PENGARUH CMC DAN LAMA PENYIMPANAN TERHADAP PROFIL STABILITAS EMULSI (O/W) MENGGUNAKAN SANTAN KELAPA YANG DICAMPUR EMULSIFIER PRODUK ETANOLISIS PKO DAN TWEEN 80

THE EFFECT OF CMC AND SHELF LIFE ON EMULSION STABILITY PROFILE (O/W)
USING COCONUT MILK EMULSIFIER MIXTURES ETHANOLYSIS PRODUCT OF PKO
AND TWEEN 80

Lani Yuniarti, Murhadi, Suharyono, Sri Hidayati Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Lampung *email korespondensi: laniyuniarti@gmail.com

Tanggal masuk: 18 Oktober 2021 Tanggal diterima: 21 Januari 2022

Abstract

The purpose of this study to determine effect of CMC and shelf life and the interaction between stability emulsion of coconut milk using mixture emulsifiers ethanolisis product of PKO and tween 80. The method used Completely Randomized Block Design (RAKL) with 2 factors and 3 replications. The factors consist: the concentration of CMC on coconut milk using mixture of emulsifier products ethanolysis of PKO and tween 80 consisting 8 levels, namely 0%; 0.2%; 0.4%; 0.6%; 0.8; 1%; 1.2% and 1.4% w/v (A1, A2, A3, A4, A5, A6, A7, and A8), and shelf life factor consists of 6 levels, namely 0, 24, 48, 72, 96 and 120 hours (B1, B2, B3, B4, B5 and B6). The data analyzed homogeneity (Barlett) and additionality (Tukey) then analyzed variance to determine differences between treatments at 5% and 1% significance levels. Then data obtained also tested OP (Orthogonal Polynomial) test at 5% and 1% levels. The results of this study indicate that combination of CMC addition and storage time has a significant effect at 5% level on the value stability of the coconut milk emulsion. The combination of the addition of CMC and the best storage time resulted in the A7B4 (1.2% addition of CMC and storage for 3 days) with an average emulsion stability value of 96.67% and has a color with an average value of 4.18 (White Yellow), aroma with an average value of 4.71.

Keywords: CMC (Carboxymethyl cellulose), emulsifier, etanolysis of PKO, emulsion stability, stabilizer, tween 80

Abstrak

Penelitian ini bertujuan untuk mengetahui pengaruh penambahan CMC dan lama penyimpanan serta interaksi antara keduanya dalam mempertahankan stabilitas emulsi santan yang menggunakan campuran emulsifier produk etanolisis PKO dan tween 80. Penelitian dilakukan secara faktorial dalam Rancangan Acak Kelompok Lengkap (RAKL) dengan 2 faktor dan 3 kali ulangan. Faktor tersebut terdiri dari : konsentrasi CMC terhadap santan yang menggunakan campuran emulsifier produk etanolisis PKO dan tween 80 terdiri dari 8 taraf yaitu 0%; 0,2%; 0,4%; 0,6%; 0,8; 1%; 1,2% dan 1,4% b/v (A1, A2, A3, A4, A5, A6, A7, dan A8), dan faktor lama penyimpanan terdiri dari 6 taraf yaitu 0 jam, 24 jam, 48 jam, 72 jam, 96 jam dan 120 jam (B1, B2, B3, B4, B5 dan B6). Data yang dianalisis homogenitas (Barlett) dan kemenambahan (Tukey) datanya kemudian dianalisis dengan sidik ragam untuk mengetahui ada tidaknya perbedaan antar perlakuan pada taraf nyata 5% dan 1%. Kemudian data yang diperoleh juga akan diuji lanjut dengan uji OP (Ortogonal Polinomial) pada taraf 5% dan 1%. Hasil penelitian ini menunjukkan bahwa kombinasi perlakuan penambahan CMC dan lama penyimpanan terdapat pengaruh nyata pada taraf 5% terhadap nilai daya stabilitas emulsi santan. Kombinasi penambahan CMC dan lama penyimpanan terbaik dihasilkan pada perlakuan A7B4 (Penambahan CMC 1,2% dan penyimpanan selama 3 hari) dengan nilai rata-rata 96,67% serta memiliki warna dengan nilai rata-rata 4,18 (Putih Kekuningan), aroma dengan nilai rata-rata 3,35 (Asam), penampakan dengan nilai rata-rata 3,05 (Muncul Gelembung), dan nilai pH rata-rata 4,71.

Kata kunci: CMC (Carboxymethyl cellulose), emulsifier, etanolisis PKO, stabilitas emulsi, stabilizer, tween80

PENDAHULUAN

Emulsi merupakan suatu sistem yang tidak stabil secara termodinamika dengan kandungan paling sedikit dua fase cair yang tidak dapat bercampur, satu diantaranya didispersikan sebagai globula dalam fase cair lain. Sistem emulsi oil in water (o/w) adalah sistem emulsi dengan minyak sebagai fase terdispersi dan air sebagai fase pendispersi. Salah satu produk yang mampu membentuk emulsi tipe o/w adalah santan. Ketidakstabilan kedua fase ini dapat dikendalikan menggunakan suatu zat pengemulsi /emulsifier atau emulgator.

Menurut Nisa dkk. (2020) Emulsifier merupakan bahan tambahan pada produk farmasi dan makanan yang berfungsi untuk menstabilkan emulsi. Bahan pengemulsi yang dapat ditambahkan pada produk santan kelapa yaitu produk etanolisis PKO dan tween 80. Produk etanolisis PKO (Palm Kernel Oil) merupakan salah satu emulsifier yang memiliki fungsi ganda yaitu sebagai pengawet makanan dan emulsifier itu sendiri. Sedangkan tween 80 merupakan agen pengemulsi yang larut dalam air (Laverius, 2011). Namun, masih memiliki kelemahan yaitu daya stabilitas emulsi kelapa mengalami penurunan santan setelah penyimpanan 18 jam pada suhu ruang sehingga diperlukan penambahan bahan aktif lainnya seperti Carboxyl Methyl Cellulose (CMC). CMC adalah turunan polimer alami yang paling banyak digunakan di berbagai industri, seperti makanan, farmasi, deterjen, tekstil dan produk kosmetik (Puteri dkk., 2015).

Penelitian yang dilakukan Murhadi dkk. (2017) menyatakan bahwa penambahan 5% (b/b) produk etanolisis PKO terbukti dapat mengawetkan santan kelapa segar setelah penyimpanan 24, 48, dan 72 jam (25-30°C dalam keadaan terbuka). Selanjutnya penelitian yang dilakukan Reksanda (2019) menyatakan bahwa santan kelapa yang telah disimpan lebih dari 1 hari pada suhu ruang mengalami penurunan aroma yaitu semakin berbau tidak sedap (tengik). Selanjutnya berdasarkan penelitian yang dilakukan oleh Muthoharoh dkk. (2020) formulasi campuran emulsifier produk etanolisis PKO dan Tween 80 dapat meningkatkan daya stabilitas emulsi tipe o/w (santan kelapa) yang telah disimpan selama 18 jam pada suhu kamar serta campuran emulsifier pada nilai HLB 12 memiliki nilai daya stabilitas emulsi tipe o/w (santan kelapa) sebesar 61,22% ± Oleh karena itu, penelitian ini 2,18%. bertujuan untuk mengetahui pengaruh penambahan CMC dan lama penyimpanan serta interaksi antara keduanya dalam mempertahankan stabilitas emulsi santan yang menggunakan campuran emulsifier produk etanolisis PKO dan tween 80.

BAHAN DAN METODE

Bahan dan Alat

Bahan yang digunakan adalah produk etanolisis PKO yang tersedia di Laboratorium diproduksi oleh Muthoharoh dkk. (2020) dan beberapa buah kelapa tua diperoleh dari segar yang pasar tradisional sekitar Rajabasa Bandar Lampung. Bahan kimia terdiri dari: CMC dengan merk Natrosol yang diperoleh dari Toko Kimia Lampung, Tween 8.22187.0500 yang diperoleh dari Agen Kimia di Bandar Lampung, akuades dan sejumlah bahan kimia untuk analisis.

Alat yang digunakan adalah kain saring, mikropipet, timbangan analitik, termometer, penangas air, tabung reaksi, vorteks, dan alat-alat % dan penunjang.

Metode Penelitian

Penelitian dilakukan secara faktorial Acak dalam Rancangan Kelompok Lengkap (RAKL) dengan 2 faktor dan 3 kali ulangan. Faktor tersebut terdiri dari konsentrasi CMC terhadap santan yang menggunakan campuran emulsifier produk etanolisis PKO dan tween 80 terdiri dari 8 taraf yaitu 0%; 0,2%; 0,4%; 0.6%; 0.8; 1%; 1.2% dan 1.4% b/v (A1, A2, A3, A4, A5, A6, A7, dan A8) (Tabel 1), dan faktor lama penyimpanan terdiri dari 6 taraf yaitu 0 jam, 24 jam, 48 jam, 72 jam, 96 jam dan 120 jam (B1, B2, B3, B4, B5 dan B6).

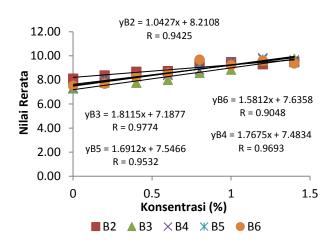
Tabel 1. Komposisi Konsentrasi CMC dan Campuran Emulsifier Produk Etanolisis PKO dan Tween 80 untuk Masing-Masing Perlakuan

No	Konsen-	Jumlah	Jumlah	Jumlah
	trasi	CMC	emulsifier	emulsifier
	CMC	(mg)	produk	tween 80
	(%)		etanolisis	(mg; HLB
			PKO (mg;	= 15)
			HLB = 3)	
1.	0	0	25	95
2.	0,2	24	25	95
3.	0,4	48	25	95
4.	0,6	72	25	95
5.	0,8	96	25	95
6.	1	120	25	95
7.	1,2	144	25	95
8.	1,4	168	25	95

^{*}Total santan kelapa per satuan percobaan=12 mL

Data yang dianalisis homogenitas (Barlett) dan kemenambahan (Tukey) datanya kemudian dianalisis dengan sidik ragam untuk mengetahui ada tidaknya perbedaan antar perlakuan pada taraf nyata 5% dan 1%. Kemudian data yang diperoleh juga akan diuji lanjut dengan uji OP (Ortogonal Polinomial) pada taraf 5% dan 1%.

Pembuatan Santan Kelapa

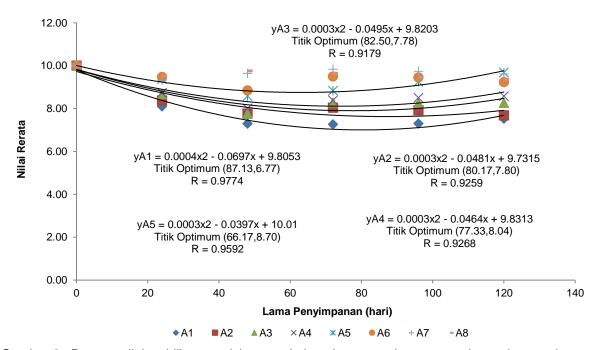

Santan kelapa induk dibuat menggunakan beberapa buah kelapa tua yang telah dikupas, dihilangkan kulit arinya (berwarna coklat tua), diparut dengan mesin, ditimbang masing-masing 1 Kg. Selanjutnya ditambahkan 500 mL air dengan suhu 65°-70°C, diaduk-aduk dan diremas-remas, disaring dan diperas sehingga diperoleh santan kelapa induk.

Prosedur percobaan pada penelitian ini sebagai berikut: pertama, santan kelapa, campuran emulsifier produk etanolisis PKO dan tween dengan nilai 12, masing-masing CMC dengan perlakuan diletakkan di tabung corning; kedua. campuran santan, campuran emulsifier, dan CMC dikocok dengan vortex; ketiga, campuran santan, campuran emulsifier, dan CMC dimasukkan ke dalam penangas air (70°C, 15 menit) dan disimpan pada suhu ruang selama 0, 24, 48, 72, 96 dan 120 jam.

Parameter yang digunakan dalam penelitian adalah uji stabilitas emulsi dengan creaming index (Hartayanie dkk., 2014), uji sensori (warna, aroma dan penampakan), dan pH (AOAC, 2015).

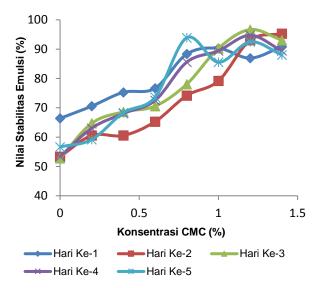
HASIL DAN PEMBAHASAN Stabilitas Emulsi Santan Kelapa

Hasil analisis ragam menunjukkan bahwa penambahan CMC dan lama penyimpanan terdapat pengaruh sangat nyata terhadap stabilitas emulsi santan kelapa pada taraf 1% serta interaksi keduanya terdapat pengaruh nyata pada taraf 5%. Hasil uji lanjut polynomial orthogonal menunjukkan penambahan CMC berpengaruh sangat nyata secara linear dan lama penyimpanan berpengaruh sangat nyata secara linear maupun kuadratik serta interaksi antara keduanya berpengaruh sangat nyata terhadap profil stabilitas emulsi (o/w) yang menggunakan santan kelapa yang dicampur emulsifier produk etanolisis PKO dan tween 80 (Gambar 1 dan 2).



Gambar 1. Respon nilai stabilitas emulsi santan kelapa penambahan CMC pada masing-masing lama penyimpanan.

Berdasarkan Gambar 1, stabilitas emulsi santan kelapa secara keseluruhan menunjukan adanya peningkatan secara linear seiring dengan penambahan konsentrasi CMC. Perlakuan B2, B3, B4, B5 dan B6 (Penyimpanan hari ke-1,2,3,4, dan 5) menunjukkan bahwa terdapat pengaruh sangat nyata secara linear sedangkan untuk perlakuan B6 (lama penyimpanan selama 5 hari) terdapat pengaruh nyata secara kuadratik terhadap nilai stabilitas emulsi santan kelapa.

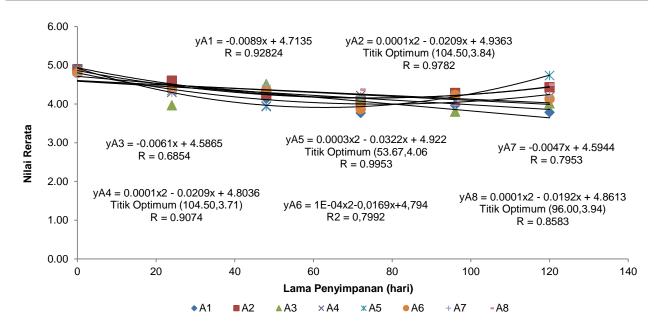

Berdasarkan Gambar 2, stabilitas emulsi santan kelapa secara keseluruhan menunjukan adanya penurunan seiring dengan lamanya penyimpanan. Perlakuan A1, A2, A3, dan A4 (penambahan CMC 0; 0,2; 0,4; dan 0,6%) menunjukkan adanya pengaruh sangat nyata secara linear serta pada perlakuan A1, A2, A3, A4 dan A5 (penambahan CMC 0; 0,2; 0,4; 0,6 dan 0,8%) menunjukkan adanya pengaruh sangat nyata secara kuadratik terhadap nilai stabilitas santan kelapa. Nilai stabilitas tertinggi diperoleh pada perlakuan kombinasi A7B4 (CMC 1,2% + lama penyimpanan 3 hari) dengan nilai nilai stabilitas rata-rata 96.67% dan pada diperoleh terendah perlakuan kombinasi A4B3 (CMC 0,6% + lama penyimpanan 2 hari) dengan nilai rata-rata 41,67%. Grafik presentase stabilitas emulsi santan kelapa untuk masingmasing perlakuan disajikan pada Gambar 3.

Pada Gambar 3 dapat dilihat bahwa nilai stabilitas yang dihasilkan mengalami fluktuasi data yang diperoleh. Kadar CMC

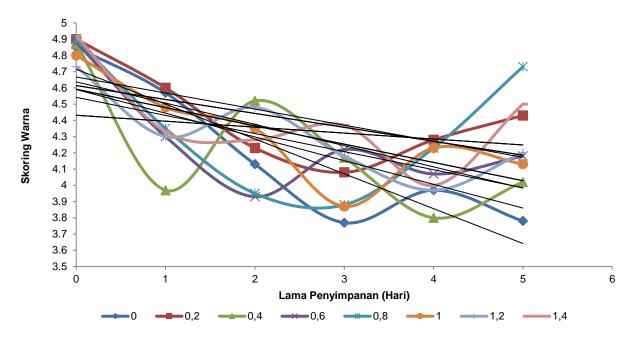
Gambar 2. Respon nilai stabilitas emulsi santan kelapa lama penyimpanan pada masing-masing taraf penambahan CMC

dan lama penyimpanan yang digunakan berpengaruh sangat nyata terhadap stabilitas emulsi santan kelapa. Hal ini sesuai dengan Sidik dkk. (2013) bahwa semakin tinggi konsentrasi CMC maka peran CMC sebagai penstabil semakin baik karena proses pemisahan minyak dan air pada santan kelapa dapat dicegah dengan terbentuknya membran protektif yang mampu menjaga droplet agar tidak mengalami agregasi.

Gambar 3. Nilai stabilitas emulsi santan kelapa yang disimpan selama 1,2,3,4 dan 5 hari pada suhu ruang (23-28°C) dan ditambah penstabil CMC dengan konsentrasi 0,2; 0,4; 0,6; 0,8; 1; 1,2 dan 1,4 %


Penurunan stabilitas emulsi ini disebabkan oleh denaturasi protein seiring dengan menurunnya pH selama penyimpanan yang menyebabkan rusaknya ikatan protein sebagai agen pengemulsi. Santan tanpa perlakuan memiliki stabilitas emulsi yang rendah dan juga mengalami penurunan stabilitas emulsi yang sangat cepat. Hal ini dikarenakan stabilitas emulsi santan kontrol hanya berasal dari protein yang bersifat sebagai emulsifier seperti

fosfolipid, lesitin, cephalin, globumin, serta albumin yang secara alami terdapat pada santan (Alyaqoubi *et al.*, 2015).


Sifat Sensori Warna

Hasil analisis ragam menunjukkan bahwa penambahan CMC tidak terdapat pengaruh nyata, serta lama penyimpanan terdapat pengaruh sangat nyata pada taraf 1% terhadap warna santan kelapa dan interaksi antara keduanya tidak terdapat pengaruh nyata. Hasil uji lanjut polynomial orthogonal menunjukkan penambahan CMC berpengaruh tidak nyata dan lama penyimpanan berpengaruh sangat nyata secara linear maupun kuadratik serta interaksi antara keduanya tidak berpengaruh nyata terhadap warna santan kelapa yang dicampur emulsifier produk etanolisis PKO dan tween 80 (Gambar 4).

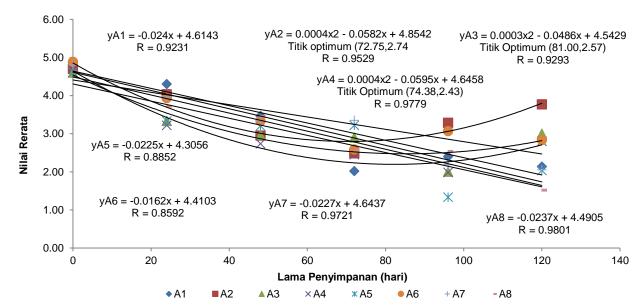
Berdasarkan Gambar 4. warna secara keseluruhan menunjukkan adanya penurunan pada penyimpanan. Perlakuan A2, A4 dan A7 (penambahan CMC 0,2; 0,6; dan 1,2%) terdapat adanya pengaruh nyata secara linear serta untuk perlakuan A1, A3 dan A6 (penambahan CMC 0; 0,4; dan 1%) terdapat adanya pengaruh sangat nyata secara linear terhadap warna santan kelapa. Perlakuan A4 dan A8 (penambahan CMC 0,6 dan 1,4%) terdapat adanya pengaruh nyata secara kuadratik serta perlakuan A2 dan A5 CMC (penambahan 0,2 dan terdapat pengaruh sangat nyata secara kuadratik terhadap warna santan kelapa.

Gambar 4. Respon nilai skoring warna santan kelapa lama penyimpanan pada masing-masing taraf penambahan CMC

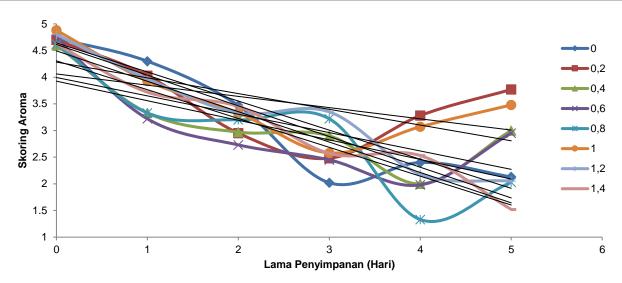
Gambar 5. Nilai sensori warna santan kelapa yang ditambahkan CMC dan disimpan selama 0,1,2,3,4 dan 5 hari

Parameter warna nilai terendah terdapat pada perlakuan A1B4 (Penambahan CMC 0% dan penyimpanan 3 hari) dengan nilai sebesar 3,77 dan nilai tertinggi terdapat pada perlakuan A8B1 (Penambahan CMC 1,4% dan penyimpanan hari ke-0) dengan nilai sebesar 4,92. Semakin lama santan kelapa disimpan maka akan terjadi penurunan

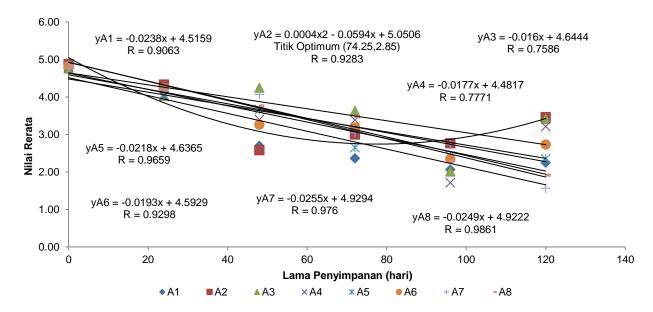
kualitas dari warna santan kelapa. Grafik nilai skoring sensori warna santan kelapa untuk masing-masing perlakuan disajikan pada Gambar 5.


Berdasarkan pengamatan yang dilakukan panelis, semakin lama santan disimpan, maka warna dari santan tersebut berubah menjadi sedikit kekuningan. Hal ini disebabkan oleh adanya aktifitas mikroba di dalam santan tersebut. Perubahan warna dapat menyebabkan penurunan tingkat kesukaan dan penerimaan konsumen.

Aroma


Hasil analisis ragam menunjukkan CMC penambahan terdapat pengaruh sangat nyata, serta lama penyimpanan terdapat pengaruh sangat nyata pada taraf 1% terhadap aroma santan kelapa dan interaksi antara keduanya terdapat pengaruh sangat nyata pada taraf 1%. Hasil uji lanjut polynomial orthogonal menunjukkan penambahan CMC berpengaruh tidak nyata dan lama penyimpanan berpengaruh sangat nyata secara linear maupun kuadratik serta interaksi antara keduanya berpengaruh nyata secara linear maupun kuadratik terhadap aroma santan kelapa yang dicampur emulsifier produk etanolisis PKO dan tween 80 (Gambar 6).

Berdasarkan Gambar 6, aroma secara keseluruhan menunjukkan adanya penurunan pada penyimpanan. Perlakuan penambahan CMC (0-1,4%) menunjukkan adanya pengaruh sangat nyata


secara linear terhadap aroma santan kelapa. Perlakuan A1 (penambahan CMC 0%) menunjukkan adanya pengaruh nyata secara kuadratik serta perlakuan A2, A3, A4, A6, dan A8 (penambahan CMC 0,2; 0,4; 0,6; 1 dan 1,4%) adanya pengaruh sangat nyata secara kuadratik terhadap aroma santan kelapaGrafik nilai skoring sensori aroma santan kelapa untuk masing-masing perlakuan disajikan pada Gambar 7. Menurut Nawansih dkk. (2011), Penyebab aroma tidak sedap karena kandungan protein dalam santan kelapa mengalami mudah kerusakan sehingga terbentuknya hydrogen sulfide, ammonia. metal sulfide, amin. senyawa-senyawa lainnya serta melalui hidrolisis oksidasi lemak dan yang menyebabkan aroma santan menjadi tengik. Aroma tengik pada santan terjadi asam lemak ienuh karena berantai pendek yang mudah menguap seperti asam butirat, asam valerat, asam kaproat, dan ester alifatis yaitu metil nonil keton. Asam inilah yang menyebabkan aroma santan menjadi asam dan pH santan mengalami penurunan.

Gambar 6. Respon nilai skoring aroma santan kelapa lama penyimpanan pada masing-masing taraf penambahan CMC

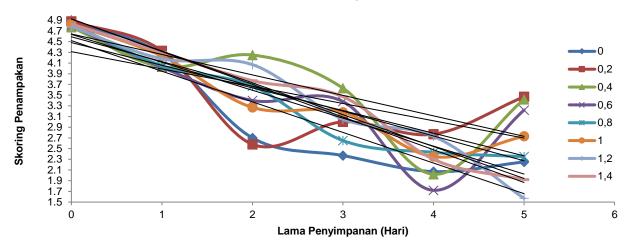
Gambar 7. Nilai sensori aroma santan kelapa yang ditambahkan CMC pada suhu ruang (23-280C) dan disimpan selama 0,1,2,3,4 dan 5 hari

Gambar 8. Respon nilai skoring penampakan santan kelapa lama penyimpanan pada masing-masing taraf penambahan CMC

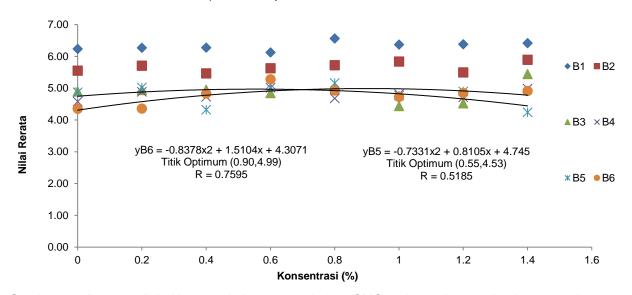
Penampakan

Hasil analisis ragam menunjukkan bahwa penambahan CMC tidak terdapat pengaruh nyata, serta lama penyimpanan terdapat pengaruh sangat nyata pada taraf 1% terhadap penampakan santan kelapa dan interaksi antara keduanya tidak terdapat pengaruh nyata. Hasil uji lanjut polynomial orthogonal menunjukkan penambahan CMC berpengaruh tidak nyata dan lama penyimpanan berpengaruh sangat nyata secara linear maupun kuadratik serta interaksi antara keduanya

berpengaruh sangat nyata terhadap penampakan santan kelapa yang dicampur emulsifier produk etanolisis PKO dan tween 80 (Gambar 8).


Berdasarkan Gambar 8, penampakan secara keseluruhan menunjukkan adanya penurunan pada penyimpanan. Perlakuan penambahan CMC 0-1,4% menunjukkan adanya pengaruh sangat nyata secara linear terhadap penampakan santan kelapa. Perlakuan A1 dan A4 (penambahan CMC 0 dan 0,6%) menunjukkan adanya pengaruh nyata secara

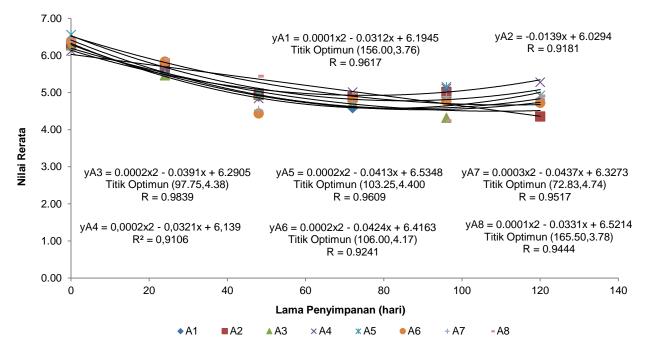
kuadratik serta perlakuan A2 (penambahan CMC 0,2%) terdapat adanya pengaruh sangat nyata secara kuadratik terhadap penampakan santan kelapa. Grafik nilai skoring sensori penampakan santan kelapa untuk masing-masing perlakuan disajikan pada Gambar 9.


Panelis menilai bahwa pada hari ke-0, penampakan santan kelapa masih normal santan kelapa, sementara pada hari ke-1 penampakan santan menjadi muncul bintik kuning, pada hari ke-2 dan ke-3 penampakan santan kelapa menjadi terdapat gelembung, dan pada hari ke-4 penampakan santan menjadi muncul bintik coklat.

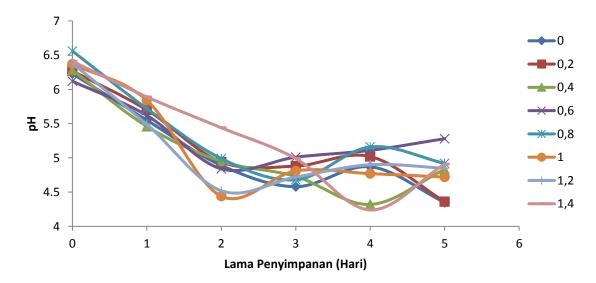
Hq

Hasil analisis ragam menunjukkan bahwa penambahan CMC terdapat pengaruh nyata pada taraf 5% dan lama penyimpanan terdapat pengaruh sangat nyata pada taraf 1% terhadap pH santan kelapa serta interaksi keduanya terdapat pengaruh nyata pada taraf 1%. Hasil uji lanjut polynomial orthogonal menunjukkan penambahan CMC berpengaruh tidak nyata dan lama penyimpanan berpengaruh sangat nyata secara linear maupun kuadratik serta interaksi antara keduanya berpengaruh nyata terhadap pH santan kelapa yang dicampur emulsifier produk etanolisis PKO dan tween 80 (Gambar 10).

Gambar 9. Nilai sensori penampakan santan kelapa yang ditambahkan CMC pada suhu ruang (23-28°C) dan disimpan selama 0,1,2,3,4 dan 5 hari



Gambar 10. Respon nilai pH santan kelapa penambahan CMC pada masing-masing lama penyimpanan


Berdasarkan Gambar 10, pH santan tidak dipengaruhi oleh adanya pengaruh penambahan CMC. Perlakuan B6 (lama 5 penyimpanan hari) menunjukkan adanya pengaruh nyata secara linear serta perlakuan **B**5 dan B6 (lama penyimpanan 4 dan 5 hari) terdapat pengaruh nyata secara kuadratik terhadap pH santan kelapa.

Berdasarkan Gambar 11, nilai pH secara keseluruhan menunjukkan adanya

penurunan pada penyimpanan. Perlakuan penambahan CMC 0-1,4% menunjukkan adanya pengaruh sangat nyata secara linear serta perlakuan A1, A3, A4, A5, A6, A7 dan A8 (penambahan CMC 0; 0,4; 0,6; 0,8; 1; 1,2; dan 1,4%) terdapat adanya pengaruh sangat nyata secara kuadratik terhadap pH santan kelapa. Grafik nilai pH santan kelapa untuk masing-masing perlakuan disajikan pada Gambar 12.

Gambar 11. Respon nilai pH santan kelapa lama penyimpanan pada masing-masing taraf penambahan CMC

Gambar 12. Nilai pH santan kelapa yang ditambahkan CMC dan disimpan selama 0,1,2,3,4 dan 5 hari

Santan dengan berbagai perlakuan mengalami penurunan pH selama penyimpanan yang sesuai dengan penelitian Umar dkk. (2014). Hal ini dikarenakan pemecahan karbohidrat menjadi alkohol dan karbondioksida sehingga memicu produksi asam laktat dan asam-asam lainnya (Hartayanie dkk., 2014).

Penentuan Perlakuan Terbaik

Penentuan perlakuan terbaik pada penelitian ini dilakukan dengan cara memilih perlakuan yang menghasilkan nilai stabilitas emulsi pada santan kelapa yang dapat mempertahankan emulsi dan dibandingkan dengan SNI santan kelapa (SNI No. 01-3816-1995) untuk mengetahui sudah atau tidaknya dalam memenuhi persyaratan santan kelapa yang baik.

Nilai daya stabilitas emulsi santan kelapa terbaik dihasilkan pada perlakuan A7B4 (Penambahan CMC 1,2% dan penyimpanan selama 3 hari) dengan nilai rata-rata 96,67%; nilai parameter warna santan kelapa terbaik dihasilkan pada perlakuan A8B1 (Penambahan CMC 1,4% dan penyimpanan hari ke-0) dengan nilai rata-rata sebesar 4,92; nilai parameter aroma santan kelapa terbaik dihasilkan pada perlakuan A6B1 (Penambahan CMC 1% dan penyimpanan hari ke-0) dengan rata-rata sebesar 4.88: parameter penampakan santan kelapa terbaik dihasilkan pada perlakuan A2B1 (Penambahan **CMC** 0,2% penyimpanan hari ke-0) dengan nilai ratarata sebesar 4,88 dan nilai pH santan kelapa terbaik dihasilkan pada perlakuan A5B1 (Penambahan CMC 0,8% dan penyimpanan hari ke-0) dengan nilai ratarata sebesar 6,56. Perlakuan dengan nilai stabilitas emulsi tertinggi merupakan perlakuan terbaik.

KESIMPULAN

Penambahan CMC berpengaruh sangat nyata terhadap stabilitas emulsi santan kelapa pada taraf 1%. Nilai stabilitas santan terbaik di peroleh pada perlakuan yang menggunakan CMC 1,2%. Lama penyimpanan berpengaruh sangat nyata terhadap stabilitas emulsi santan kelapa pada taraf 1%. Nilai stabilitas santan terbaik di peroleh pada perlakuan yang menggunakan lama penyimpanan pada hari ke-0. Kombinasi perlakuan penambahan CMC dan lama penyimpanan terdapat pengaruh nyata pada taraf 5% serta kombinasi penambahan CMC dan lama penyimpanan terbaik dihasilkan pada perlakuan A7B4 (Penambahan CMC 1,2% dan penyimpanan selama 3 hari). Perlakuan A7B4 memiliki nilai stabilitas emulsi dengan nilai rata-rata 96,67%, warna dengan nilai rata-rata 4,18 (Putih Kekuningan), aroma dengan nilai rata-rata 3,35 (Asam), penampakan dengan nilai rata-rata 3,05 (Muncul Gelembung), dan nilai pH rata-rata 4,71.

DAFTAR PUSTAKA

Alyaqoubi, S., Abdullah, A., Muhamad, S., Norrakiah, A., Addai, Z.R., and Musa, K.H., 2015. Study of Antioxidant Activity and Physicochemical Properties of Coconut Milk (Pati santan) in Malaysia. Journal of Chemical and Pharmaceutical Research 7(4), 967-973

Association of Official Analytical Chemist (AOAC). 2015. Official Methods of Analysis of Association of Official Analytical Chemist. AOAC International. USA

Badan Standar Nasional. 1995. Mutu Santan Kelapa SNI 01-3816. Jakarta

- Hartayanie, L., Adriani, M., dan Lindayani., 2014. Karakteristik Emulsi Santan dan Minyak Kedelai yang Ditambah Gum Arab dan Sukrosa Eter. Jurnal Teknologi dan Industri Pangan 25(2), 152-157
- Laverius, M.F., 2011. Optimasi Tween 80 dan Span 80 sebagai Emulsifying Agent serta Carbopol sebagai Gelling Agent dalam Sediaan Photoprotector Ekstrak Teh Hijau (*Camellia sinensis* L.): Aplikasi Desain Factorial. Skripsi. Universitas Sanata Dharma. Yogyakarta
- Murhadi, Hidayati, S., dan Kurniawan, R., 2017. Pengaruh Jenis Asam dan Waktu Reaksi Pemanasan terhadap Karakteristik Produk Etanolisis PKO (Palm Kernel Oil). Jurnal Agritech 37(1), 69-76
- Muthoharoh, S., Murhadi, Suharyono, A. S., Hidayati, S., and Subeki, 2020. The Effect of Addition of Emulsifier Mixture with Various HLB Value on the Emulsion Stability of Coconut Milk. International Conference on Agriculture and Applied Science (ICoAAS). Lampung
- Nawansih, O., Erna, M., dan Rianto, N. K., 2011. Kajian Pengawetan Krim Santan Kelapa Menggunakan Natrium Bisulfit. Prosiding Seminar Nasional Sains dan Teknologi – IV. Lampung

- Nisa, F., Zahrina, I., dan Sunarno, 2020. Produksi Monogliserida dengan Esterifikasi Asam Lemak. Jom Fteknik 7(1), 1-9
- Puteri, F., Nainggolan, R. J., dan Limbong, L. N., 2015. Pengaruh Konsentrasi CMC (Carboxy Methyl Cellulose) dan Lama Penyimpanan Terhadap Mutu Sorbet Sari Buah. Jurnal Rekayasa Pangan dan Pertanian 3(4), 465-470
- Reksanda, M. D., 2019. Kajian Aplikasi Produk Etanolisis Minyak Inti Sawit Berdasarkan Tingkatan Produksi dan Nisbah Mol Etoksi Terhadap Daya Simpan Santan dan Mayonaise. Skripsi. Universitas Lampung. Lampung
- Sidik, S.L., Fatimah, F., dan Sangi, M.S., 2013. Pengaruh Penambahan Emulsifier dan Stabilizer Terhadap Kualitas Santan Kelapa. Jurnal MIPA 2(2), 79-83
- Umar, Razali, dan Novita, A. 2014. Derajat Keasaman dan Angka Reduktase Susu Sapi Pasteurisasi dengan Lama Penyimpanan yang Berbeda. Jurnal Medika Veterinaria 8(1), 43-46
- Yunggo, J., Murhadi dan Hidayati, S., 2016. Pengaruh Waktu Reaksi Etanolisis pada Suhu Ruang Terhadap Rendemen dan Stabilitas Emulsi Produk Etanolisis Palm Kernel Oil (PKO). Jurnal Teknologi Industri dan Hasil Pertanian 21(2), 97- 106.