Jurnal Agrotek Tropika, November 2022, Vol 10, No. 4, pp. 501 - 508

DOI: http://dx.doi.org/10.23960/jat.v10i4.5560 ISSN: 2337-4993 (Print), 2620-3138 (Online)

INVENTARISASI SERANGAN HAMA DAN PENYAKIT PADA TERUBUSAN POHON JATI UNGGUL NUSANTARA

INVENTORY OF PEST AND DISEASE ATTACKS ON JATI UNGGUL NUSANTARA COPPICES

Karmanah, Fathan Hadyan Rizki*, dan Sunardi Fakultas Pertanian, Universitas Nusa Bangsa, Bogor, Indonesia *Email: fathan.hadriz@gmail.com

* Corresponding Author, Diterima: 20 Jan. 2022, Direvisi: 21 Apr. 2022, Disetujui: 5 Sept. 2022

ABSTRACT

Jati Unggul Nusantara (JUN) (Tectona grandis L.f.) is in great demand because it has a short harvest period. Behind these advantages, JUN has less stable wood properties. This condition can be exacerbated by attacks of pests and diseases originating from pre-existing vegetation. Residual vegetation in a crop can be a link for the life cycle of pests and plant diseases. In the experimental garden of the University of Nusa Bangsa (UNB) there is a stump of JUN which is allowed to grow into new stands (coppices). The purpose of this study was to take an inventory of pests and diseases on JUN leaves by observing the symptoms of leaf damage. This research was conducted in April – July 2021 at the Experimental Garden of the University of Nusa Bangsa, Cogreg Village, Bogor Regency. Tree samples were determined using transect method. Observation of leaf samples was carried out by picking and then observing the type and area of symptom cover. The area of the damaged leaf cover was observed with the help of a 20 x 20 cm cellular transparent plastic. The results showed that 666 (86%) leaves were symptomatic of pests and/or diseases. Some of the damage is caused by disease rather than pests. Disease attacks include blight, shot-hole, rust, powdery mildew, rust, and chlorosis. The symptoms of pest attack found were defoliation, leaf-miner, skeletonize, and indentation. Symptoms of blight, shot-hole, and defoliation are the most common symptoms. Meanwhile, the highest severity values were obtained for the symptoms of powdery mildew, blight, and leaf rust.

Keywords: Cogreg, coppicing shoot, damage coverage, JUN, shoot

ABSTRAK

Jati Unggul Nusantara (JUN) (Tectona grandis L.f.) banyak diminati karena memiliki masa panen yang singkat. Dibalik keunggulan itu JUN memiliki sifat kayu yang kurang stabil. Kondisi tersebut dapat diperparah oleh serangan hama dan penyakit yang bersumber dari vegetasi yang telah ada sebelumnya. Sisa vegetasi di suatu pertanaman dapat menjadi penghubung bagi siklus kehidupan hama dan penyakit. Di kebun percobaan Universitas Nusa Bangsa (UNB) terdapat tunggul JUN yang dibiarkan tumbuh menjadi tegakan baru (terubusan). Tujuan dari penelitian ini adalah menginventarisasi hama dan penyakit pada daun terubusan JUN melalui pengamatan gejala kerusakan daun. Penelitian ini dilakukan pada bulan April – Juli 2021 di Kebun Percobaan UNB, Desa Cogreg, Kabupaten Bogor. Sampel pohon ditentukan dengan metode transek sepanjang 160 m. Pengamatan sampel daun dilakukan dengan cara dipetik kemudian diamati jenis dan luas tutupan gejalanya. Luas tutupan kerusakan pada daun tersebut diamati dengan bantuan bidang ukur berbahan mika plastik berukuran 20 x 20 cm. Hasil penelitian menujukkan 666 (86%) helai daun bergejala serangan hama dan/atau penyakit. Sebagian besar kerusakan ditimbulkan oleh penyakit daripada hama. Serangan penyakit yang ditemukan antara lain hawar, shot-hole, karat, embun tepung, karat, dan klorosis. Adapaun gejela serangan hama yang ditemukan yaitu defoliasi, leaf-miner, skeletonize, dan lekukan. Gejala hawar, shot-hole, dan defoliasi merupakan gejala yang paling sering ditemukan. Sementara itu, nilai keparahan tertinggi didapatkan pada gejala embun tepung, hawar, dan karat daun.

Kata kunci: Cogreg, JUN, terubusan, transek, tutupan kerusakan

1. PENDAHULUAN

Jati Unggul Nusantara (JUN) (Tectona grandis L.f) merupakan salah satu klon jati unggul yang diminati karena memiliki daur hidup yang relatif pendek dan dapat dipanen dalam waktu singkat. Meski demikian, ternyata kualitas kayu dari klon jati unggul memiliki beberapa kekurangan. Wahyudi et al. (2014) mengemukakan bahwa sifat dasar kayu dari klon jati unggul muda yang berumur 4-5 tahun memiliki sifat kayu yang kurang stabil, kurang awet, dan kurang kuat. Faktor kekurangan tersebut dapat diperparah apabila terdapat serangan hama dan penyakit. Oleh sebab itu, untuk menjaga kuantitas dan kualitas hasil panen pada batas kewajaran, salah satu tindakan praktis yang dapat dilakukan adalah mengendalikan serangan hama dan penyakit. Serangan hama dan penyakit dapat menjadi faktor pembatas pertumbuhan dan produksi suatu tanaman. Serangga, tungau, vertebrata dan moluska dapat menimbulkan gangguan tanaman secara fisik. Sementara itu penyakit yang disebabkan oleh cendawan, bakteri, fitoplasma, virus, viroid, dan nematoda dapat menimbulkan gangguan fisiologis pada tanaman (Wiyono, 2007).

Beberapa penelitian hama dan penyakit pada JUN telah dilakukan. Hasil penelitian Pratiwi et al. (2017), bahwa jenis hama yang ditemukan pada tegakan tanaman JUN di Kebun Percobaan Cogreg yaitu berbagai jenis belalang (Ordo Orthoptera), ulat daun jati (Hyblaea puera), rayap pohon, rayap batang, rayap tanah, kutu putih (Pseudococcus), dan hama kumbang bubuk basah (Xyleborus destruens). Adapun jenis penyakit yang ditemukan adalah hawar daun (Blight), busuk batang dan luka terbuka yang disebabkan oleh jamur (Phytophteras sp). Penelitian Napitu et al. (2018) melaporkan kondisi yang hampir serupa namun hanya terbatas pada kelompok hama. Hasil penelitian menunjukkan bahwa hama yang ditemukan pada tanaman JUN merupakan kelompok belalang, di antaranya Calliptamus sp., Valanga nigricornis, Patangga siccinata, Acrida turita, Phaneroptera sp, Sexava coriacea, Gasirimargus flacensis, dan Trilopidia sp. Selain belalang, ditemukan juga kelompok ulat yaitu ulat jati (H. puera) dan ulat bulu (Dasycyra inclusa). Sisanya ditemukan kelompok kumbang penggerek, rayap, kumbang daun, kutu putih, kepik dan wereng pohon. Kerusakan yang diakibatkan oleh hama teresebut dinilai sebagai kerusakan ringan.

Salah satu lokasi penanaman JUN adalah

Kebun Percobaan Cogreg Universitas Nusa Bangsa. Pada Lokasi tersebut JUN ditanam dalam skala luas dengan pola penanaman secara monokultur. Pola penanaman tersebut lebih rentan mengakibatkan ketidakseimbangan ekosistem yang pada akhirnya menimbulkan serangan hama dan penyakit (Segoli & Rosenheim, 2012). Pratiwi et al. (2017) melaporkan bahwa pada kebun percobaan tersebut ditemukan berbagai hama dan penyakit yang menyerang tanaman JUN. Serangan hama dan penyakit akan berdampak pada produktivitas dan kualitas standing stock yang ada diantaranya adalah menurunkan rata-rata pertumbuhan, kualitas kayu, dan dampak yang besar akan mempengaruhi kuantitas hasil dari produktivitas tanaman. Jika hama dan penyakit tidak dikendalikan siklus hidup hama dan penyakit akan tetap berlangsung sehingga memungkinkan adanya serangan yang lebih besar dikemudian hari.

Saat ini tegakan utama tanaman JUN di kebun percobaan tersebut telah dipanen. Tunggulnya dipelihara sehingga tumbuh terubusan JUN. Terubusan merupakan keseluruhan bagian tegakan baru yang tumbuh dari tunggul bekas panen. Napitu et al. (2018) menyebutkan bahwa pada terubusan JUN ditemukan beberapa serangga hama. Hal ini berarti terubusan tersebut berpotensi menjadi habitat maupun inang berbagai hama dan penyakit. Informasi serangan hama dan penyakit pada terubusan JUN belum banyak ditemukan sehingga perlu dilakukan inventarisasi hama dan penyakitnya. Salah satu permasalahan yang ditemukan dalam pengamatan hama dan penyakit tanaman tegakan adalah sulitnya menemukan hama yang sedang menyerang secara langsung. Serangga hama yang tercatat pada penelitian sebelumnya seringkali bersifat generalis sehingga diragukan interaksinya terhadap tanaman jati. Inventarisasi melalui pengamatan gejala kerusakan pada daun yang telah dipetik diharapkan dapat memberikan gambaran serangan yang lebih representatif.

Tujuan dari kegiatan ini adalah menginventarisasi hama dan penyakit terubusan JUN melalui pengamatan gejala kerusakan morfologis pada daun tanaman JUN.

2. BAHAN DAN METODE

2.1 Waktu dan Tempat

Penelitian dilakukan pada bulan April – Juli 2021. Pengambilan sampel daun dan pengamatan batang dilakukan di Kebun Percobaan Universitas

Nusa Bangsa, Desa Cogreg, Bogor. Pengamatan gejala kerusakan daun dilakukan di Laboratorium Biologi Universitas Nusa Bangsa.

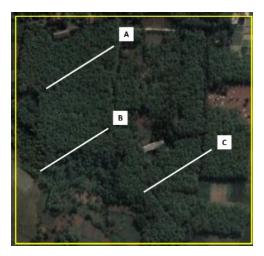
2.2 Penentuan Titik Pengamatan

Luas kebun percobaan yang menjadi lokasi penelitian mencapai kurang-lebih 7 hektar. Area pengamatan dibagi ke dalam tiga blok pengamatan. Pada masing-masing blok pengamatan tersebut dibuat transek pengamatan diagonal sepanjang 160 m (Gambar 1). Di sepanjang transek tersebut dipilih delapan tegakan setiap interval 20 m mengikuti bentangan transek. Pohon pada titik ke 20, 40, 60, 80, 100, 120, 140 dan 160 m dipilih sebagai sampel. Setiap tegakan tersebut diambil 3 cabang yang mewakili arah timur, barat, dan utara pada ketinggian 7-10 m. Daun yang didapatkan dari cabang tersebut dihitung jumlahnya dan diamati gejala-gejala kerusakannya. Adapun kriteria daun yang dapat diamati adalah daun yang memiliki lebar daun minimal 20 cm.

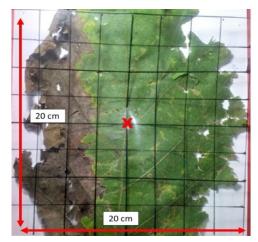
2.3 Prosedur Pengamatan

Pengamatan yang dilakukan pada penelitian ini terbatas pada pengamatan gejala kerusakan morfologis tanpa pemeriksaan terhadap jaringan dan tanda penyakit. Secara teknis, pengamatan gejala kerusakan dilakukan dengan mendeskripsikan gejala dan menghitung luas tutupan gejala keruaskan. Luas tutupan gejala kerusakan dihitung berdasarkan bidang ukur buatan berbahan mika plastik transparan berukuran 20 x 20 cm yang diletakkan di tengah-tengah daun (Gambar 2). Dalam bidang ukur itu terdapat 64 buah persegi berukuran 2,5 cm x 2,5 cm sebagai unit terkecil untuk menentukan luasan sebuah gejala. Hasil pengukuran luas gejala tersebut dikonversikan kedalam skala keparahan yang telah dimodifikasi berdasarkan Cristiane-Delmadi et al. (2018) menyesuaikan dengan hasil pengamatan awal seperti pada Tabel 1.

Tabel 1. Skala Keparahan Gejala. Modifikasi Cristiane-Delmadi *et al.* (2018)


Skala	Tutupan Gejala	Kategori
0	0%	Sehat
1	1-25%	Rendah
2	26-50%	Sedang
3	51-75%	Parah
4	76-100%	Sangat parah

2.4 Analisis Data


Data yang didapatkan dimasukkan ke dalam database dalam program Microsoft Excell 2016. Dengan data tersebut dilakukan perhitungan nilai kejadian dan keparahan kerusakan. Dalam penelitian ini nilai kerusakan yang disebabkan oleh hama maupun penyakit dihitung menggunakan rumus yang mengadaptasi rumus *Diseases Incidence* dan *Diseases Severity* yang dikenal sebagai rumus *Townsend-Heuberger*:

$$DI = n/N \times 100\%$$
 (1)

Keterangan: DI: *Diseases Incidence*, n: jumlah daun/batang terserang gejala a, N: jumlah daun/batang.

Gambar 1. Transek Pada Area Pengamatan

Gambar 2. Bidang Ukur Buatan Ukuran Berbahan Plastik Mika Bening. Tanda X Menunjukkan Acuan Peletakan Bagian Tengah Daun

$$DS = \sum (n \times v) / Z \times N \times 100\%$$
 (2)

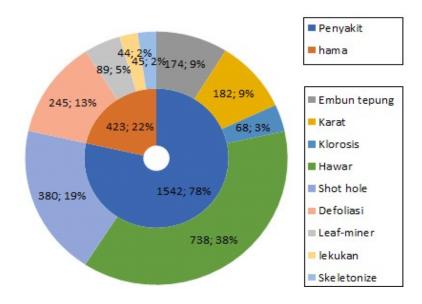
Keterangan: DS: *Diseases Severity*, n: jumlah daun dari tiap skala keparahan gejala, v: nilai skala keparahan, Z: nilai skala kategori tertinggi, N: jumlah daun yang diamati

3. HASIL DAN PEMBAHASAN

3.1 Gejala Kerusakan Daun

Pengamatan dilakukan pada 775 helai daun yang berasal dari 24 tegakan dalam 3 transek pengamatan (Tabel 2). Pengamatan tersebut menunjukkan bahwa hanya 109 daun (14%) yang kondisinya sehat sedangkan 666 daun (86%) memiliki gejala kerusakan.

Daun bergejala tersebut dikategorikan dalam dua kelompok, yaitu gejala khas penyakit dan gejala khas hama. Lima gejala yang termasuk dalam kelompok gejala khas penyakit berupa hawar, embun tepung, karat, *shot-hole*, dan klorosis. Selain itu ditemukan juga empat gejala kerusakan khas hama berupa gejala defoliasi, *leaf-miner*, skeletonize, dan lekukan.


Jumlah kemunculan gejala khas penyakit lebih tinggi (1542; 78 %) dibandingkan dengan gejala khas hama (423; 22%) (Gambar 3). Secara umum gejala yang paling sering ditemukan adalah hawar (38%), shot-hole (19%), dan defoliasi (13%). Selebihnya hanya ditemukan dengan frekuensi yang

lebih rendah dari 13%. Yang terendah adalah gejala lekukan dan skeletonize (2%).

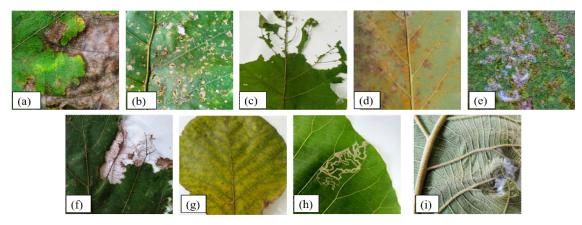
Hawar adalah gejala kerusakan berupa sel dan jaringan mati yang bersifat meluas. Secara fisik pada daun yang mengalami hawar terbentuk area kering atau kecoklatan di permukaan daun (Gambar 4a). Hawar pada daun jati dapat disebabkan oleh beberapa jenis cendawan. Kiran et al. (2021) menyebutkan bahwa daun jati dapat terserang oleh cendawan penyebab hawar yaitu Curvularia sp. Serangan tersebut umumnya terjadi pada saat persemaian bibit. Amadi & Saka (2019) menambahkan percobaan inokulasi Curvularia sp. di laboratorium memperlihatkan kemunculan daerah kecoklatan (lesio) pada permukaan daun sehat yang di uji. Pada titik inokulasi muncul massa cendawan berwarna putih. Mohananan et al. (2005) menambahkan bahwa cendawan patogen jenis Phoma glomerata, P. eupyrena Colletotrichum gleosporoides mengakibatkan hawar daun jati dengan tingkat keparahan sekitar 20 - 50%. Dalam tinjauan histologis, pada ruang antar sel daun yang terjangkit hawar umumnya dipenuhi organ vegetatif ataupun reproduktif

Tabel 2. Jumlah Daun Sehat dan Bergejala

Daun	Transek		Total	(%)	
Dauli	A	В	С	Total	(70)
Bergejala	241	191	234	666	86
Sehat	71	30	8	109	14
Total	312	221	242	775	100

Gambar 3. Temuan Gejala Kerusakan Daun

cendawan patogen sehingga menggangu proses fisiologi lokal (Kadiri et al., 2019). Penelitian lain melaporkan bahwa daun jati dapat terserang oleh penyakit bercak yang disebabkan bakteri Xanthomonas fuscans dengan (Borges et al., 2019). Gejala penyakit bercak cenderung mirip dengan gejala hawar, yaitu kematian jaringan (nekrosis) namun dengan luasan yang lebih sempit dan terbatas. Untuk memastikan sebuah gejala kerusakan termasuk hawar atau bercak, perlu dilakukan pengamatan tanda penyakit maupun pengamatan jaringan.


Shot-hole adalah gejala kerusakan berupa lubang pada daun (Gambar 4b). Gejala tersebut dapat diawali oleh infeksi penyakit atau aktivitas makan serangga hama. Dalam hal ini gejala shothole yang ditemukan dalam penelitian ini diduga merupakan akibat dari seri perkembangan gejala hawar atau bercak daun yang telah kering dan akhirnya berlubang saat mengalami kontak dengan air hujan atau gesekan antar daun. Informasi mengenai gejala shot-hole pada daun jati belum banyak ditemukan. Ivanova et al. (2012) melaporkan bahwa gejala shot-hole ditemukan pada daun tanaman persik. Pada tanaman tersebut gejala shot-hole disebabkan oleh cendawan Stigmina carpophila. Pada penelitian tersebut, serangan yang serius dapat menyebabkan kerontokan daun yang akan berujung pada penurunan produktivitas buah.

Sementara itu, gejala defoliasi dalam penelitian ini mengarah pada kondisi habisnya jaringan daun yang diakibatkan oleh aktivitas makan serangga dari bagian tepi hingga tengah daun (Gambar 4c). Gejala ini umum disebabkan oleh ulat pemakan daun jati *Hyblea puera* yang dikenal dengan istilah *teak*

defoliator. Jenis ulat tersebut diketahui mengalami outbreak musiman yang terjadi sekitar akhir bulan Juni sampai dengan awal November (Sharma et al., 2013). Pada periode tersebut dapat dihasilkan 7 generasi dengan siklus hidup berkiasar 24-26 hari untuk setiap generasinya. Pengamatan yang dilakukan pada penelitian ini berakhir pada Bulan Mei sehingga tidak menemukan kejadian outbreak ulat tersebut. Meski demikian gejala defoliasi dapat juga disebabkan oleh jenis serangga lainnya. Roychoudhury et al. (2003) melaporkan bahwa terdapat lebih dari 100 jenis serangga yang dapat mengakibatkan defoliasi pada daun jati, terutama dari Ordo Lepidoptera, Coleoptera, dan Orthoptera.

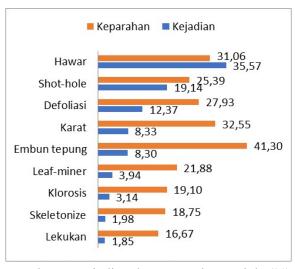
Di samping itu, jenis ulat tertentu dapat menyerang daun jati secara ekstrim sehingga hanya menyisakan urat-urat daun dan juga pertulangannya. Gejala tersebut dikenal sebagai skeletonize atau window paning (Gambar 4f). Gejala ini umumnya disebabkan oleh ulat pemakan daun jati Eutectona machaeralis (teak skeletonizer). Roychoudhury & Joshi (1997) mengemukakan bahwa instar tahap pertama dan kedua ulat tersebut memakan bagian atas jaringan epidermis. Pada instar selanjutnya, ulat memakan jaringan di antara venasi. E. machaeralis dilaporkan mengalami peningkatan populasi di sekitar bulan Juli hingga Agustus (Chauan et al., 2013).

Selain itu, pada daun jati ditemukan juga gejala serangan *leaf-miner* dan lekukan (Gambar 4h dan 4i). Umumnya gejala kerusakan tersebut disebabkan oleh serangga pengorok daun yang memakan jaringan bagian atas (jaringan palisade). Sebagai akibatnya pada permukaan atas daun jati terbentuk jalur-jalur tipis bekas aktivitas makan. Serangga penyebab *leaf-miner* dapat berasal dari

Gambar 4. Gejala Kerusakan Daun (A) Hawar, (B) Shot-Hole, (C) Defoliasi, (D) Karat, (E) Embun Tepung, (F) Skeletonize, (G) Klorosis, (H) Leaf-Miner, (I) Lekukan

beberapa ordo serangga. Liu et al. (2015) melaporkan bahwa terdapat 50 famili serangga serangga dari ordo Diptera, Lepidoptera, Coleoptera, dan Hymenoptera. Masing-masing jenis serangga mengakibatkan pola bekas jalur leaf-mine yang berbeda (linear, blotch dan linear-blotch). Dalam beberapa kasus tertentu, misalnya serangan Platypria melli (Chrysomelidae) pada tanaman Hovenia acerba Lindl (Rhamnaceae) sangat berdampak pada kemampuan fotosintesis daun tanaman tersebut (Liao et al., 2014). Jenis serangga pengorok daun tanaman jati belum banyak dilaporkan.

Gejala kerusakan lainnya yang jarang ditemukan dalam penelitian ini yaitu lekukan atau lipatan. Gejala ini bukan berupa bekas aktivitas makan, namun berupa tempat peletakan telur atau sarang bagi serangga hama atau arthropoda tertentu. Titik yang dijadikan sarang tersebut sering melekuk, melipat, atau menggulung. Kudo (2003) menyebutkan bahwa beberapa jenis serangga dalam suku Tenthredinidae memanfaatkan permukaan daun sebagai sarang mengakibatkan adalanya lipatan atau lekukan. Selain diakibatkan oleh serangga, Zanatta et al. (2022) menyebutkan bahwa laba-laba dalam suku Anyphaenidae membuat sarang untuk telurnya dengan cara melipat daun tanaman hutan. Dalam penelitian ini, tidak diketahui pasti penyebab lekukan atau lipatan tersebut.


Dua jenis kerusakan berkutnya memiliki gejala yang khas yaitu karat dan embun tepung. Gejala kerusakan jenis karat dan embun tepung dapat dikenali dengan keberadaan massa cendawan di permukan atas ataupun bawah daun (Gambar 4d dan 4e). Gejala karat memiliki massa cendawan berwarna oranye sedangkan pada embun tepung berwarna putih dan sering berwujud seperti tepung. pada titik-titik massa cendawan tersebut biasanya jaringan daun mengalami nekrosis. Cabral et al. (2010) melaporkan bahwa karat daun jati disebabkan oleh cendawan Olivea tectonae. Jenis cendawan tersebut telah menyebar di wilayah Asia Tenggara termasuk Indonesia. Diketahui juga bahwa O. tectonae melakukan penetrasi pada permukaan daun jati melalui bukaan alami seperti kompleks stomata sehingga proses inisasi proses infeksi cenderung mudah (Osorio et al., 2018). Berbeda dengan itu, embun tepung pada daun jati disebabkan oleh cendawan Erysiphe sp. (Thaung, 2007). Penyakit karat dan embun tepung cukup sering ditemukan pada tanaman-tanaman hutan. Anggraeni & Wibowo (2006) melaporkan bahwa penyakit karat dan embun tepung menyerang tanaman akasia secara bersamaan. Meski demikian jenis patogen penyebabnya berbeda.

Gejala lain yang dapat disebabkan oleh patogen adalah klorosis (Gambar 4g). Klorosis merupakan peristiwa gagalnya pembentukan klorofil pada daun sehingga terjadi perubahan warna daun menjadi kuning. Klorosis dapat terjadi secara lokal pada titik tertentu atau menyebar. Saat klorosis menyeluruh warna permukaan pada pertulangan daun sering ditemukan tetap hijau. Klorosis umumnya juga terjadi pada sekitar jaringan yang mengalami nekrosis atau kematian sel. Meski demikian dalam penelitian ini klorosis dibedakan dari gejala lanjutan hawar atau nekrosis. Silva et al. (2015) menyebutkan bahwa ada beberapa faktor yang dapat menyebabkan klorosis pada daun jati. Selain disebabkan oleh patogen, klorosis pada daun jati sering diseabkan oleh defisisensi unsur kalium dan magnesium. Sementara itu jenis patogen penyebab klorosis pada daun jati belum banyak dilaporkan.

3.2 Nilai Kejadian dan Keparahan Gejala

Nilai kejadian dan keparahan gejala telah dihitung menggunakan rumus yang telah ditentukan. Hasil perhitungan menunjukkan bahwa serangan hama dan penyakit yang paling dominan hawar (35,57 %), *shot-hole* (19,14%), dan defoliasi (12,37%) (Gambar 5).

Pada dasarnya nilai kejadian penyakit menunjukkan persentase bagian tanaman sakit terhadap keseluruhan bagian tanaman yang diamati. Berdasarkan data yang didapatkan, tingginya nilai kejadian serangan tidak selalu diikuti dengan

Gambar 5. Kejadian dan Keparahan Gejala (%)

tingginya keparahan. Dalam pengamatan ini diketahui bahwa nilai keparahan tertinggi adalah gejala embun tepung (41,30%), karat (32,55%), dan hawar (31,06%). Meskipun serangan embun tepung dan karat lebih jarang ditemukan namun menyebabkan keparahan yang lebih tinggi daripada penyakit lainnya. Sementara itu nilai keparahan gejala hawar cukup konsisten mengikuti nilai kejadiannya. Berdasarkan temuan ini, diduga bahwa penyakit embun tepung dan karat memiliki laju infeksi yang tinggi ke seluruh permukaan daun namun kurang berpotensi untuk menginfeksi daun lainnya. Meski demikian nilai kejadian dan keparahan penyakit akan meningkat seiring waktu. Sales et al. (2017) melaporkan bahwa kejadian dan keparahan penyakit karat pada daun jati berangsur meningkat selama 2-6 bulan pengamatan. Hal itu tentu saja merupakan konsekuensi dari perkembangan infeksi yang telah terjadi. Untuk memperoleh gambaran yang lebih lengkap dibutuhkan pengamatan dengan jangka waktu tertentu untuk mempelajari perkembangan serangan hama dan penyakit di suatu tempat.

Oleh sebab karakter serangan hama maupun penyakit dapat berbeda-beda satu sama lainnya, maka disarankan untuk mengembangkan alat ukur yang spesifik untuk hama atau penyakit tertentu. Salah satu alat ukur yang telah dikembangkan adalah diagram berskala yang dikembangkan oleh Cristiane-Delmadi *et al.* (2018) untuk mengukur keparahan penyakit karat pada daun jati. Pengembangan alat ukur tersebut berhasil meningkatkan akurasi dalam pengukuran keparahan penyakit karat pada daun jati.

4. KESIMPULAN

Gejala kerusakan daun yang ditemukan pada terubusan JUN sebagian besar merupakan kerusakan yang ditimbulkan oleh penyakit. Serangan penyakit antara lain hawar, *shot-hole*, karat, embun tepung, karat, dan klorosis. Adapaun gejala serangan hama yang ditemukan yaitu defoliasi, *leaf-miner*, skeletonize, dan lekukan. Gejala hawar, *shot-hole*, dan defoliasi merupakan gejala yang paling sering ditemukan. Sementara itu, nilai keparahan tertinggi didapatkan pada gejala embun tepung, hawar, dan karat daun.

5. UCAPAN TERIMA KASIH

Terima kasih disampaikan untuk Lembaga Penelitian dan Pengabdian Masyarakat Universitas Bangsa yang telah menyediakan dana operasional penelitian.

6. DAFTAR PUSTAKA

- Akbar, A., A. Budiman, & N. F. Haneda. 2019. Dampak Penjarangan dan Tebang Habis terhadap Komunitas Serangga. Tesis. Institut Pertanian Bogor. Bogor.
- Amadi, Y. E & Y. A. Saka. 2019. Isolation and Identification of Fungi Associated with Teak (*Tectona grandis* L.) Seedlings at the University of Ilorin Teak Plantation, Kwara State, Nigeria. NISEB Journal. 11 (3): 189–195.
- Anggraeni, I. & A. Wibowo. 2006. Serangan Penyakit Embun Tepung dan Karat Daun pada Acacia auriculiformis A. Cunn. Ex Benth. di Kediri, Jawa Timur. Jurnal Penelitian Hutan dan Konservasi Alam. 3 (1): 45–53.
- Borges, R. C. F., M. Rossato, M. D. D. M. Santos, C. S. Cabral, G. M. R. Albuquerque, M. A. Ferreira, M. E. N. Fonseca, & L. S. Boiteux. 2019. A Leaf Spot of Tectona grandis Caused by Xanthomonas fuscans in Brazil. Journal of Plant Pathology. 101 (2): 431–431.
- Cabral, P. G. C., A. S. Capucho, O. L. Pereira, E. Maciel-Zambolim, R. L. Freitas, & L. Zambolim. 2010. First Report of Teak Leaf Rust Disease Caused by Olivea tectonae in Brazil. Australasian Plant Disease Notes. 5 (1): 113–114.
- [CIFOR] Center for International Forestry Research. 2000. Insect Pest and Disease in Indonesia Forest: an Assessment for Major Threat, Reserarch effort, and literature. Nair KSS, editor. Bogor (ID): CIFOR
- Nair, Krishna Sivasankara Sadasivan. Insect pests and diseases in Indonesian forest: an assessment of the major threats, research efforts and literature. CIFOR, 2000.
- [CIFOR] Center for International Forestry Research. 2010. Pengelolaan Hutan Jati Rakyat: Panduan Lapangan untuk Petani. Pramono AA, Fauzi MA, Widyani N, Heriansyah Ika, Roshetko JM, editor. Bogor (ID): CIFOR
- Pramono, A. A., M. A. Widyani, N. Heriansyah, and J. M. I Roshetko. Pengelolaan hutan jati rakyat: panduan lapangan untuk petani. CIFOR, 2010.
- Cristiane-Delmadi, L., C. D. Pieri, A. Sander-Porcena, & E. Luiz-Furtado. 2018.

- Diagramatic Scale for Quantification of Rust Severity in Teak Leaves. Revista Mexicana de Fitopatología. 36 (2): 331–341.
- Ivanova, H., M. Kalocaiova, & M. Bolvansky. 2012. Shot-hole Disease on Prunus persica the Morphology and Biology of Stigmina carpophila. Folia Oecologica. 39 (1): 21.
- Kadiri, A., Z. F. Boukhatem, Y. Halfaoui, & Z. Ighilhariz. 2019. Chickpea Callus Histology Inoculated with Ascochyta Rabiei Blight Causal Agent Spores. International Journal of Innovative Approaches in Agricultural Research. 3 (1): 112–122.
- Kiran M., S. Gopakumar, V. Reshmy, & K. Vidyasagaran. 2021. Documentation and Characterization of Fungal Diseases in Nursery Seedlings of Teak (*Tectona grandis* Lf) in Kerala, India. Indian Phytopathology. 74 (3): 639–647.
- Kudo, G. 2003. Variations in Leaf Traits and Susceptibility to Insect Herbivory within a Salix miyabeana Population Under Field Conditions. Plant Ecology. 169 (1): 61–69.
- Liu, W.H., X. H. Dai, & J. S. Xu. 2015. Influences of Leaf-mining Insects on Their Host Plants: A Review. Collectanea botanica. 34 (5): 1–14.
- Liao, C., J. Xu, X. Dai, & X. Zhao. 2014. Study on the Biological Characteristics of Platypria melli. Northern Horticulture. 3:118–120.
- Mohanan, C., N. Ratheesh, L. P. Nair, & K. C. R. Kumar. 2005. Disease Problems in Root Trainer Forest Nurseries in Kerala State and Their Management. 5th Meeting of IUFRO Working Party S. 7: 7–12.
- Napitu, B., K. M. Bintani, & P. B. P. Pandjaitan. 2018. Inventarisasi Hama Tanaman Jati Unggul Nusantara di Kebun Percobaan Universitas Nusa Bangsa Cogreg, Bogor. Journal Nusa Sylva. 12 (2): 35–46.
- Osorio, P. R. A., E. U. Leao, R. A. Veloso, D. D. S. C. Mourao, G. R. D. Santos. 2018. Essential Oils for Alternative Teak Rust Control. Floresta e Ambiente. 25 (2): 1–9.
- Pratiwi, T., Karmanah, & R. Gusmarianti. 2017. Inventarisasi Hama dan Penyakit Tanaman Jati Unggul Nusantara di Kebun Percobaan Cogrek Bogor. Jurnal Sains Natural. 2 (2): 123–133.
- Roychoudhury, N., K. C. Joshi, & M. A. N. I. S. H. Chourasia. 2003. Insect Pests of Teak in Madhya Pradesh. Indian Journal of Tropical Biodiversity. 11 (1-2): 1–7.

- Roychoudhury, N. & K. C. Joshi. 1997. Larval Feeding Habit and Moulting Behaviour of Leaf Skeletonizer, Eutectona machaeralis Walker, on Teak. Indian forester. 123 (5): 438–439.
- Sales, N. I. S., E. U. Leao, L. C. M. D. A. Correia, C. D. A. Siqueira, & G. R. D. Santos. 2017. Temporal Progress of Teak Rust in a Tropical Area of Tocantins State, Brazil. Acta Amazonica. 47 (3): 277–280.
- Segoli, M. & J. A. Rosenheim. 2012. Should Increasing the Field Size of Monocultural Crops be Expected to Exacerbate Pest Damage?. Agriculture, ecosystems & environment. 150: 38–44.
- Sharma, S., J. S. Tara, & S. Bhatia. 2013. Bionomics of Hyblaea puera (Lepidoptera: Hyblaeidae), a Serious Pest of Teak (*Tectona grandis*) from Jammu (India). Munis Entomology & Zoology. 8 (1): 139–147.
- Silaen, E. T. 2016. Keanekaragaman Arthropoda dan Peranannya pada Tegakan Jati Unggul Nusantara (JUN) Umur 45 Bulan di Kabupaten Purwakarta Jawa Barat. Skripsi. Institut Pertanian Bogor. Bogor.
- Silva, D. A. S., I. D. J. M. Viegas, R. S. Okumura, M. L. D. Silva, S. D. F. S. D. S. Viegas, J. M. N. D. Freitas, H. E. O. D. Conceicao, & C. F. D. O. Neto. 2015. Use of Multi-dimensional Scaling for Analysis of Teak Plants (*Tectona grandis*) Under Omission of Macronutrients. Australian Journal of Crop Science. 9 (5): 355–362.
- Thaung, M. M. 2007. Powdery Mildews in Burma with Reference to Their Global Host-fungus Distributions and Taxonomic Comparisons. Australasian Plant Pathology. 36 (6): 543–551
- Wahyudi, I., T. Priadi, & I. S. Rahayu. 2014. Karakteristik dan Sifat-sifat Dasar Kayu Jati Unggul Umur 4 dan 5 Tahun Asal Jawa Barat. Jurnal Ilmu Pertanian Indonesia. 19 (1): 50–56.
- Wiyono, S. 2007. Perubahan Iklim dan Ledakan Hama dan Penyakit Tanaman. Seminar Sehari Keanekaragaman Hayati di Tengah Perubahan Iklim Indonesia. Institut Pertanian Bogor. Bogor.
- Zanatta, M. F., G. Q. Romero, G. A. Villanueva-Bonilla, & J. Vasconcellos-Neto. 2022. Leaf and Site Selection for Nest Construction and Oviposition in Aysha piassaguera Brescovit, 1992 (Araneae: Anyphaenidae). Journal of Natural History. 56 (1-4): 15–34.