknologi Akuakultur, 319-326
- Warasto, Yulisman, dan Firani, M. 2013. Tepung Kiambang (Salvina molesta)
 Terfermentasi Sebagai Bahan Pakan Ikan Nila (Oreochromis niloticus). Jurnal Akuakultur Rawa Indonesia, 1(2): 173-183
- Wijaya, D., Yanti, P.P., Setya A.R., dan Rizal, M. 2015. Screening Fitokimia dan Aktivitas Antioksidan Daun Eceng Gondok (Eichhornia crassipes). Jurnal Kimia VALENSI: Jurnal Penelitian Pengembangan Kimia, 1(1): 65-69
- Yuniati, D., Utomo, N.B.P., Setiawati, M., dan Alimuddin. 2018. Growth performance and enzyme activities in catfish (*Pangasianodon hypophthalmus*) fed with water hyacinth-based diet. *Biotropia*, 25(2): 140-147