

Jurnal Agricultural Biosystem Engineering https://jurnal.fp.unila.ac.id/index.php/ABE/index

ISSN 2830-4430

Received: July 20, 2022

Accepted: September 23, 2022

Vol. 1, No. 3, September 15, 2022: 349-360

DOI: http://dx.doi.org/10.23960/jabe.v1i3.6331

Pengaruh Durasi Penekanan dan Ukuran Partikel terhadap Kualitas Pelet Serbuk Gergaji

Effect of Holding Time and Particle Size on the Quality of Sawdust Pellets

Fajar Agustus Simanjuntak¹, Febrian Kusuma Wisnu¹, Mareli Telaumbanua¹, Agus Haryanto¹*

¹ Jurusan Teknik Pertanain, Fakultas Pertanian, Universitas Lampung

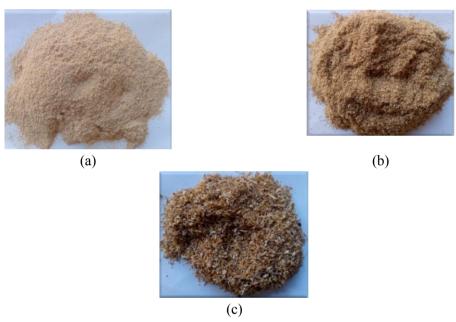
*Corresponding author: agus.haryanto@fp.unila.ac.id

Abstract. This study aims to determine the effect of pressing duration and particle size on the pellet characteristics of sawdust. The study was conducted in a factorial completely randomized design using two factors. The first factor is the duration of the suppression which consists of four levels, namely 60, 120, 180, and 240 seconds. The second factor is particle size which consists of 40 mesh (fine), 30 mesh (medium), 20 mesh (coarse), and mixed. Sawdust is taken from a furniture industry in Bandar Lampung, then dried in the sun to a moisture content of about 12%, then sieved. Pellet molding was carried out with a mass of about 3 grams of material using a hydraulic press with a mold diameter of 12 mm. Sawdust is fed into the mould, then pressed by a hydraulic system at a pressure of 2 tons (172 Mpa). Parameters observed included density, moisture content, water absorption, pellet strength, pellet color, ash content and durability index. Each measurement was carried out with three replications. The results showed that the pressing duration and particle size affected the pellet characteristics. Biomass pellet made from sawdust had characteristics such as density of 0.813-0.856 g/cm³, moisture content of 8.19-12.15 %, maximum water absorption of 7.06-9.32 %, drop resistance of 99.41-99.66 %, and ash content of 1.087-2.082 %.

Keywords: Density, Durability Index, Duration of Compression, Particle Size, Moisture Content.

1. Pendahuluan

Seiring dengan pertumbuhan penduduk, kebutuhan energi terus meningkat dan tidak akan pernah habis. Setiap sektor, mulai dari sektor rumah tangga, pertanian, pertambangan, transportasi dan industri, membutuhkan energi. Pertumbuhan industri yang pesat juga mengakibatkan konsumsi energi yang sangat besar. Selama ini penyediaan energi didominasi oleh sumber energi fosil (minyak, batubara, dan gas alam). Selain tidak bisa diperbarui, sumber energi fosil terus berkurang. Berdasarkan laporan dari British Petroleum, cadangan minyak kita pada akhir tahun 2020 tinggal 2,4 milyard barrel dan diperkirakan hanya bertahan 9 tahun, cadangan batubara 34,87 milyard ton dan bisa digunakan hingga 62 tahun, dan cadangan gas alam 1,3 trilyun m3 yang akan habis dalam 20 tahun lagi (BP, 2021). Selain itu, penggunaan energi fosil menghasilkan emisi CO₂ (salah satu gas rumah kaca penting) yang berpotensi menimbulkan pemanasan global. Oleh karena itu, sumber energi alternatif dari biomassa perlu dikembangkan. Selain renewable, biomassa memiliki keunggulan karena bersifat netral CO₂ karena CO₂ yang dihasilkan selama pembakaran biomassa akan diserap kembali oleh tanaman selama proses fotosintesis (Yokoyama, 2008).

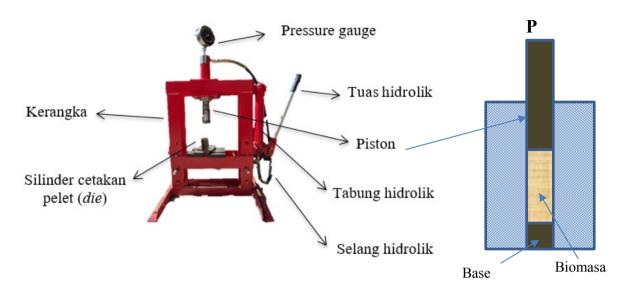

Kayu merupakan salah satu bahan industri multiguna yang ramah lingkungan. Kayu umumnya dipakai sebagai bahan konstruksi, bahan baku industri perkayuan, industri meubel, industri kertas, dan bahan bakar. Industri kayu melibatkan kegiatan penggergajian untuk membelah dan memotong kayu yang akan menghasilkan limbah berupa sebetan, potongan, dan serbuk gergaji. Industri meubel atau furnitur adalah industri yang melibatkan pengolahan bahan baku berupa kayu, rotan atau bahan baku lainnya, yang diolah untuk meningkatkan nilai tambah dan efisiensi yang lebih tinggi. Dengan potensi dan keragaman bahan baku yang sangat besar, Indonesia merupakan salah satu negara penghasil furnitur utama di dunia. Produk furnitur dari Indonesia juga memiliki daya saing yang tinggi di pasar internasional. Penelitian (Sudiryanto & Suharto, 2020) menyebutkan bahwa industri furnitur menghasilkan limbah sebanyak 42% dari kegiatan penggergajian hingga finishing. Limbah itu terdiri dari sebetan tepi, kulit, potongan katu, tatal, limbah pasahan, serbuk gergaji, dan serbuk amplas. Limbah sebetan dan potongan kayu dapat dimanfaatkan sebagai kayu bakar atau dibuat menjadi arang (Kinanti, 2022). Serbuk gergaji yang bercampur dengan limbah pasahan dan serbuk halus biasanya dibuang. Pengelolaan limbah serbuk gergajian telah menjadi perhatian karena penanganan secara konvensional melalui insinerasi menghasilkan polutan berbahaya seperti polychlorinated dibenzo-dioxins dan dibenzo-furans (Maharani et al., 2010). Selain itu, serbuk gergaji merupakan material ligno-selulosik yang sulit terdegradasi secara biologis (Terazawa et al., 1999).

Serbuk gergaji memiliki kerapatan yang sangat rendah, antara 150 – 200 kg/m³ (Tumuluru *et* al., 2011) sehingga menyulitkan dalam proses penanganan (handling), penyimpanan, dan transportasi (Stelte et al., 2012). Serbuk gergaji juga memiliki sifat flowability yang sangat rendah sehingga sulit untuk digunakan sebagai bahan bakar langsung. Oleh karena itu, meskipun dapat dibakar serbuk gergaji jarang dapat digunakan sebagai bahan bakar langsung. Salah satu upaya untuk meningkatkan kemanfaatan serbuk gergaji adalah dengan cara mengkonversinya menjadi pelet kayu (wood pellet) melalui proses densifikasi. Pelet kayu merupakan bahan bakar alternatif dari kayu yang memiliki keunggulan dalam hal keseragaman (Stelte et al., 2012). Pelet kayu menjadi perhatian besar saat ini karena ramah lingkungan dan mudah dalam penggunaannya. Keunggulan pelet kayu dibandingkan bahan bakar kayu lainnya adalah nilai kalorinya yang tinggi. Untuk keperluaan rumah tangga, bahan bakar pelet dapat digunakan pada kompor masak yang didesain khusus (Sylviani & Suryandari, 2013). Karakteristik pelet kayu dipengaruhi oleh banyak faktor, baik yang berasal dari bahan baku maupun proses, seperti kadar air, distribusi dan ukuran partikel bahan, komposisi biomassa, suhu, tekanan, ukuran dan geometri cetakan (Tumuluru et al., 2011; Stelte et al., 2012). Beberapa peneliti juga menyatakan bhwa durasi atau lama penekanan (holding time atau retention time) ketika bahan berada dalam cetakan (die) juga mempengaruhi karakteristik pelet (Bazargan *et al.*, 2014; Dhamodaran & Afzal, 2012; Orisaleye *et al.*, 2018; Tumuluru *et al.*, 2011). Pelitian ini bertujuan untuk mengetahui pengaruh ukuran partikel dan durasi penekanan terhadap karakteristik pelet serbuk gergaji.

2. Metode Penelitian

2.1 Bahan dan Alat

Penelitian ini telah dilaksanakan pada bulan April sampai Juli 2021 di Laboratorium Daya Alat Mesin Pertanian, Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung. Bahan penelitian adalah serbuk gergaji yang diperoleh dari industri mebel Kurnia di Jl. H. Komarudin N0.7, Rajabasa Raya, Kecamatan Rajabasa, Kota Bandar Lampung. Serbuk gergaji dijemur di bawah terik matahari hingga kering lalu diayak menggunakan ayakan untuk mendapatkan partikel halus (40 mesh), sedang (30 mesh), dan kasar (20 mesh) seperti terlihat pada Gambar 1. Tabel 1 menampilkan karakteristik serbuk gergaji yang digunakan dalam penelitian ini.



Gambar 1. Bahan serbuk gergaji (a) halus (40 mesh), (b) sedang (30 mesh), (c) kasar (20 mesh)

Pembuatan pelet kayu dilakukan menggunakan alat pencetak pelet tipe hidrolis (Krisbow Bench Type 10 T) seperti terlihat pada Gambar 2. Cetakan pelet terbuat dari besi pejal yang memiliki lubang catakan tunggal dengan diameter 12 mm, panjang 7 cm dan mampu memuat sekitar 3 g bahan. Pelet dicetak dari bahan 3 gram yang dikompresi pada tekanan 2 ton (setara 93 MPa). Analisis bahan serbuk gergaji meliputi kadar air, kadar abu, massa jenis, total warna, dan daya serap air, dan nilai kalori.

Tabel 1. Karakteristik bahan serbuk gergaji

Karakteristik Bahan	Satuan	Nilai
Massa jenis	g/cm ³	0,066
Kadar air	% (dasar basah)	9,87
Daya serap air	% (dasar kering)	8,01
Kadar abu	% bahan kering	2,3

Gambar 2. Alat press hidrolik dan skema cetakan (die) pelet.

2.2 Parameter dan Pengukuran

Parameter yang diamati untuk pelet kayu yang dihasilkan meliputi kadar air, kadar abu massa jenis, kekuatan banting, kekuatan getar, perubahan warna, dan daya serap air.

2.2.1 Massa Jenis

Massa jenis (ρ) dihitung dari massa (m) dan volume (v) pelet melalui persamaan (1):

$$\rho = \frac{m}{v} \tag{1}$$

Untuk pelet tunggal volume diukur dari dimensi (diameter dan panjang), sedangkan volume pelet ruah diukur dengan memasukkan sejumlah tertentu pelet ke dalam suatu wadah dan mencatat volume yang terisi.

2.2.2 Kadar Air

Kadar air diukur menggunakan oven (Memmert UM 550, Jerman) yang dioperasikan pada suhu 105 °C selama 24 jam. Kadar air (*KA*) dihitung dari masa sampel awal (mB) dan massa bahan kering oven (mK) melalui Persamaan (2):

$$KA = \frac{(\text{mB-mK})}{\text{mB}} \times 100\%$$
 (2)

2.2.3 Kadar Abu

Kadar abu diukur menggunakan tanur (Stuart SF7/D) yang dioperasikan pada suhu 550 °C selama 2 jam. Kadar abu dihitung dari berat abu (BA) dan berat sampel kering oven (BK) melalui Persamaan (3):

$$Kadar \, Abu = \frac{BA}{BK} \times 100 \quad ... \tag{3}$$

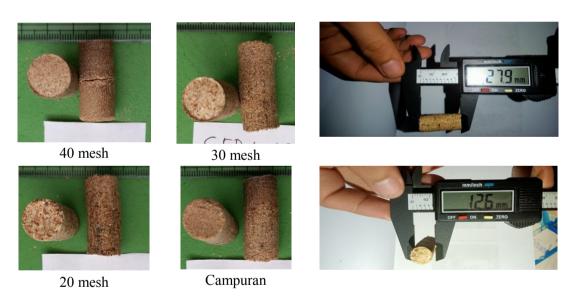
2.2.4 Daya Serap Air

Daya serap air (*DSA*) pelet diukur dengan meletakkan pelet kering oven dalam wadah terbuka dan mengamati perubahan berat yang terjadi setiap hari. Daya serap air dihitung dari Persamaan (4).

$$DSA = \frac{(m_n - m_0)}{m_0} \times 100\% \tag{4}$$

2.2.5 Kakuatan Pelet

Kekuatan pelet diukur dengan menjatuhkan pelet dari ketinggian 1,5 m pada lantai beton atau keramik. Metode yang disebut *single-pellet drop tests* ini telah digunakan oleh Stasiak *et al.* (2017) dengan ketinggian 1,0 m. Kekuatan pelet dihitung dari adalah bobot pelet sebelum dijatuhkan (W_1) dan bobot pelet sesudah dijatuhkan (W_2) melalui Persamaan (5).


$$Kekuatan Pelet = \frac{W_2}{W_1} \times 100 \qquad (5)$$

2.3 Rancangan Percobaan dan Analisis Data

Pengukuran parameter penelitian disusun dalam rancangan acak lengkap dengan dua faktor (4×4), yaitu durasi penekanan (60, 120, 180, dan 240 detik) dan ukuran partikel (halus (40 mesh), sedang (30 mesh), kasar (20 mesh), dan campuran. Setiap kombinasi perlakuan diulang 3 kali. Untuk mengetahui efek signifikan dari perlakuan terhadap parameter yang diamati, data diuji dengan analisis variansi (ANOVA) yang dilanjutkan dengan uji BNT jika perbedaan signifikan.

3. Hasil dan Pembahasan

Serbuk gergaji dapat dibuat menjadi pelet. Gambar 3 memperlihatkan contoh pelet yang dihasilkan dari serbuk gergaji dengan ukuran partikel berbeda. Secara visual pelet memiliki bentuk silinder dengan diameter sekitar 12 mm dan panjang sekitar sekitar 27 mm dan bobot 2,7 – 2,9 gram. Secara visual pelet dari partikel halus memiliki permukaan yang lebih halus.

Gambar 3. Pelet serbuk gergaji industri meubel (terlihat pelet dari serbuk halus (40 mesh) retak)

3.1 Massa Jenis Pelet

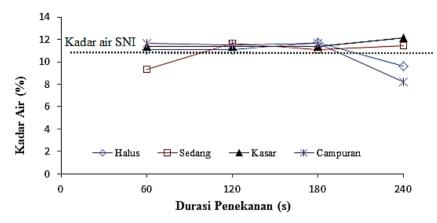
Densifikasi menghasilkan pelet dengan massa jenis yang lebih tinggi dibandingkan massa jenis bahan baku serbuk gergaji. Tabel 2 menampilkan pengaruh perlakuan terhadap massa jenis pelet serbuk gergaji. Massa jenis serbuk gergaji adalah 0,066 g/cm³ (Tabel 1), dan pelet tunggal adalah 0,796-0,896 g/cm³. Hal ini berarti densifikasi telah meningkatkan densitas bahan hingga lebih 10 kali. Uji anova menunjukkan bahwa faktor durasi penekenan dan interaksinya dengan ukuran partikel tidak berpengaruh nyata terhadap massa jenis pada taraf 5%. Hal ini mungkin disebabkan karena durasi penekenan cukup lama (paling singkat adalah 60 detik). Beberapa publikasi menyebutkan kisaran durasi penekanan hingga 30 detik (Dhamodaran & Afzal, 2012; Orisaleye *et*

al., 2018; Styks et al., 2021; Tippayawong et al., 2018), meskipun (Bazargan et al., 2014) dan (Li & Liu, 2000) melakukannya hingga 60 detik dan Wang (2014) hingga durasi hingga 3 menit.

Tabel 2. Pengaruh durasi penekanan dan ukuran partikel terhadap massa jenis pelet dari serbuk gergaji.

Durasi penekanan	UkuranPartikel				
	P1 (Halus)	P2 (Sedang)	P3 (Kasar)	P4 (Campuran)	Rata-rata
D1 (60 detik)	0,896	0,800	0,803	0,860	0,846 a
D2(120detik)	0,826	0,803	0,820	0,853	0,820 a
D3 (180 detik)	0,870	0,843	0,820	0,853	0,845 a
D4 (240 detik)	0,796	0,806	0,816	0,860	0,820 a
Rata-rata	0,847 AB	0,813 C	0,815 BC	0,856 A	

Keterangan: angka yang diikuti huruf yang berbeda menunjukkan perbedaan nyata pada taraf $\alpha = 0.05$. Huruf kecil untuk kolom (durasi penekanan), huruf capital untuk baris (ukuran partikel)


Berdasarkan Tabel 2, faktor ukuran partikel berpengaruh nyata pada taraf $\alpha=5\%$. Meskipun demikian, pengaruh ukuran partikel terlihat tidak konsisten. Sebagai contoh, ukuran partikel halus menghasilkan massa jenis pelet yang secara signifikan lebih tinggi daripada pelet dari serbuk berukuran partikel sedang dan berbeda tidak nyata dengan partikel kasar dan campuran. Tetapi, pelet dari serbuk campuran juga memiliki massa jenis yang secara statistik sama dengan massa jenis pelet halus dan secara nyata lebih besar daripada massa jenis pelet dari serbuk lainnya. Diduga partikel halus memberikan peranan utama dalam menentukan massa jenis karena semakin halus ukuran partikel maka semakin mudah mengisi ruang kosong di antara partikel serbuk gergaji. Hal ini sesuai dengan penelitian (Harun & Afzal, 2016) yang menyatakan bahwa makin kecil ukuran partikel (150-300 μ m) mengakibatkan meningkatnya densitas pelet untuk semua jenis biomassa, yaitu cemara dan pinus (950-1178 kg/m³); rumput-rumputan (668-800 kg/m³); dan biomassa campuran (900-970 kg/m³). Untuk partikel yang lebih besar, (Intagun & Tarawadee, 2016) melaporkan sebaliknya dimana peningkatan ukuran partikel 2 mm hingga 9 mm mengakibatkan penurunan bulk density untuk bahan bagasse dan kulit kayu eucalyptus.

3.2 Kadar Air Pelet

Kadar air merupakan salah satu parameter penentu kualitas pelet, yang mempengaruhi nilai kalor proses pembakaran, sifat mudah terbakar, daya pembakaran dan jumlah asap yang dihasilkan selama pembakaran (Rahman, 2011). Penentuan kadar air bahan baku sangat penting dalam produksi wood pellet agar kadar air berada pada nilai kesetimbangan. Hal ini penting untuk mencegah pelet mengembang karena kelembaban selama penyimpanan dan transportasi. Selain itu, jika kelembaban terlalu tinggi, pelet rentan terhadap serangan mikroba dan jamur (Rudolfsson, 2016). Kadar air yang tinggi juga menghasilkan banyak asap pada saat pembakaran sehingga dapat meningkatkan pencemaran udara (Maulina & Putri, 2017).

Kadar air pelet pada penelitian yang dihasilkan serbuk gergaji berkisar antara 8,19% sampai 12,15% (Gambar 4). Dari hasil uji anova menunjukan bahwa kedua faktor durasi penekanan dan ukuran partikel serta interaksinya tidak mengakibatkan pengaruh signifikan terhadap kadar air pelet kayu pada taraf 5%. Dari data di atas dapat disimpulkan bahwa pembuatan pelet dari serbuk gergaji lebih baik sesuai standard SNI 8675-2018 (BSN, 2018) yang mensyaratkan kadar air maksimum untuk pelet biomassa sebesar 12%. Menurut Grover & Mishra (1996) rata-rata kadar air biomassa untuk proses densifikasi adalah 10 – 15 %. Mani *et al.* (2003) mengamati bahwa kelembaban dalam biomassa selama densifikasi meningkatkan ikatan melalui gaya van der Waal, sehingga meningkatkan area kontak partikel. Mereka juga menemukan bahwa biomassa dengan kadar air

rendah (5-10%) menghasilkan briket yang lebih padat, lebih stabil, dan lebih tahan lama dibandingkan dengan biomassa dengan kadar air yang lebih tinggi (15%). Li & Liu (2000) merekomendasikan kadar air optimum ~8% untuk menghasilkan briket dengan kepadatan tinggi. Kadar air bahan 5-12% juga direkomendasikan untuk menghasilkan pelet berkualitas baik dalam hal kepadatan dan sifat penyimpanan jangka panjang dari kayu keras, kayu lunak, dan kulit kayu.

Gambar 4. Pengaruh durasi penekanan dan ukuran partikel terhadap kadar air pelet serbuk gergaji

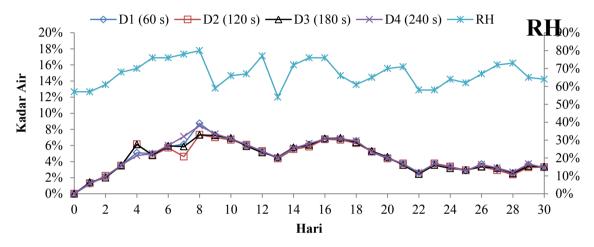
3.3 Kadar Abu

Tabel 3 memperlihatkan pengaruh perlakuan terhadap kadar abu pelet serbuk gergaji. Secara umum kadar abu pelet dari bahan serbuk gergaji berkisar dari 1,023% hingga 2,580%. Hal ini berarti cukup rendah dan berada di bawah pesrsyaratan kadar abu pelet biomassa menurut SNI 8675-2018 (BSN, 2018), yaitu 5%.

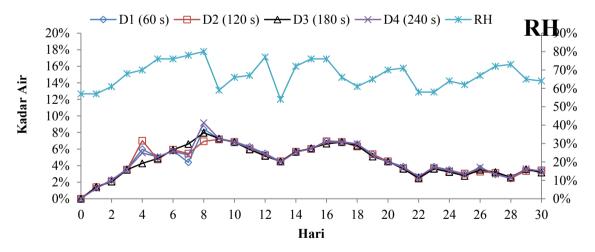
Tabel 3. Pengaruh durasi penekanan dan ukuran partikel terhadap kadar abu pelet serbuk gergaji.

	•	ÛkuranPartikel			
Durasi penekanan	P1 (Halus)	P2 (Sedang)	P3 (Kasar)	P4 (Campuran)	Rata-rata
D1 (60 detik)	1,674	1,534	0,771	1,442	1,163 a
D2 (120 detik)	1,880	1,035	1,280	1,681	1,469 a
D3 (180 detik)	2,193	1,023	1,139	1,274	1,407 a
D4 (240 detik)	2,580	1,158	1,157	1,529	1,606 a
Rata-Rata	2,082 A	1,188 B	1,087 B	1,482 AB	

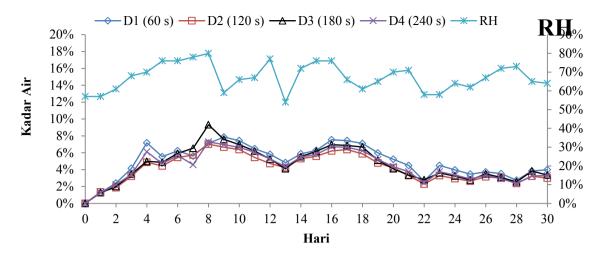
Keterangan: angka yang diikuti huruf yang berbeda menunjukkan perbedaan nyata pada taraf $\alpha = 0.05$. Huruf kecil untuk kolom (durasi penekanan), huruf capital untuk baris (ukuran partikel)

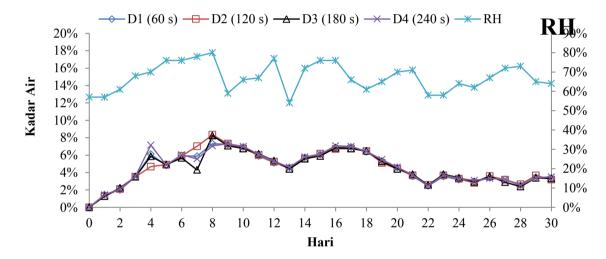

Uji ANOVA menunjukkan bahwa durasi penekanan dan interaksinya dengan ukuran partikel berpengaruh tidak nyata terhadap kadar abu pada taraf α = 0,05. Faktor ukuran partikel berpengaruh nyata terhadap kadar abu, meskipun pengaruhnya tidak konsisten. Sebagai contoh, ukuran partikel halus menghasilkan kadar abu lebih tinggi daripada pelet dari serbuk berukuran partikel sedang dan kasar. Tetapi, pelet dari serbuk campuran memiliki kadar yang secara statistik tidak berbeda dengan kadar abu pelet dari serbuk lainnya. Penelusuran literature sejauh ini belum mendapatkan penjelasan apa yang menyebabkan perbedaan ini.

Kadar abu merupakan karakteristik penting bahan bakar biomassa terkait dengan kesesuaiannya pada aplikasi yang melibatkan suhu tinggi. Adanya abu juga dapat menurunkan efisiensi pembakaran karena abu merupakan komponen yang tidak menghasilkan energi. Haryanto et al. (2019) menunjukkan bahwa kadar abu berkorelasi negatif dengan nilai kalori. Artinya, biomassa yang memiliki kandungan abu tinggi akan memiliki nilai kalori yang rendah. Kadar abu


yang tinggi juga akan menimbulkan deposisi (*slagging*) pada pipa-pipa penukar panas boiler sehingga menurunkan efisiensi sistem boiler (Yao *et al.*, 2017). Selain itu, sebagian komponen abu adalah logam alkali tanah seperti K dan Na yang akan menurunkan titik leleh abu sehingga dapat menimbulkan masalah kerak (*sintering*) yang bisa mengakibatkan kegagalan sistem boiler (Contreras-Trejo *et al.*, 2022).

3.4 Daya Serap Air


Daya serap air merupakan kemampuan bahan untuk menyerap lengas dari udara. Data ini sangat penting untuk penyimpanan pelet. Semakin besar daya serap air pada pelet dapat mempengaruhi kualitas dan ketahanan pelet itu sendiri, biasanya akan mudah terdapat jamur pada pelet kayu sendiri. Gambar 5-8 memperlihatkan daya serap air pelet kering oven selama 30 hari penyimpanan.

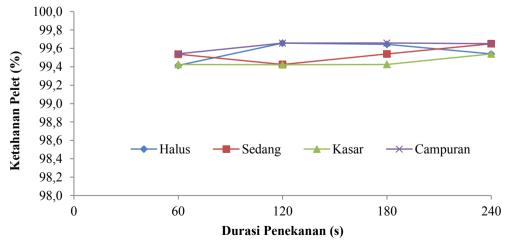

Gambar 5. Penyerapan lengas pelet serbuk gergaji ukuran partikel halus

Gambar 6. Penyerapan lengas pelet serbuk gergaji ukuran partikel sedang

Gambar 7. Daya serap pelet serbuk gergaji yang dicetak dengan durasi penekanan 180 detik

Gambar 8. Daya serap pelet serbuk gergaji yang dicetak dengan durasi penekanan 240 detik

Gambar-gambar tersebut menunjukkan bahwa untuk semua perlakuan pelet menyerap lengas terus-menerus hingga hari ke-8 penyimpanan. Setelah itu bobot pelet secara fluktuatif turun (melepaskan lengas) atau naik (menyerap lengas) menyesuaikan kelembaban udara (RH). Ketika RH naik berarti udara menjadi lembab dan pelet menyerap lengas dari udara. Sebaliknya ketika RH turun yang berarti udara menjadi kering, maka pelet juga akan mengering atau kehilangan lengas. Tabel 4 memperlihatkan pengaruh faktor perlakuan durasi penekanan dan ukuran partikel terhadap daya serap air maksimum yang terjadi pada penyimpanan hari ke-8 atau 9. Hasil uji ANOVA menuniukkan bahwa interaksi antara faktor durasi penekanan dan ukuran partikel berpengaruh nyata terhadap daya serap air maksimum pelet serbuk gergaji. Daya serap air maksimum, yaitu 9,32% terjadi pada pelet dari serbuk berukuran partikel kasar durasi penekanan 180 detik dan 9,17% terjadi pada pelet dari serbuk gergaji ukuran partikel campuran dengan durasi penekanan 120 detik. Hal ini sesuai dengan (Handayani, 2010) yang menyatakan daya serap yang tinggi dari suatu benda disebabkan oleh besarnya kandungan pori. Pelet yang dibuat dari partikel kasar atau yang mengandung partikel kasar akan memiliki pori yang lebih tinggi sehingga dapat menyerap lengas lebih tinggi. Pelet dari serbuk gergaji ukuran partikel halus dan durasi penekanan 180 dan 240 detik memiliki daya serap air yang lebih rendah, yaitu 7,85% dan 7,43%. Hal ini mengindikasikan bahwa pelet ini lebih padat sehingga menyerap lengas lebih rendah.


Tabel 4. Pengaruh durasi penekanan dan ukuran partikel terhadap daya serap air maksimum pelet serbuk gergaji

Durasi penekanan	Ukuran Partikel			
	P1 (Halus)	P2 (Sedang)	P3 (Kasar)	P4 (Campuran)
D1 (60 detik)	8,76 b	7,78 cd	7,43 d	8,48 c
D2 (120 detik)	8,70 b	7,23 de	7,96 c	9,17 ab
D3 (180 detik)	7,85 cd	7,06 e	9,32 a	7,73 cd
D4 (240 detik)	7,43 d	8,34 c	8,53 bc	7,37 d

Keterangan: angka yang diikuti huruf yang berbeda menunjukkan perbedaan nyata pada taraf $\alpha = 0.05$. Huruf kecil untuk kolom (durasi penekanan), huruf capital untuk baris (ukuran partikel)

3.2.4 Kekuatan Pelet

Kekuatan pelet merupakan parameter dalam kaitannya dengan transportasi dan handling pelet. Gambar 9 menunjukkan kekuatan pelet (dalam %) setelah dijatuh dari ketinggian 1,5 meter. Pelet memiliki ketahanan jatuh yang tinggi (99,41-99,66%) dimana setelah dijatuhkan hanya sebagian kecil dari pelet yang terkikis (kurang dari 1%). Artinya, pelet masih utuh dengan porsi >99% dari bobot awal. Hasil uji ANOVA menunjukkan bahwa kedua faktor durasi penekanan dan ukuran partikel serta interaksinya tidak mengakibatkan pengaruh yang nyata pada ketahanan pelet melalui uji jatuh. Durasi penekanan tampaknya tidak mempengaruhi kekuatan pelet. Hal ini sesuai dengan temuan penelitian sebelumnya (Li & Liu, 2000) yang menyimpulkan bahwa durasi penekanan memiliki pengaruh yang signifikan hanya pada tekanan pemadatan yang lebih rendah. Peningkatan durasi penekanan pada tekanan kompresi 80 MPa tampaknya tidak memadatkan sampel lebih jauh dan karenanya tidak mempengaruhi kekuatan pelet secara signifikan. Stasiak et al. (2017) melaporkan bahwa ketahanan uji jatuh pelet dari campuran serbuk gergaji dan jerami gandum dipengaruhi oleh kadar air dan tekanan kompresi. Pada tekanan kompresi 60 MPa dan kadar air bahan 8%, ketahanan pelet bisa mencapai 66,2% hingga 96,3% dan sedikit naik ketika kadar air bahan 20% dimana ketahanan pelet menjadi 78,1% hingga 98,0%. Ketahanan pelet naik pada tekanan kompresi 120 MPa, menjadi 85,9% hingga 100% pada kadar air 8% dan antara 94,2% hingga 98,4% pada kadar air 20%. Sebagaimana terlihat pada Gambar 3, pelet dari serbuk halus mudah retak atau patah menjadi 2 bagian.

Gambar 4. Pengaruh durasi penekanan dan ukuran partikel terhadap ketahanan jatuh pelet dari serbuk gergaji

4. Kesimpulan

Berdasaran penelitian ini, dapat disimpulkan hal-hal sebagai berikut:

- 1. Dengan tekanan kompresi 2 ton (93 MPa), serbuk gergaji dapat dibuat menjadi pelet dengan karakteristik kadar air 8,19-12,15 %, massa jenis 0,813-0,856 g/cm³, kadar abu 1,087-2,082 %, daya serap air maksimum 7,06-9,32 %, dan ketahanan jatuh 99,41-99,66%.
- 2. Faktor durasi penekanan pada taraf ($\alpha = 5\%$) tidak berpengaruh nyata terhadap semua parameter pengamatan pelet serbuk gergaji (kadar air, kadar abu, massa jenis, daya serap air, dan ketahanan jatuh).
- 3. Faktor ukuran partikel pada taraf (α <5%) berpengaruh nyata terhadap massa jenis, dan kadar abu, namun tidak berpengaruh nyata terhadap kadar air, daya serap air, dan kekuatan pelet.

Daftar Pustaka

- Bazargan, A., Rough, S.L., & McKay, G. 2014. Compaction of palm kernel shell biochars for application as solid fuel. *Biomass and Bioenergy*, 70: 489–497.
- BP (British Petroleum). 2021. BP Statistical Review of World Energy. Tersedia di http://www.bp.com/statisticalreview.
- BSN (Badan Standardisasi Nasional). 2018. SNI 8675-2018: Pelet Biomassa Untuk Energi. Badan Standardisasi Nasional.
- Contreras-Trejo, J.C., Vega-Nieva, D.J., Heya, M.N., Prieto-Ruíz, J.A., Nava-Berúmen, C.A., & Carrillo-Parra, A. 2022. Sintering and fusibility risks of pellet ash from different sources at different combustion temperatures. *Energies*, *15*(14): 5026.
- Dhamodaran, A., & Afzal, M.T. 2012. Compression and springback properties of hardwood and softwood pellets. *BioResources*, 7(3): 4362–4376.
- Grover, P.D., & Mishra, S.K. 1996. *Biomass Briquetting: Technology and Practices*. Regional Wood Energy Development Programme in Asia, Food and Agriculture Organization.
- Handayani, S. 2010. Kualitas batu bata merah dengan penambahan serbuk gergaji. *Jurnal Teknik Sipil & Perencanaan*, 12(1): 41–50.
- Harun, N.Y., & Afzal, M.T. 2016. Effect of particle size on mechanical properties of pellets made from biomass blends. *Procedia Engineering*, *148*: 93–99.
- Haryanto, A., Suharyatun, S., Rahmawati, W., & Triyono, S. 2019. Energi terbarukan dari jerami padi: Review potensi dan tantangan bagi Indonesia. *Jurnal Keteknikan Pertanian*, 7(2): 137–144.
- Intagun, W., & Tarawadee, N. 2016. The effect of particle size on the bulk density and durability of pellets: Bagasse and eucalyptus bark. *Research & Knowledge*, 2(1): 74–79.
- Kaliyan, N., & Morey, R.V. 2009. Factors affecting strength and durability of densified biomass products. *Biomass and Bioenergy*, *33*(3): 337–359.
- Kinanti, S. 2022. Kajian Industri Arang Dari Kayu Akasia (*Acacia mangium*) di Kecamatan Bumi Nabung, Kabupaten Lampung Tengah. [*Skripsi*]. Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung.
- Li, Y., & Liu, H. 2000. High-pressure densification of wood residues to form an upgraded fuel. *Biomass and Bioenergy*, *19*(3): 177–186.
- Maharani, R., Yutaka, T., Yajima, T., & Minoru, T. 2010. Scrutiny on physical properties of sawdust from tropical commercial wood species: Effects of different mills and sawdust's particle size. *Journal of Forestry Research*, 7(1): 20–32.
- Mani, S., Tabil, L. G., & Sokhansanj, S. 2003. An overview of compaction of biomass grinds. *Powder Handling and Processing*, *15*(3): 160–168.
- Maulina, S., & Putri, F.S. 2017. Pengaruh suhu, waktu, dan kadar air bahan baku terhadap pirolisis serbuk pelepah kelapa sawit. *Jurnal Teknik Kimia USU*, *6*(2): 35–40.

- Orisaleye, J.I., Jekayinfa, S.O., Adebayo, A.O., Ahmed, N.A., & Pecenka, R. 2018. Effect of densification variables on density of corn cob briquettes produced using a uniaxial compaction biomass briquetting press. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, 40(24): 3019–3028.
- Rahman, R. 2011. Uji Keragaan Biopelet Dari Biomassa Limbah Sekam Padi (*Oryza sativa* Sp.) Sebagai Bahan Bakar Alternatife Terbarukan. [*Skripsi*]. Institut Pertanian Bogor.
- Rudolfsson, M. 2016. Characterization and Densification of Carbonized Lignocellulosic Biomass. [*Doctoral Thesis*]. Swedish University of Agricultural Sciences.
- Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafiniuk, P., & Gondek, E. 2017. Mechanical and combustion properties of sawdust Straw pellets blended in different proportions. *Fuel Processing Technology*, *156*: 366–375.
- Stelte, W., Sanadi, A.R., Shang, L., Holm, J.K., Ahrenfeldt, J., & Henriksen, U.B. 2012. Recent Developments in Biomass Pelletization A Review. *BioResources*, 7(3): 4451-4490
- Styks, J., Knapczyk, A., & Łapczyńska-Kordon, B. 2021. Effect of compaction pressure and moisture content on post-agglomeration elastic springback of pellets. *Materials*, *14*(4): 879.
- Sudiryanto, G., & Suharto, S. 2020. Analisa jenis limbah kayu di Jepara. *Jurnal DISPROTEK*, 11(1): 47–53.
- Sylviani, S., & Suryandari, E.Y. 2013. Potensi pengembangan industri pelet kayu sebagai bahan bakar terbarukan—Studi kasus di Kabupaten Wonosobo. *Jurnal Penelitian Sosial dan Ekonomi Kehutanan*, 10(4): 235–246.
- Terazawa, M., Horisawa, S., Tamai, Y., & Yamashita, K. 1999. Biodegradation of nonlignocellulosic substances I: System for complete decomposition of garbage using sawdust and aerobic soil bacteria. *Journal of Wood Science*, 45(4): 354–358.
- Tippayawong, N., Jaipa, C., & Kwanseng, K. 2018. Biomass pellets from densification of tree leaf waste with algae. *Agricultural Engineering International: CIGR Journal*, 20(4): 119–125.
- Tumuluru, J.S., Wright, C.T., Hess, J.R., & Kenney, K.L. 2011. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. *Biofuels, Bioproducts and Biorefining*, *5*(6): 683–707.
- Wang, T. 2014. Compaction behavior, mechanical properties, and moisture resistance of torrefied and non-torrefied biomass pellets. [*Graduate Thesis*]. West Virginia University.
- Yao, X., Xu, K., Yan, F., & Liang, Y. 2017. The influence of ashing temperature on ash fouling and slagging characteristics during combustion of biomass fuels. *BioResources*, *12*(1): 1593–1610.
- Yokoyama, S. 2008. Buku Panduan Biomassa Asia. The University of Tokyo.