PENGGUNAAN TIGA MACAM MULSA ORGANIK DAN TINGKAT KETEBALAN PADA PERTUMBUHAN DAN HASIL TANAMAN KEDELAI (*Glycine max* (L.) Merrill) VARIETAS GROBOGAN

Use of Three Types of Organic Mulch and Thickness Levels on Growth and Yield of Soybean (Glycine Max (L.) Merrill) Varietiety of Grobogan

Meyva Dinda Rutma Putri¹, Kharis Triyono², Sumarmi^{3*}

¹Jurusan Agroteknologi, Fakultas Pertanian, Universitas Slamet Riyadi, Surakarta ²Jurusan Ilmu Lingkungan, Fakultas MIPA, Universitas Sebelas Maret ³Jurusan Doktor Biologi, Fakultas Biologi, Universitas Gadjah Mada *E-mail Korespondensi: felt.sumarmi@gmail.com

ABSTRAK

Penelitian ini dilaksanakan pada Oktober 2023 sampai Januari 2024 di Kebun Benih Holtikultura Tohudan, Kecamatan Colomadu, Kabupaten Karanganyar. Penelitian menggunakan Regresi Polynomial Split Plot Design terdiri dari 2 faktor perlakuan yaitu penggunaan tiga macam mulsa organik yang terdiri dari 4 taraf yaitu M0 (kontrol) mulsa plastik, M1 (mulsa jerami padi), M2 (mulsa pelepah pisang), M3 (mulsa batang jagung) dan tingkat ketebalan mulsa yang terdiri dari 3 taraf yaitu T1 (ketebalan 1 cm), T2 (ketebalan 2 cm), T3 (ketebalan 3 cm). Hasil penelitian menunjukkan bahwa perlakuan mulsa pelepah pisang dengan ketebalan 3 cm memberikan hasil terbaik pada pertumbuhan kedelai dengan tinggi tanaman 106,67 cm dan jumlah daun 102,33 helai. Perlakuan mulsa pelepah pisang dengan ketebalan 1 cm memberikan hasil terbaik pada pertumbuhan kedelai dengan luas daun 103,00 m². Perlakuan mulsa pelepah pisang dengan ketebalan 2 cm memberikan hasil yang terbaik pada tanaman kedelai dengan jumlah polong 87.00 polong, jumlah biji 215,67 butir, berat biji 27,67 gram, berat 100 biji 10,00 gram. Perlakuan mulsa plastik dan mulsa organik masing- masing memberikan hasil terbaik untuk menekan pertumbuhan gulma, dimana perlakuan mulsa plastik dengan berat gulma basah 3,33 gram dan perlakuan pelepah pisang dengan ketebalan 3 cm menunjukkan berat gulma basah 4,67 gram.

Kata Kunci: mulsa plastik, mulsa organik, ketebalan, kedelai

ABSTRACT

Research of "The Effect of Using Three Types of Organic Mulch and Thickness Levels on the Growth and Yield of Soybean Plants (Glycine Max (L.) Merrill)" was carried out from October 2023 to January 2024 at the Tohudan Horticultural Seed Garden, Colomadu District, Karanganyar Regency. This research used Polynomial Split Plot Design Regression consisting of 2 treatment factors, namely the use of three types of organic mulch consisting of 4 levels, namely M0 (control) plastic mulch, M1 (rice straw mulch), M2 (banana stem mulch), M3 (stem mulch corn) and the level of mulch thickness consisting of 3 levels, namely T1 (1 cm thickness), T2 (2 cm thickness), T3 (3 cm thickness). The results showed that the banana stem mulch treatment with a thickness of 3 cm gave the best results for soybean growth with a plant height of 106.67 cm and a number of leaves of 102.33. Banana stem mulch treatment with a thickness of 1 cm gave the best results for the growth of soybeans with a leaf area of 103.00 m2. Banana stem mulch treatment with a thickness of 2 cm gave the best results on soybean plants with a number of pods of 87.00 pods, a number of seeds of 215.67, a seed weight of 27.67 grams, a weight of 100 seeds of 10.00 grams. The plastic mulch and organic mulch treatments each provide the best results for suppressing weed growth, where plastic mulch treatment gave a wet weed weight of 3.33 grams and the banana stem treatment gave a thickness of 3 cm showed a wet weed weight of 4.67 grams.

Keywords: plastic mulch, organic mulch, thickness, soybean

PENDAHULUAN

Kedelai merupakan komoditas utama setelah padi dan jagung. Permintaan kebutuhan kedelai untuk konsumsi, makanan ternak (pakan) dan bahan baku industri dari tahun ke tahun terus meningkat, dari peningkatan dengan permintaan yang besar di setiap tahunnya maka kedelai dijadikan sebagai komoditas yang strategis. Tanah kering merupakan lahan yang dapat digunakan untuk budidaya Keberadaan gulma di suatu area perkebunan kedelai harus diperhatikan. Kualitas dan kuantitas produksi kedelai dapat dipengaruhi oleh keberadaan gulma akibat adanya kompetisi cahaya CO₂, air serta unsur hara. Hasil tanaman kedelai dapat terganggu akibat keberadaan gulma sejak awal masa pertumbuhan (Pratama et al., 2022). Seiring dengan bertambahnya jumlah penduduk dalam negeri, menyebabkan ketergantungan impor kedelai untuk memenuhi permintaan konsumen, pada tahun 2020 kebutuhan kedelai di Indonesia sebesar 3,075 juta ton dengan sistem pembagian impor sebesar 2,65 juta ton (85%) dan sisanya berasal dari produk lokal sebesar 1,67 ton/ha (13%), oleh pemerintah merencanakan karena itu berbagai upaya untuk meningkatkan produksi kedelai melalui sejumlah program dan kegiatan diantaranya, bantuan sarana produksi. Tujuan dari upaya tersebut untuk meningkatkan minat petani untuk kembali menanam kedelai, meskipun masih jauh dari harapan karena harga kedelai yang rendah (Swatika, 2015).

Faktor yang mempengaruhi penurunan dan peningkatan produktivitas kedelai antara lain budidaya kedelai yang kuranng optimal, serangan dari organisme yang meliputi hama, penyakit dan gulma, akibat dari serangan hama tersebut tanaman menjadi rusak. Gulma yang menyerang tanaman sangat berpengaruh di dalam penyerapan unsur hara, air, cahaya, dan ruang tumbuh, karena dengan tumbuhnya gulma akan terjadi persaingan untuk memperoleh unsur yang di butuhkan pada tanaman tersebut, sehingga pada pertumbuhan perkembanganya mengalami hambatan.

Metode kimiawi sangat banyak di jumpai sebagai sarana pengendalian hama, karena penggunaannya mampu menekan pertumbuhan patogen dengan cepat, mudah dan murah, tetapi kelemahannya yaitu penggunaan dosis, cara, dan waktu harus tepat, apabila kurang tepat tanaman dapat mengalami keracunan, lingkungan dan tanaman utama terdampak residu serta resisten terhadap OPT utama. Pengendalian pada OPT dapat dilakukan dengan upaya melestarikan ekologi yang mempunyai dampak kecil terhadap pencemaran lingkungan. menekan dampak penggunaan pestisida kimia, tidak terjadi resisten hama maupun resurgensi terhadap kesehatan manusia dan lingkungan serta sarana peningkatan dapat menjadi produktivitas tanaman (Yulia et al., 2020).

Sistem olah tanah dilakukan dengan beberapa cara yang pertama yaitu dilakukan pembalikan tanah, kedua pembongkaran serta peleburan tanah sehingga menjadi partikel-partikel yang lebih kecil. Sistem olah tanah dibagi menjadi dua yang pertama, pengolahan tanah minimum dilakukan pembajakan dengan kemudian diratakan tanpa merusak struktur lahan yang disesuaikan dengan kebutuhan perakaran, kemudian ditambahkan pupuk sebagai pupuk dasar. Olah tanah sempurna atau Maximum tillage merupakan teknik pengolahan lahan yang dilakukan dari awal sampai akhir, sehingga lahan siap untuk ditanami, kegiatannya meliputi pembajakan, penggaruan, penjemuran, pembuatan bedengan dan drainase untuk mengatur air, supaya akar tanaman tidak kelebihan air serta pemberian pupuk dasar (Rosmaiti, 2018). Tujuan dilakukannya pengolahan tanah salah satunya yaitu memperbaiki kondisi tanah untuk menjaga agar infiltrasi air dan aerasi tanah terbentuk dengan baik, selain itu mudah dalam irigasi air, pengendalian serangan hama dan membersihkan sisa dari tanaman sebelumnya yang dapat mengganggu pertumbuhan tanaman utama. mineralisasi adalah zona aktivitas mikroba intensif yang memiliki peran yang berperan

penting bagi tanaman yang terdapat pada lapisan olah yang dilakukan dengan pembalikan tanah dan penghancuran bahanbahan organik, maka dengan itu pada tingkat kesuburan tanah sangat dipengaruhi oleh keberadaan mikroorganisme didalamnya.

Penggunaan mulsa merupakan bagian dari metode kultur teknis, pengaplikasian mulsa berperan di dalam menekan populasi gulma. Pengaplikasian mulsa dengan tingkat ketebalan yang tinggi 4-5 cm dapat meningkatkan produktivitas tanaman kedelai, hal tersebut terjadi karena mulsa dapat mengubah iklim mikro di sekitar tanaman, yang dapat meningkatkat air tanah dan menghampat pertumbuhan gulma, karena sinar matahari tidak mampu diterima secara optimal pada biji-bii gulma. Tanaman utama terbebaskan dari persaingan gulma dalam memperoleh hara mineral tanah (Rahman & Karimuna., 2023). Penggunaan mulsa organik sangat jarang digunakan oleh petani dan lebih dominan menggunakan mulsa anorganik, karena penggunaanya mulsa organik hanya dapat dipakai satu kali panen dan masih sedikit informasi terkait manfaat penggunaan mulsa organik sebagai bahan penunjang dalam Berdasarkan budidaya tanaman. sumbernya bahan mulsa terbagi menjadi 2 jenis, mulsa anorganik yang terbuat dari bahan-bahan sintesis ataupun kimia dengan sifat sulit untuk terurai, sedangkan mulsa organik terbuat dari sisa tanaman pertanian dengan sifat mudah terurai. Mulsa organik memiliki macam jenis, diantaranya terbuat dari sekam padi, cocopeat, dan mulsa dari daun kering, contohnya daun bambu yang memiliki banyak manfaat untuk budidaya (Vebriansyah, 2018. tanaman keefektifan dari metode terpadu yang telah lahan yakni kombinasi dilakukan di pemberian mulsa organik dan tingkat ketebalan yang diharapkan dapat menekan gulma secara efektif perlu dilakukan, teknik ini dilakukan untuk menciptakan kondisi fisik, kimia dan biologis tanah agar menjadi lebih baik, sehingga dilakukan teknik pengendalian gulma secara terpadu untuk menunjang sistem pertanian yang berkelanjutan.

BAHAN DAN METODE

Bahan yang digunakan dalam penelitian ini yaitu: benih kedelai varietas Grobogan mulsa jerami padi, mulsa pelepah pisang, mulsa batang jagung. Penelitian ini dilaksanakan mulai bulan Oktober-Januari 2024, bertempat di Kebun Benih Holtikultura Tohudan, Colomadu Karanganyar. Ketinggian tempat 105 mdpl memiliki suhu rata-rata berkisar 29-32°C. Penelitian dilakukan selama 3 bulan yang di rancang dengan Rancangan Acak Kelompok Lengkap (RAKL) 10 kombinasi perlakuan dan di ulang sebanyak 3 kali. Analisis data memakai sidik ragam (Anova) dan diuji lanjut menggunakan uji Duncan taraf 5%. Prosedur penelitian dilakukan beberapa tahap yaitu, persiapan lahan, penanaman, pemulsaan, pemupukan, pemeliharaan, panen.

HASIL DAN PEMBAHASAN

Pertumbuhan Kedelai

Berdasarkan uji Duncan di peroleh data bahwa tinggi tanaman pada perlakuan mulsa pelepah pisang ketebalan 3 cm (M2T3) mendapatkan hasil tertinggi dengan rata-rata 106,66 cm tidak berbeda nyata jika dibandingkan M2T2 dengan nilai rata-rata 101,66 cm, M1T1 degan nilai rata-rata 90,66 cm, M2T1 dengan nilai rata-rata 93 cm, dan M3T3 dengan nilai rata-rata 91 cm, tetapi berbeda nyata jika dibandingkan dengan (M0T0) memperoleh nilai rata-rata 83.33 cm, (M1T2) dengan nilai rata-rata 83.33 cm, (M1T3) dengan nilai rata-rata 87.33 cm, (M3T1) dengan nilai rata-rata 88.33 cm, dan (M3T2) dengan nilai rata-rata 79.33 cm. Hasil tersebut dapat dipengaruhi oleh sistem drainase, karena air berperan sangat penting didalam proses fotosintesis. Drainase yang mencukupi untuk menunjang pertumbuhan tanaman yang baik, karena kekurangan air pada tanaman dapat menyebabkan mati serta kelebihan air dapat menyebabkan pertumbuhan tanaman melebihi batas.

Jumlah daun pada perlakuan mulsa pelepah pisang dengan ketebalan 3 cm (M2T3) memperoleh hasil tertinggi dengan nilai ratarata 102.33 helai, tidak berbeda nyata dengan (M2T1) dengan nilai rata-rata 89.33 helai, (M2T2) dengan nilai rata-rata 91.66 helai, (M3T3) dengan nilai rata-rata 95 cm,

(M3T1) dengan nilai rata-rata 96.66 helai, (M1T1) dengan nilai rata-rata 98.33 helai. Hasil ini diduga karena batang pisang memiliki kandungan selulosa yang cukup tinggi. Kandungan yang terdapat pada batang pisang sebagian besar berisi air dan serat (Amir & Fauzy, 2018).

Tabel 1 Pertumbuhan kedelai akibat 10 macam kombinasi perlakuan mulsa

	Rata-rata Pertumbuhan Kedelai				
_	Tinggi			Brangkasan	
	Tanaman	Jumlah Daun	Luas Daun	Kering	
Perlakuan	(cm)	(Helai)	(cm^2)	(g)	
Mulsa plastik	88.33 ab	64 a	68.50 a	30.66 bc	
Jerami padi ketebalan 1 cm	90.66 abc	98.33 c	92.33 a	41.33 d	
Jerami padi ketebalan 2 cm	88.33 ab	69 a	80.00 a	28.33 ab	
Jerami padi ketebalan 3 cm	87.33 ab	62.33 a	85.67 a	26 ab	
Batang pisang ketebalan 1 cm	93 abc	89.33 bc	103.00 a	38.33 cd	
Batang pisang ketebalan 2 cm	101.66 bc	91.66 bc	98.50 a	30.66 bc	
Batang pisang ketebalan 3 cm	106.66 c	102.33 c	74.67 a	33 bc	
Batang jagung ketebalan 1 cm	88.33 ab	96.66 c	79.00 a	54 f	
Batang jagung ketebalan 2 cm	79.33 a	76.66 ab	92.33 a	21.33 a	
Batang jagung ketebalan 3 cm	91 abc	95 bc	90.00 a	32.33 bc	

Keterangan: Nilai dalam kolom yang diikuti huruf yang sama tidak berbeda nyata pada Uji Duncan 5%

Mulsa pelepah pisang yang terurai dengan baik dapat menjadi unsur hara dan pupuk organik bagi tanaman, membantu menjaga kelembapan tanah, serta keberadaannya mudah di temui. Berat brangkasan kering dengan perlakuan mulsa batang jagung ketebalan 1 cm (M3T1) menghasilkan nilai rata- rata 54 gram dengan perolehan hasil tertinggi berbeda nyata jika dibandingkan dengan M0T0, M1T1, M1T2, M1T3, M2T1, M2T2, M2T3, M3T2, M3T3, sedangkan mulsa batang jagung ketebalan 2 cm (M3T2)menghasilkan nilai terendah dengan nilai rata-rata 21.33 gram. Hasil ini diduga karena didalam batang jagung mengandung selulosa, hemiselulosa dan lignin. Manfaat selulosa sendiri bagi tanaman yaitu dalam membantu tumbuhan mempertahankan bentuknya serta melindungi sel-sel dari kerusakan fisik. Selain itu, dinding selulosa juga berperan dalam transportasi air dan nutrisi di dalam tanaman, kemudian peran dari hemiselulosa

yaitu mengikat lembaran serat selulosa membentuk mikrofibril unrtuk meningkatkan stabilitas dinding sel dan peran dari lignin yaitu sebagai pengangkut internal dari air, nutrisi dan zat metabolit serta memberikan kekuatan pada dinding sel.

Luas daun dari perlakuan mulsa pelepah pisang dengan ketebalan 1 cm (M2T1) dengan rata-rata 103.00 cm² tidak berbeda nyata jika dibandingkan dengan M0T0, M1T2, M1T3, M1T1, M2T2, M2T3, M3T1, M3T2, M3T3. Hasil tersebut dapat disebabkan interaksi antara perlakuan jarak tanam dan waktu tanam menunjukkan bahwa semakin rapat tingkat jarak tanam diikuti dengan semakin awal waktu tanam kedelai maka semakin luas permukaan daun, sebaliknya semakin renggang tingkat jarak tanam diikuti dengan bersamaan waktu tanam maka semakin sempit luas permukaan daun (Harmono & Andoko 2005). Pengaruh lain dapat juga disebabkan karena kurangnya unsur hara yang terserap tanaman sehingga

luas daun dari beberapa perlakuan menunjukkan hasil yang rendah.

Hasil Kedelai

Jumlah polong pada perlakuan M1T1 memberikan perlakuan tertinggi dengan rata-rata 101.00 polong, tidak berbeda nyata jika dibandingkan M2T1 dan M3T1, kemudian pada perlakuan mulsa batang jagung dengan ketebalan 3 cm (M3T3) memberikan nilai terendah dengan rata-rata 48.67 polong. Hasil tersebut karena di dalam mulsa jerami padi mengandung unsur hara vang ditranslokasikan dari akar ke daun hingga dapat memproduksi bunga dan polong yang banyak. Pemberian jenis mulsa yang berbeda pada tanaman memberikan berbeda pengaruh vang pula pengaturan suhu, kelembaban, kandungan air tanah, penekanan gulma dan organisme pengganggu, kemudian untuk ketebalan di sini menggunakan ketebalan 1 cm yang di rasa sangat tipis tetapi hasilnya lebih baik, hal ini diduga karena di dalam jerami padi mengandung unsur hara yang membuat pertumbuhan semakin baik yang dapat mengalahkan pertumbuhan dari populasi gulma, dan sistem perbersihan gulma yang dilakukan 2 minggu sekali mampu menekan pertumbuhan gulma yang pesat.

Berat Biji pada M2T2 dengan ratarata 27.66 gram memiliki nilai tertinggi, tetapi tidak berbeda nyata jika dibandingkan dengan M0T0, M1T2, M1T3, M1T1, M2T1, M2T3, M3T1, M3T2, M3T3, dan nilai terendah terdapat pada perlakuan mulsa batang jagung dengan ketebalan 1 cm (M3T1). Hasil ini dipengaruhi oleh beberapa faktor diantaranya karena batang pisang mengandung air cukup banyak sehingga mengurangi untuk terjadinya penguapan, batang pisang bisa mensuplai air dari kandungan air di dalam batang tersebut. Kebutuhan air dalam suatu tanaman umumnya selalu berbeda-beda, oleh karena itu banyak sedikitnya air yang diberikan dalam penyiraman sangat mempengaruhi kondisi dari pertumbuhan tanaman itu sendiri (Pracaya dan Kartika, Perlakuan dengan ketebalan 2 cm yang dirasa masih mampu untuk menekan populasi gulma agar pemberian nutrisi bisa terfokus pada tanaman utamanya yaitu kedelai dan tidak kalah saing dengan pertumbuhan gulma.

Tabel 2 Hasil kedelai akibat 10 macam kombinasi perlakuan mulsa

Perlakuan	Komponen hasil per tanaman				
	Jumlah Polong	Jumlah Biji	Berat Biji	Berat 100 Biji	
	(polong)	(butir)	(gram)	(gram)	
Mulsa plastik	70.00 bc	209.66 e	20.66 с	9.66 abc	
Jerami padi ketebalan 1 cm	101.00 f	193 d	13.66 ab	12.66 bc	
Jerami padi ketebalan 2 cm	50.00 a	117 a	12.33 a	14 c	
Jerami padi ketebalan 3 cm	81.00 cd	184.33 d	17.66 bc	9 ab	
Batang pisang ketebalan 1 cm	99.67 f	183.66 d	14.66 ab	11.33 abc	
Batang pisang ketebalan 2 cm	87.00 de	215.66 e	27.66 f	10 abc	
Batang pisang ketebalan 3 cm	92.67 e	149.66 c	13.66 ab	9 ab	
Batang jagung ketebalan 1 cm	93.33 ef	141 bc	11.33 a	11.66 abc	
Batang jagung ketebalan 2 cm	62.33 b	134.66 b	14.66 ab	10 abc	
Batang jagung ketebalan 3 cm	48.67 a	106.66 a	13 a	8 a	

Keterangan: Nilai dalam kolom yang diikuti huruf yang sama tidak berbeda nyata pada Uji Duncan

5% Jumlah biji M2T2 dengan rata-rata 215.66 butir gram memperoleh nilai tertinggi tetapi hasilnya tidak berbeda nyata jika dibandingkan dengan dengan M0T0,

tetapi berbeda nyata dengan M1T1 dengan nilai rata-rata 193 butir, M1T2 dengan nilai rata-rata 117 butir, M1T3 dengan nilai rata-rata 184.33 butir, M2T1 dengan nilai rata-

rata 183.66 butir, M2T3 dengan nilai ratarata 149.66 butir, M3T1 dengan nilai ratarata 141 butir, M3T2 dengan nilai rata-rata 134.66 butir, M3T3 dengan nilai rata-rata 106.66 butir. Hasil ini dipengaruhi oleh beberapa faktor, salah satu faktornya yaitu karena di dalam pelepah pisang yang sudah terurai dengan baik dengan tanah, maka akan menjadi unsur hara dan pupuk organik bagi tanaman, sehingga didalam produksi bijinya menghasilkan biji yang lebih tinggi dan getah pelepah pisang memiliki kandungan yang beragam, diantararanya antrakuonin, kuinon dan saponin, yang merupakan antibakteri untuk membantu pertumbuhan jamur yang yang banyak ditemukan pada tempat yang lembab dan pelepah pisang juga mampu menjaga kelembapan tanah.

Berat 100 biji M1T2 memperoleh nilai tertinggi dengan rata-rata 14 gram tidak berbeda nyata jika dibandingkan dengan M0T0, M1T1, M2T1, M2T2, M3T1, M3T2. Dan berbeda nyata dengan M1T3, M2T3, M3T3. Hasil tersebut diduga karena di dalam batang pisang mengandung mengandung berbagai unsur penting yang

dibutuhkan tanaman, diantaranya nitrogen (N), fosfor (P), dan kalium (K). Nitrogen tanaman mampu merangsang pertumbuhan vegetatif tanaman secara keseluruhan, khususnya pada pertumbuhan akar, batang dan daun, kemudian untuk manfaat Fosfor bagi tanaman yaitu mampu membentuk asam nukleat, mengatur sintesis protein, merangsang pertumbuhan akar, mempercepat proses pembungaan, mempercepat proses pemasakan buah atau biji serta unsur, Kalium berperan sebagai pengatur proses fisiologi tanaman seperti fotosintetis. akumulasi. translokasi. transportasi karbohidrat. membuka menutupnya stomata, mengatur atau distribusi air dalam jaringan dan sel.

Bobot Gulma

Pengamatan berat gulma dengan nilai terendah terdapat pada perlakuan dengan menggunakan mulsa plastik (M0T0) dengan nilai rata-rata 3,33 gram, masuk pada kategori gulma rendah, kemudian untuk mulsa jerami padi (M1T1) memperoleh nilai tertinggi dengan rata-rata 11.00.

Tabel 3. Bobot gulma akibat 10 macam kombinasi perlakuan mulsa

Perlakuan	Bobot gulma (g)		
Mulsa plastik	3.33 a		
Jerami padi ketebalan 1 cm	11.00 c		
Jerami padi ketebalan 2 cm	8.33 bc		
Jerami padi ketebalan 3 cm	5.67 ab		
Batang pisang ketebalan 1 cm	7.67 bc		
Batang pisang ketebalan 2 cm	7.67 bc		
Batang pisang ketebalan 3 cm	4.67 a		
Batang jagung ketebalan 1 cm	9.67 cd		
Batang jagung ketebalan 2 cm	7.67 bc		
Batang jagung ketebalan 3 cm	5.67 ab		

Keterangan: Nilai dalam kolom yang diikuti huruf yang sama tidak berbeda nyata pada Uji Duncan 5%

Hasil ini diduga dalam penggunaan mulsa plastik mampu menekan pertumbuhan gulma lebih maksimal, tetapi dengan penggunaan bahan organik juga tidak menutup kemungkinan dalam menekan populasi pertumbuhan gulma yaitu pada perlakuan mulsa pelepah pisang dengan 3 cm (M2T3) dengan nilai rata-rata 4,67 gram. Hasil tersebut di duga karena pada perlakuan mulsa plastik terkandung bahan kimia serta mampu menutup permukaan tanah secara merata sehingga pertumbuhan gulma sangat

rendah, sedangkan pada mulsa organik dengan penggunaan jenis mulsa yang tepat dang tingkat ketebalan mampu menekan populasi gulma, dikarenakan perngaplikasian mulsa dengan ketebalan tinggi mampu menghambat pertumbuhan gulma karena gulma tidak memperoleh sinar matahari yang cukup (Resdiar et al., 2020). Pemberian mulsa sintetik umumnya memberikan penekanan gulma yang lebih baik daripada mulsa organik (Dragumilo et al., 2023).

KESIMPULAN

Hasil penelitian ini menunjukkan bahwa pertumbuhan kedelai pada perlakuan mulsa batang pisang dengan ketebalan 3 cm memberikan hasil terbaik pada pertumbuhan kedelai yaitu pada tinggi tanaman dan jumlah daun, sedangkan perlakuan mulsa batang pisang memberikan hasil terbaik pada pertumbuhan luas daun. Parameter hasil pada perlakuan mulsa batang pisang dengan ketebalan 2 cm memberikan hasil yang terbaik pada hasil tanaman kedelai dengan jumlah polong 87,00 polong dan jumlah biji 215,67 butir per tanaman. Perlakuan mulsa plastik dan mulsa organik masing- masing memberikan hasil terbaik untuk meminimalisir pertumbuhan gulma. Interaksi antara penggunaan mulsa organik dan tingkat ketebalan menunjukkan hasil yang nyata terhadap pertumbuhan dan hasil tanaman kedelai pada perlakuan mulsa batang pisang dengan ketebalan 3 cm.

DAFTAR PUSTAKA

- Amir, N. & Fauzy, M. F. 2018. Pengaruh Jenis Pupuk Organik Cair Limbah Tanaman dan Takaran Pupuk Kotoran Ayam terhadap Pertumbuhan Tanaman Kedelai (Glycine max L. Merrill). Klorofil: Jurnal Penelitian Ilmu-Ilmu Pertanian, 13(1), 17-21
- Dragumilo, A., Marković, T., Vrbničanin, S., Prijić, Ž., Mrđan, S., Radanović, D., & Božić, D. 2023. Weed suppression by mulches in Mentha x piperita L. *Journal of*

- Applied Research on Medicinal and Aromatic Plants, 35, 100499.
- Gunawan, E. & Sabli, T. E. 2023. Aplikasi Bokashi Batang Pisang Dan NPK Mutiara 16: 16: 16 Terhadap Pertumbuhan Serta Produksi Tanaman Kedelai (*Glycine max* L.). *Jurnal Agroteknologi Agribisnis dan Akuakultur*, 3(2), 1-15.
- Harmono & Andoko, A. 2005. *Budi Daya & Peluang Bisnis Jahe*. AgroMedia. Jakarta.
- Pracaya, I. & Kartika, J. G. 2016. *Bertanam 8 Sayuran Organik*. Penebar Swadaya Grup. Jakarta.
- Pratama, D., Hayati, E., & Hasanuddin, H. 2022. Aplikasi Mulsa Organik dan Jarak Tanam pada Tanaman Kedelai (*Glycine max* L.). *Jurnal Ilmiah Mahasiswa Pertanian*, 7(4): 1142-1151.
- Rahman, R., & Karimuna, L. 2023. Interaksi Jarak Tanam dan Mulsa Jerami terhadap Produksi Tanaman Kedelai (Glycine max (L.) Merill). *JIA* (Jurnal Ilmiah Agribisnis): Jurnal Agribisnis dan Ilmu Sosial Ekonomi Pertanian, 8(1): 9-17.
- Resdiar, A., Hasanuddin, H. & Hafsah, S. 2020 Pengendalian Gulma pada Tanaman Kedelai dengan Menggunakan Beberapa Waktu Aplikasi Mulsa Organik Kirinyuh (Chromolaena odorata L.). *Jurnal Agrotek Lestari*, 5(2): 87-95.
- Rosmaiti, R. (2018). Pertumbuhan dan produksi tanaman kacang hijau (Vigna radiata, L) pada berbagai sistem olah tanah di lahan sawah tadah hujan. *Jurnal Penelitian Agrosamudra*, 5(2), 39-45.
- Suryaningrum, R., Purwanto, E. & Sumiyati, S. 2016. Analisis pertumbuhan beberapa varietas kedelai pada perbedaan intensitas cekaman kekeringan. *Agrosains: Jurnal Penelitian Agronomi*, 18(2), 33-37.
- Swastika, D. K. S. (2015). Kinerja produksi dan konsumsi serta prospek pencapaian swasembada kedelai di Indonesia. In *Forum Penelitian Agro Ekonomi*, 33(2), 49-160.
- Vebriansyah, R. (2018). *Tingkatkan* produktivitas cabai. Penebar Swadaya Grup. Jakarta. 155p.

- Widowati, E. H. & Handayani, A. 2022. Dampak Program Pemerintah Terhadap Peningkatan Produksi Kedelai di Jawa Tengah. *Jurnal Litbang Provinsi Jawa Tengah*, 20(2): 205-213.
- Yulia, E., Widiantini, F. & Susanto, A. 2020. Manajemen aplikasi pestisida tepat dan

bijaksana pada kelompok tani padi dan sayuran di SPLPP Arjasari. *Kumawula: Jurnal Pengabdian Kepada Masyarakat*, *3*(2): 310-324.