

Jurnal Agricultural Biosystem Engineering https://jurnal.fp.unila.ac.id/index.php/ABE/index

ISSN 2830-4403

Received: May 15, 2025

Accepted: June 12, 2025

Vol. 4, No.2, June 22, 2025: 126-136

DOI: http://dx.doi.org/10.23960/jabe.v4i2.11050

Pengaruh Campuran Pupuk Organik Cair Limbah Buah dengan Nutrisi AB Mix terhadap Pertumbuhan Bayam Merah (*Alternantera Amoena* Voss) pada Sistem Hidroponik *Static Aerated Technique*

The Effet of Mixing Fruit Waste (Liquid Organic Fertilizer) With AB Mix Nutrients on the Growth of Red Spinach (Alternantera Amoena Voss) in the Static Aerated Technique Hydroponic System

Kristian Gerenaldo Simamora¹, Ahmad Tusi¹*, Elhamida Rezkia Amien¹, Sugeng Triyono¹

*Corresponding Author: ahmad.tusip@fp.unila.ac.id

Abstract. The high volume of fruit waste in Lampung and Indonesia in general requires environmentally friendly waste management solutions. This study aims to utilize such waste for liquid organic fertilizer by evaluating the effects of mixing fruit waste-based liquid organic fertilizer (LOF) with AB Mix nutrients on the growth of red spinach (Alternanthera amoena Voss) in a Static Aerated Technique (SAT) hydroponic system. The research employed a Completely Randomized Design (CRD) with a single factor, consisting of five treatment combinations of LOF and AB Mix concentrations (0–100%) and three replications. Observed parameters included plant height, number of leaves, plant weight, root length and weight, stem diameter, and water use efficiency. The results showed that the use of pure AB Mix (100%) produced the best growth outcomes compared to the mixed or pure LOF treatments. The lower growth and productivity in the LOF treatments were attributed to the low levels of macronutrients (N, P, K) in the produced LOF, as well as the presence of sediment that hindered nutrient absorption and the upward flow of nutrient solution from the reservoir to the plant root zone. Nevertheless, the combination of LOF and AB Mix still shows potential as an alternative nutrient source for hydroponic cultivation if optimally formulated.

Keywords: AB Mix, Fruit Waste, Liquid Organic Fertilizer, Red Spinach, SAT Hydroponics,

¹ Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung

1. Pendahuluan

Masalah lingkungan akibat peningkatan limbah, khususnya limbah makanan, menjadi isu yang semakin krusial. Di Provinsi Lampung, limbah makanan menyumbang 41,69% dari total sampah, dengan limbah buah-buahan sebagai komponen terbesar (Bappenas, 2023; SIPSN, 2022). Pengolahan limbah buah menjadi pupuk organik cair (POC) merupakan solusi potensial yang ramah lingkungan karena mengandung unsur hara penting bagi tanaman dan dapat menggantikan sebagian peran pupuk anorganik (Bayuseno, 2009). Meskipun demikian, pemanfaatan POC masih terbatas.

Pemanfaatan limbah buah-buahan ini memerlukan proses fermentasi dan pengolahan lebih lanjut agar pupuk yang dibuat dapat menghasilkan unsur hara yang baik bagi tanaman. Pembuatan pupuk organik cair adalah cara yang tepat untuk mengurai banyaknya limbah yang ada, dan mampu menjaga kualitas tanah serta mampu meyediakan unsur hara yang cukup bagi tanaman dan baik digunakan untuk tanaman konsumsi seperti sayuran dan buah buahan. Namun, kandungan unsur nutrisi yang tersedia pada pupuk organik cair ini sangat bergantung pada bahan limbah yang digunakan. Dalam pemanfaatannya pupuk organik cair saat ini banyak diaplikasikan pada pertanian menggunakan tanah. Penggunaan POC untuk system budidaya hidroponik belum banyak dijumpai kajian terkait hal ini.

POC berpotensi diterapkan pada sistem hidroponik. Salah satu metode hidroponik yang dapat digunakan untuk menguji POC adalah menggunakan teknik water culture. Salah satu teknik water culture yang dapat digunakan adalah metode Static Aerated Technique (SAT), yang mendukung efisiensi penyerapan nutrisi. Sistem ini menggunakan sistem sumbu (Wick) dengan adanya penambahan aerasi didalam larutan nutrisi dengan tujuan tanaman memperoleh aerasi (penambahan oksigen) yang cukup dan percampuran nutrisi semakin merata. Dengan meletakan media tanam pada selembar styrofoam diatas air nutrisi yang diberikan sumbu kain flanel yang terendam dalam air nutrisi dalam suatu wadah. Dengan sistem SAT (Static Aerated Technique) nutrisi yang diserap oleh tanaman akan lebih optimal dan tanaman akan mendapatkan oksigen yang cukup untuk perkembangan tanaman khususnya tanaman sayuran.

Oleh karena itu, pada kajian penelitian ini dilakukan pengujian pupuk organik cair dari limbah buah untuk pertumbuhan sayuran dengan sistem hidroponik. Hasil kajian ini diharapkan dapat mengurangi limbah buah melalui pemanfaatan untuk POC sebagai nutrisi untuk pertumbuhan tanaman serta mengurangi biaya produksi.

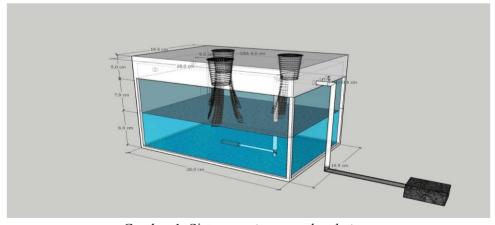
2. Metode Penelitian

Penelitian ini dilaksanakan bulan Desember 2024 hingga Januari 2025. Pembuatan POC limbah buah dilakukan di Unit 2, Tulang Bawang, Lampung. Penanaman tanaman dilakukan di *Greenhouse* Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung. Analisis data dilakukan di Laboratorium Rekayasa Sumber Daya Air dan Lahan (LRSDAL) Teknik Pertanian, Fakultas Pertanian, Universitas Lampung. Alat-alat yang digunakan dalam penelitian ini adalah, alat-alat laboratorium untuk keperluan analisis limbah, aerator, netpot, 16 batu earator, ember tanam dengan kapasitas 8 liter, pH meter, TDS meter, thermohygrometer, penggaris, wadah POC dan nutrisi AB Mix. Bahan yang digunakan pada penelitian ini adalah benih sayuran bayam merah Delima, *rockwool*, nutrisi AB Mix, dan POC limbah buah.

2.1 Rancangan Percobaan dan POC yang Digunakan

Metode yang digunakan pada penelitian ini yaitu Rancangan Acak Lengkap (RAL) non factorial yaitu dengan 5 perlakuan dengan 3 kali pengualangan disetiap perlakuannya seperti tertera pada Tabel 1. Setiap kombinasi perlakuan menggunakan wadah box tanam yang terdiri dari 3 netpot penanaman, dan didalam satu netpot terdapat 5 tanaman bayam merah. Jadi total tanaman yang

akan ditanam yaitu 225 tanaman bayam merah.


Adapun POC limbah buah-buah yang dibuat adalah limbah buah 10 kg yang terdiri dari 3 jenis limbah buah (4 kg mangga, 4 kg apel, 2 kg pisang), 5 liter air kelapa, 3 liter air cucian beras, gula merah (molase), EM 4 500 ml yang mengandung migroorganisme (*Lactobacillus, Actinomycetes, Streptomyces*) dan 10 liter air. Semua bahan limbah buah di potong kecil dapat dan di campurkan semua bahan dan di aduk merata dapat dilihat pada Gambar 29, dan fermentasi selama 14 hari dan 3 hari sekali dilakukan pengadukan POC. Sumber komposisi pupuk organik cair limbah buah diperoleh dari kegiatan wawancara narasumber petani di Tulang Bawang. Pelarutan POC yaitu dengan mencari perbandingan jumlah pupuk organik cair yang akan di campurkan kedalam air. Berdasarkan penguji lab yang telah dilakukan pH awal POC limbah buah murni sebesar 3-4, 100 ml POC limbah buah dicampurkan dengan 600 ml air akan memperoleh nilai pH 6,2 dan ppm 1236 nilai tersebut termasuk nilai yang optimal untuk tanamam bayam merah. Menurut (Untung, 2001) menyatakan bahwa pH optimal untuk tanaman bayam merah yaitu 6 – 7 dan nilai ppm 1260 - 1610.

Tabel 1. Kombinasi perlakuan RAL non-faktorial

POC (P)	AB Mix (A)	Ulangan		
		U1	U2	U3
0 % (P1)	100 % (A1)	P1A1U1	P1A1U2	P1A1U3
25 % (P2)	75 % (A2)	P2A2U1	P2A2U2	P2A2U3
50 % (P3)	50 % (A3)	P3A3U1	P3A3U2	P3A3U3
75 % (P4)	25 % (A4)	P4A4U1	P4A4U2	P4A4U3
100 % (P5)	0 % (A5)	P5A5U1	P5A5U2	P5A5U3

2.2 Sistem Hidroponik Static Aerated Technique

Dalam sistem hidroponik SAT (*Static Aerated Technique*) sistem yang digunakan merupakan sistem hidroponik *water culture* yang diberikan aerasi menggunakan pompa aerator seperti tertera pada Gambar 1. Dalam satu ember tanam akan terdapat 3 netpot tanaman bayam merah yang dilubangi sesuai ukuran netpot, kain flanel di potong memanjang dengan ukuran 15 – 20 cm dan diletakkan di bawah netpot. Ember tanam akan di lubangi bagian dinding atasnya sebagai sirkulasi udara dan masuknya selang aerasi, udara yang berasal dari pompa aerasi akan di cabangkan ke 15 ember tanam dengan menggunakan cabang pembagi sebanyak 15 cabang. Netpot akan diletakan di atas air dengan jarak 5 cm dan posisi kain flanel berada didalam air.

Gambar 1. Sistem static aerated technique

2.3 Parameter Pengamatan dan Analisis Data Penelitian

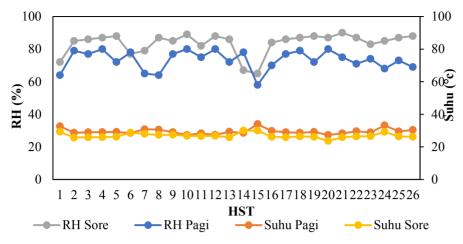
Dalam penelitian ini, pengamatan dilakukan berdasarkan beberapa parameter yang diukur dan diamati, sehingga terbagi menjadi tiga kategori, yaitu pengamatan harian, mingguan, dan akhir.

Pengamatan Harian. Pengamatan harian mencakup parameter lingkungan dan kualitas nutrisi tanaman bayam merah. Parameter lingkungan yang diamati meliputi suhu udara dan kelembaban relatif (RH) menggunakan thermo-hygrometer yang ditempatkan di dalam greenhouse pada pagi dan sore hari. Kualitas nutrisi dievaluasi melalui pengukuran pH menggunakan pH meter yang telah dikalibrasi, TDS (Total Dissolved Solids) dan EC (Electrical Conductivity) menggunakan TDS meter, serta volume nutrisi. Selain itu, konsumsi air harian dihitung berdasarkan selisih ketinggian air pada media tanam menggunakan rumus:

$$DWC = \Delta H \times A \tag{1}$$

dimana DWC (*Daily Water Consumption*) dalam cm³, ΔH adalah selisih tinggi air (cm), dan A adalah luas permukaan wadah (cm²).

Pengamatan Mingguan. Dilakukan setiap tiga hari sekali untuk menilai pertumbuhan vegetatif tanaman. Parameter yang diamati meliputi tinggi tanaman, yang diukur dari pangkal batang hingga daun tertinggi menggunakan penggaris, serta jumlah daun pada setiap tanaman.

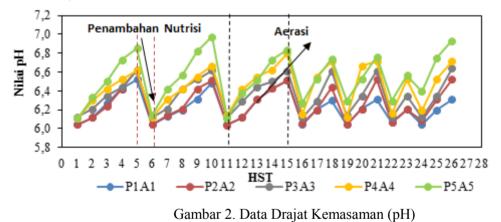

Pengamatan Akhir. Dilakukan pada akhir masa tanam untuk mengevaluasi hasil produksi. Parameter yang diukur meliputi bobot total tanaman menggunakan timbangan digital, panjang akar dengan penggaris, bobot basah akar, dan diameter batang menggunakan jangka sorong digital. Selain itu, efisiensi penggunaan air dinilai melalui perhitungan produktivitas air (g/L), yang diperoleh dari rasio bobot total tanaman terhadap total konsumsi air selama masa tanam.

Data dari hasil pengamatan dianlisis dengan menggunakan analisis Rancang Acak Lengkap (RAL) Non faktorial menggunakan metode analisis sidik ragam (ANOVA). Apabila antara taraf didalam perlakuan ada perbedaan dan juga interaksi maka akan dilanjutkan dengan uji BNT pada taraf 5%

3. Hasil dan Pembahasan

3.1 Pengamatan Lingkungan

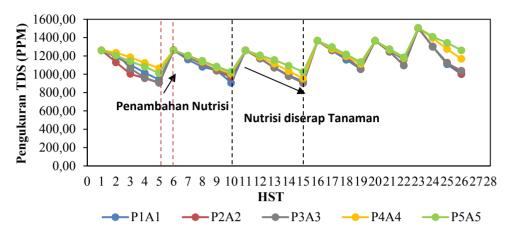
Hasil pengamatan selama penelitian menunjukkan bahwa suhu rata-rata di dalam greenhouse mencapai 30°C pada pagi hari dan menurun menjadi 27°C pada sore hari, dengan kelembaban udara masing-masing sebesar 73% dan 85%. Penurunan suhu tersebut disebabkan oleh menurunnya intensitas cahaya matahari menjelang sore, yang berdampak pada berkurangnya panas di dalam greenhouse. Faktor suhu dan kelembaban memiliki peranan penting dalam mendukung pertumbuhan tanaman bayam merah, karena keduanya berpengaruh terhadap aktivitas enzimatik dan proses transpirasi (Surjana, 2020). Tealaumbanua (2019) menyatakan bahwa bayam merah tumbuh secara optimal dalam rentang suhu 20–35°C, dan penyimpangan dari kisaran tersebut dapat menyebabkan stres fisiologis pada tanaman, termasuk kelayuan. Oleh karena itu, kondisi suhu selama penelitian ini tergolong sesuai dengan kebutuhan optimal pertumbuhan bayam merah.



Gambar 1. Suhu dan kelembaban greenhouse

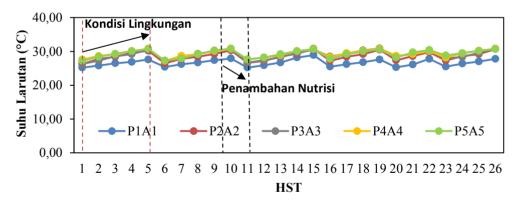
3.2 Pengamatan Larutan Nutrisi

3.2.1 Derajat Kemasaman (pH)


Berdasarkan Gambar 3, nilai pH larutan nutrisi selama penelitian berkisar antara 6,0 hingga 6,9. Peningkatan pH pada setiap perlakuan terjadi seiring dengan penurunan suhu larutan akibat penggunaan aerator di setiap box tanam, karena suhu memengaruhi derajat keasaman larutan. Sebaliknya, penurunan pH disebabkan oleh penambahan larutan nutrisi atau kenaikan suhu yang signifikan. Dalam kondisi tersebut, penyesuaian pH dilakukan menggunakan larutan pH down untuk menjaga kestabilan. Menurut Untung (2001), kisaran pH optimal bagi pertumbuhan bayam merah adalah antara 6 hingga 7. Dengan demikian, nilai pH yang tercatat selama penelitian telah berada dalam rentang optimal untuk mendukung pertumbuhan tanaman bayam merah.

3.2.2 Total Dissolved Solids (TDS)

Total Dissolved Solids (TDS) memiliki satuan PPM (Parts Per Million) untuk merepresentasikan konsentrasi nutrisi dalam larutan. Dalam penelitian ini, nilai PPM disesuaikan secara bertahap setiap minggu mengikuti fase pertumbuhan bayam merah. Pada minggu pertama dan kedua, digunakan konsentrasi rendah (900–1260 PPM), kemudian meningkat menjadi 1350 PPM pada minggu ketiga, dan mencapai 1500 PPM pada minggu keempat, seiring meningkatnya kebutuhan nutrisi pada fase vegetatif lanjut. Rentang ini sesuai dengan rekomendasi Suryani (2015) mengenai kisaran optimal PPM bagi bayam merah, yaitu 900–1500 PPM. Meskipun demikian, terdapat perbedaan signifikan dalam pertumbuhan antara perlakuan dengan larutan AB Mix dan POC dari limbah buah. Hal ini disebabkan oleh keterbatasan alat TDS meter, yang hanya mengukur total


konsentrasi zat terlarut tanpa membedakan jenis unsur hara yang tersedia. Akibatnya, ketidaktepatan komposisi nutrisi dalam POC menjadi faktor utama ketidakseimbangan pertumbuhan antar perlakuan.

Gambar 4. Data nilai TDS selamaa masa tanam

3.2.3 Suhu Larutan

Bedasarkan penelitian yang telah dilakukan diperoleh suhu larutan terendah yaitu 25,20 °C pada perlakuan P1A1 dan suhu tertinggi yaitu 30,80 °C pada perlakuan P5A5. Menjaga suhu larutan nutrisi sangat penting untuk pertumbuhan tanaman hidroponik yang optimal. Suhu larutan yang terlalu tinggi akan mempersulit tanaman untuk menyerap unsur hara. Larutan nutrisi lebih baik dijaga pada kisaran suhu 25-30°C jika melebihi dari suhu tersebut maka air tersebut tergolong pada air hangat dan menyebabkan pathogen hidup di larutan nutrisi berpengaruh pada berkurangnya kadar oksigen terlarut yang dibutuhkan akar tanaman (Nugrahani, 2018).

Gambar 5. Suhu larutan nutrisi

3.2.4 Perbandingan Unsur Hara Makro POC dan AB Mix

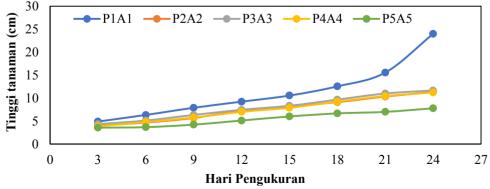
Unsur hara makro seperti nitrogen (N), fosfor (P), dan kalium (K) merupakan elemen penting dalam pertumbuhan tanaman, khususnya tanaman sayuran yang membutuhkan nitrogen dalam jumlah optimal untuk sintesis protein dan pembentukan membran sel (Pratiwi, 2017). Berdasarkan hasil analisis laboratorium BSIP Natar, kandungan unsur makro dalam pupuk organik cair (POC) limbah buah jauh lebih rendah dibandingkan dengan AB Mix, sebagaimana ditunjukkan pada Tabel 2. Perbedaan ini disebabkan oleh formulasi AB Mix yang mengandung komposisi hara sesuai kebutuhan tanaman, sementara POC limbah buah berasal dari bahan organik yang kandungan haranya tidak terstandar.

Tabel 2. Perbandingan unsur makro nutrisi POC dengan AB Mix

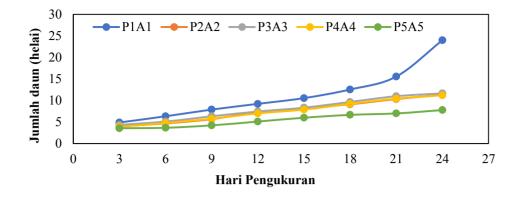
Unsur Makro	Satuan	POC (*)	AB Mix (**)
Niitrogen (N)	%	0,07	25,9
Fosfor (P)	%	0,03	8,4
Kalium (K)	%	0,20	31,2

3.2.5 Hasil Uji Endapan Larutan Nutrisi

Uji endapan dilakukan untuk mengevaluasi potensi gangguan distribusi air ke akar tanaman bayam merah akibat akumulasi partikel padat dalam larutan nutrisi. Setiap perlakuan diambil sampel sebanyak 100 ml, disaring menggunakan kertas saring untuk memperoleh endapan, sebagaimana ditunjukkan pada Gambar 44. Endapan yang diperoleh kemudian dikeringkan melalui proses pengovenan selama 24 jam pada suhu 105°C, lalu ditimbang menggunakan timbangan digital untuk menentukan massa endapan dalam satuan gram. Hasil pengukuran disajikan dalam Tabel 3.


Table 3. Uji endaan larutan

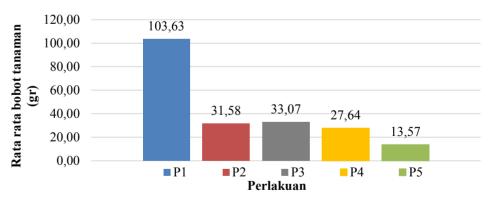
5		
Perlakuan	Satuan	Hasil endapan larutan nutrisi per 100 ml
P1A1	gr	0
P2A2	gr	0,8
P3A3	gr	1.6
P4A4	gr	2.4
P5A5	gr	3.4


3.3 Pengamatan Pertumbuhan dan Produktivitas Tanaman

3.3.1 Tinggi Tanaman (cm) dan Jumlah Daun

Pertumbuhan tinggi tanaman bayam merah tertinggi dicapai pada perlakuan AB Mix murni, yaitu rata-rata 51,82 cm. Sementara itu, perlakuan campuran AB Mix dan POC limbah buah menunjukkan hasil lebih rendah, dengan pertumbuhan tertinggi sebesar 26,96 cm pada kombinasi 50% AB Mix dan 50% POC (P3A3), dan terendah 11,64 cm pada 100% POC (P5A5). Rendahnya pertumbuhan pada perlakuan POC diduga disebabkan oleh endapan dalam larutan yang menghambat distribusi air melalui sumbu kain flanel serta rendahnya kandungan unsur hara makro, khususnya nitrogen (N), yang sangat penting dalam pertumbuhan tanaman. Kandungan N dalam POC limbah buah tergolong rendah, sebagaimana dilaporkan oleh Putra (2019), sehingga tidak mencukupi kebutuhan nutrisi optimal bayam merah.

Gambar 7. Data tinggi tanaman selama masa tanam

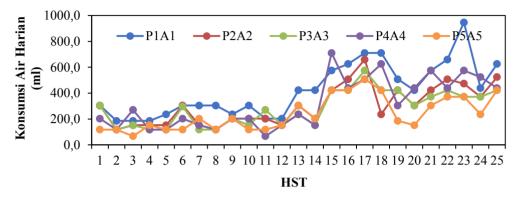


Gambar 8. Data pengamatan jumlah daun

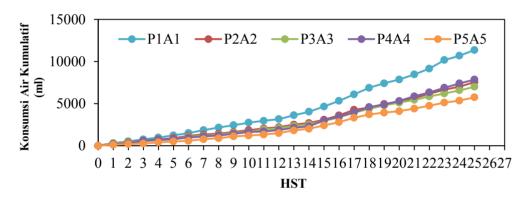
Berdasarkan data, jumlah daun terbanyak terdapat pada perlakuan P1A1 (100% AB Mix) dengan rata-rata 24 helai, sedangkan paling sedikit pada P5A5 (100% POC) dengan 8 helai daun. Perlakuan P2A2, P3A3, dan P4A4 menunjukkan jumlah daun yang relatif serupa, yaitu 11–12 helai. Nitrogen (N) berperan penting dalam pembentukan daun karena fungsinya dalam sintesis protein, klorofil, dan pertumbuhan vegetatif (Sutedjo, 2010). Penelitian ini juga menemukan penyakit bercak daun dan batang akibat jamur *Cercospora* pada perlakuan P1A1, yang ditangani dengan penyemprotan pestisida alami sebanyak dua kali sehari.

3.3.2 Bobot Keseluruhan

Bobot keseluruhan tanaman tertinggi diperoleh pada perlakuan P1A1 (100% AB Mix) sebesar 103,63 gram, sedangkan terendah pada P5A5 (100% POC limbah buah) sebesar 13,57 gram. Perlakuan campuran menunjukkan bobot yang lebih rendah, berkisar antara 27,64–33,07 gram. Perbedaan signifikan ini disebabkan oleh kandungan unsur hara makro dalam AB Mix yang sesuai kebutuhan tanaman, sementara POC limbah buah memiliki kandungan nutrisi rendah. Bobot total tanaman dipengaruhi oleh konsumsi air, nutrisi, dan jumlah daun yang berperan penting dalam proses fotosintesis (Nurdin, 2011; Septia, 2016).



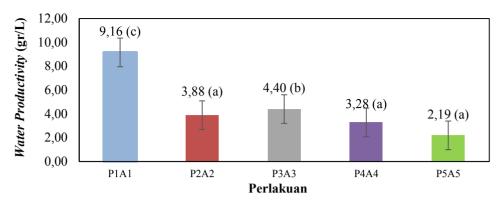
Gambar 9. Data rata rata bobot tanaman


3.3.3 Konsumsi Air Harian

Berdasarkan Gambar 10, konsumsi air harian tertinggi pada bayam merah tercatat pada hari ke-13 pada perlakuan P1A1 sebesar 946 ml, sementara konsumsi terendah sebesar 68 ml terjadi pada perlakuan P5A5 dan P4A4 masing-masing pada hari ke-3 dan ke-11. Pola konsumsi air menunjukkan fluktuasi dengan beberapa hari tanpa perubahan signifikan, serta lonjakan tajam pada hari ke-15 yang kemungkinan dipengaruhi oleh fase pertumbuhan, jenis tanaman, dan kondisi iklim

(Dwiratna & Bafdal, 2016). Secara kumulatif, konsumsi air meningkat seiring waktu selama 25 hari masa tanam. Perlakuan P1A1 (100% AB Mix) menunjukkan konsumsi tertinggi sebesar 11357 ml, diikuti oleh P4A4 (7.853 ml), P2A2 (7.549 ml), dan P3A3 (7.002 ml). Perlakuan dengan konsumsi terendah adalah P5A5 (100% POC limbah buah) sebesar 5.746 ml. Temuan ini mengindikasikan bahwa komposisi dan jenis nutrisi berpengaruh signifikan terhadap tingkat konsumsi air tanaman.

Gambaat 10. Data konsumsi air harian



Gambar 11. Konsumsi air kumulatif

3.3.4 Produktivitas air (g/L)

Produktivitas air merupakan parameter pengukuran yang di peroleh dengan melakukan perhitungan. Rumus yang digunakan yaitu rata rata bobot keseluruhan tanaman bayam merah dibagi dengan rata rata konsumsi air yang digunakan selama proses penanaman bayam merah. Produktivitas air digunakan untuk mengetahui efisiensi penggunaan air dalam suatu proses penanaman, dengan tujuan memaksimalkan hasil yang diperoleh dari penggunaan air yang ada. Hasil perhitungan produktivitas air pada penelitian ini dapat dilihat pada Gambar 12.

Produktivitas air merupakan parameter pengukuran yang di peroleh dengan melakukan perhitungan. Rumus yang digunakan yaitu rata rata bobot keseluruhan tanaman bayam merah dibagi dengan rata rata konsumsi air yang digunakan selama proses penanaman bayam merah. Produktivitas air digunakan untuk mengetahui efisiensi penggunaan air dalam suatu proses penanaman, dengan tujuan memaksimalkan hasil yang diperoleh dari penggunaan air yang ada. Hasil perhitungan produktivitas air pada penelitian ini dapat dilihat pada Gambar 15. Produktivitas air tertinggi diperoleh pada perlakuan P1A1 dengan penggunaan 100% AB Mix, yaitu sebesar 9,83 gr/L.

Gambar 32. Pengukuran water productivity

Produktivitas air terendah tercatat pada perlakuan P5A5 (100% POC) dengan nilai 2,35 gr/L, yang disebabkan oleh rendahnya kandungan unsur hara makro seperti nitrogen, fosfor, dan kalium dalam larutan nutrisi. Perlakuan kombinasi menunjukkan variasi produktivitas air, dengan P3A3 (50% AB Mix, 50% POC) mencapai nilai tertinggi sebesar 4,73 gr/L, diikuti oleh P2A2 (4,20 gr/L) dan P4A4 (3,53 gr/L). Rendahnya efektivitas POC dibanding AB Mix murni disebabkan oleh perbedaan kualitas nutrisi, tingginya nilai EC, aktivitas mikroorganisme, serta efisiensi penyerapan yang lebih rendah. Secara keseluruhan, produktivitas air mencerminkan efisiensi pemanfaatan air oleh tanaman, di mana nilai yang lebih tinggi menunjukkan hasil panen yang lebih besar per liter air yang digunakan (Yulianto, 2020).

4. Kesimpulan dan Saran

4.1 Kesimpulan

Kesimpulan dari penelitian ini yaitu:

- 1. Pemanfaatan pupuk organik cair (POC) dari limbah buah sebagai larutan nutrisi menunjukkan hasil yang kurang optimal terhadap pertumbuhan bayam merah, disebabkan oleh kandungan unsur hara makro (N, P, K) dalam POC yang relatif rendah.
- 2. Tidak ditemukan perbedaan yang signifikan dalam pertumbuhan bayam merah antara larutan nutrisi yang mengandung campuran POC dan AB Mix dengan larutan nutrisi yang sepenuhnya menggunakan AB Mix.

4.2 Saran

Saran yang diberikan oleh penulis yaitu:

- 1. Kombinasi Nutrisi: Disarankan untuk mengkombinasikan POC limbah buah dengan bahan organik lain yang kaya akan unsur nitrogen (N), mengingat pentingnya unsur nitrogen dalam mendukung pertumbuhan tanaman, terutama pada fase vegetatif.
- 2. Penyaringan POC: Perlu dilakukan penyaringan yang lebih teliti terhadap POC limbah buah guna menghilangkan kotoran atau sisa-sisa seresah buah yang dapat menghambat distribusi air, dan nutrisi ke akar tanaman
- 3. Penggunaan Mikroorganisme: POC limbah buah mengandung mikroorganisme yang dapat memberikan manfaat bagi tanaman. Oleh karena itu, penelitian lebih lanjut diperlukan untuk mengkaji pengaruh mikroorganisme tersebut terhadap pertumbuhan bayam merah pada media tanah, karena mikroorganisme dapat memperbaiki struktur tanah dan meningkatkan ketersediaan nutrisi.
- 4. Hidroponik Substrat : Disarankan untuk menggunakan media tanam cocopeat atau arang sekam, diharapkan dengan menggunakan sistem hidroponik substrat endapan dari POC dapat terserap oleh akar tanaman.

Daftar Pustaka

- Bayuseno, A. (2009). Penerapan dan Pengujian Teknologi Anaerob Digester Untuk Pengolahan Sampah Buah-buahan dari Pasar Tradisional Rotasi. 11 (2).
- Dwiratna, S. N. (2016). Penjadwalan Irigasi Berbasis Neraca Air pada Sistem Pemanenan Air Limpasan Permukaan untuk Pertanian Lahan Kering. *Jurnal Keteknikan Pertanian*. 04 (2).
- Fahmi, A. S. 2010. Pengaruh interaksi hara nitrogen dan fosfor terhadap pertumbuhan tanaman jagung (*Zea mays* L) pada tanah regosol dan latosol. *Berita Biologi*,10(3): 297-304.
- Nur, M. (2019). Analisis Potensi Limbah Buah-buahan Sebagai Pupuk Organik Cair. Seminar Nasional Teknik Industri Universitas Gadjah Mada
- Nurdin, N. (2011). Penggunaan lahan kering di DAS Limboto Provinsi Gorontalo untuk pertanian berkelanjutan. *Jurnal Penelitian dan Pengembangan Pertanian*. 30(3):98-107
- Putra, A. Y. (2017). Sistem Kontrol Otomatis pH Larutan Nutrisi Tanaman Bayam Pada Hidroponik NFT (Nutrient Film Technique). *Jurnal Ilmiah Mikrotek*. 2(4): 11-19.
- Surjana, e. a. (2020). Pengaruh Jarak Tanam Terhadap Pertumbuhan dan Hasil Tanaman Bayam (Ammaranthus tricolor) Secara Hidroponik NFT (*Nutrient Film Technique*). *Jurnal BETA (Biosistem dan Teknik Pertanian*)., 8(1): 62-70.
- Suryani R., 2. H. (2015). *Hidroponik Budi Daya Tanaman Tanpa Tanah Mudah, Bersih dan Menyenangkan*. Cetakan I. Yogyakarta.
- Tealaumbanua. (2019). Pengaruh Berbagai Nutrisi Terhadap Tanaman Bayam Merah (Amaranthus tricholor L.). Universitas HKBP Noumensen. Skripsi.
- Untung. (2001). *Hidroponik Sayuran Sistem NFT. Practical Hydroponic & Greenhouse, Issue 37, 1997.* Jakarta: Penebar Swadaya.
- Yulianto, B. K. 2020. Pengaruh Pengelolaan Air Dan Bahan Organik Terhadap Produktivitas Air Dan Potensi Hasil Padi (*Oryza sativa* L.). *Buana Sains*. 20(2), 111–120.