A Comprehensive Review on Process and Technological Aspects of Wood-Plastic Composites
DOI:
https://doi.org/10.23960/jsl29329-356
Abstract
This review deals with recent works on the process and technological aspects of wood-plastic composites (WPCs) manufacturing.WPCs relate to any composites that are built from wood and non-wood fibers and thermoplastic polymers. Recent progress relevant to wood-plastic composites has been reviewed in this article. The process and technological aspects of WPC, such as raw materials, fabrication, mechanical, physical, thermal, and morphological properties, were outlined comprehensively. The manufacturing process of WPCs is an important aspect of WPCs production. Manufacturing methods like compression molding and pultrusion have some limitations. Extrusion and injection molding processes are the most widely used in WPCs due to their effectiveness. Recent developments dealing with WPCs and the use of different kinds of nanofillers in WPCs have also been presented and discussed. Nanoclays are widely used as nanofillers in WPCs because they represent an eco-friendly, readily available in large quantity, and inexpensive filler. WPCs can be found in a wide range of applications from construction to the automotive industry.
Keywords: additive manufacturing, adhesion, fabrication techniques, mechanical and physical properties, wood-plastic composites
Downloads
References
Alamri, H., and Low, I. M. 2013. Effect of Water Absorption on the Mechanical Properties of Nanoclay Filled Recycled Cellulose Fibre Reinforced Epoxy Hybrid Nanocomposites. Composites Part A: Applied Science and Manufacturing 44(1): 23-31. DOI: 10.1016/j.compositesa.2012.08.026
Al Maadeed, M. A., Ouederni, M., and Noorunnisa Khanam, P. 2013. Effect of Chain Structure on the Properties of Glass Fibre/Polyethylene Composites. Materials and Design 47: 725-730. DOI: 10.1016/j.matdes.2012.11.063
Antov, P., Savov, V., and Neykov, N., 2017. Utilization of Agricultural Waste and Wood Industry Residues in the Production of Natural Fiber-Reinforced Composite Materials. International Journal–Wood, Design, and Technology 6: 64-71.
Arao, Y., Nakamura, S., Tomita, Y., Takakuwa, K., Umemura, T., and Tanaka, T. 2014. Improvement on Fire Retardancy of Wood Flour/Polypropylene Composites using Various Fire Retardants. Polymer Degradation and Stability 100(1): 79-85. DOI: 10.1016/j.polymdegradstab.2013.12.022
Asgary, A. R., Nourbakhsh, A., and Kohantorabi, M. 2013. Old Newsprint/Polypropylene Nanocomposites using Carbon Nanotube: Preparation and Characterization. Composites Part B: Engineering 45(1): 1414-1419. DOI: 10.1016/j.compositesb.2012.07.009
Ashori, A. 2008. Wood-Plastic Composites as Promising Green-Composites for Automotive Industries! Bioresource Technology 99(11): 4661-4667. DOI: 10.1016/j.biortech.2007.09.043
Ashori, A., and Nourbakhsh, A. 2011. Preparation and Characterization of Polypropylene/Wood Flour/Nanoclay Composites. European Journal of Wood and Wood Products 69(4): 663-666. DOI: 10.1007/s00107-010-0488-9
Ashori, A., Sheshmani, S., and Farhani, F. 2012. Preparation and Characterization of Bagasse/HDPE Composites using Multi-Walled Carbon Nanotubes. Carbohydrate Polymers 92: 865-871. DOI: 10.1016/j.carbpol.2012.10.010
Ayrilmis, N., Dundar, T., Kaymakci, A., Ozdemir, F., and Kwon, J. H. 2014. Mechanical and Thermal Properties of Wood-Plastic Composites Reinforced with Hexagonal Boron Nitride. Polymer Composites 35(1): 194-200. DOI: 10.1002/pc.22650
Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., and Bauchongkol, P. 2011. Effect of Thermal-Treatment of Wood Fibres on Properties of Flat-Pressed Wood Plastic Composites. Polymer Degradation and Stability 96(5): 818-822. DOI: 10.1016/j.polymdegradstab.2011.02.005
Azeredo, H. M. C. D. 2009. Nanocomposites for Food Packaging Applications. Food Research International 42(9): 1240-1253. DOI: 10.1016/j.foodres.2009.03.019
Babaei, I., Madanipour, M., Farsi, M., and Farajpoor, A. 2014. Physical and Mechanical Properties of Foamed HDPE/Wheat Straw Flour/Nanoclay Hybrid Composite. Composites Part B: Engineering 56: 163-170. DOI: 10.1016/j.compositesb.2013.08.039
Bakraji, E. H., and Salman, N. 2003. Properties of Wood-Plastic Composites: Effect of Inorganic Additives. Radiation Physics and Chemistry 66(1): 49-53. DOI: 10.1016/S0969-806X(02)00262-1
Balasuriya, P. W., Ye, L., and Mai, Y. 2001. Mechanical Properties of Wood Fake-Polyethylene Composites. Part I : Effects of Processing Methods and Matrix Melt Flow Behaviour. Composites Part A: Applied Science and Manufacturing 32(5): 619-629. DOI: 10.1016/S1359-835X(00)00160-3
Bengtsson, M., Gatenholm, P., and Oksman, K. 2005. The Effect of Crosslinking on the Properties of Polyethylene/Wood Flour Composites. Composites Science and Technology 65(10): 1468-1479. DOI: 10.1016/j.compscitech.2004.12.050
Bengtsson, M., and Oksman, K. 2006. Silane Crosslinked Wood Plastic Composites: Processing and Properties. Composites Science and Technology 66(13): 2177-2186. DOI: 10.1016/j.compscitech.2005.12.009
Bhaskar, J., Haq, S., Pandey, A. K., and Srivastava, N. 2012. Evaluation of Properties of Propylene-Pine Wood Plastic Composite. Journal of Materials and Environmental Science 3(3): 605-612.
Bishay, I. K., Abd-El-Messieh, S. L., and Mansour, S. H. 2011. Electrical, Mechanical and Thermal Properties of Polyvinyl Chloride Composites Filled with Aluminum Powder. Materials and Design 32(1): 62-68. DOI: 10.1016/j.matdes.2010.06.035
Bouafif, H., Koubaa, A., Perré, P., and Cloutier, A. 2009. Effects of Fiber Characteristics on the Physical and Mechanical Properties of Wood Plastic Composites. Composites Part A: Applied Science and Manufacturing 40(12): 1975-1981. DOI: 10.1016/j.compositesa.2009.06.003
Chaharmahali, M., Hamzeh, Y., Ebrahimi, G., Ashori, A., and Ghasemi, I. 2014. Effects of Nano-Graphene on the Physico-Mechanical Properties of Bagasse/Polypropylene Composites. Polymer Bulletin 71(2): 337-349. DOI: 10.1007/s00289-013-1064-3
Chavooshi, A., Madhoushi, M., Navi, M., and Abareshi, M. Y. 2014. MDF Dust/PP Composites Reinforced with Nanoclay: Morphology, Long-Term Physical Properties and Withdrawal Strength of Fasteners in Dry and Saturated Conditions. Construction and Building Materials 52: 324-330. DOI: 10.1016/j.conbuildmat.2013.11.045
Clemons, C. M. 2002. Interfacing Wood-Plastic Composites Industries in the U.S. Forest Products Journal 52(6): 10-18.
Clemons, C. M., and Iback, R. E. 2004. Effects of Processing Method and Moisture History on Laboratory Fungal Resistance of Wood-HDPE Composites. Forest Product Journal 54(4): 50-57.
Deka, B. K., and Maji, T. K. 2010. Effect of Coupling Agent and Nanoclay on Properties of HDPE, LDPE, PP, PVC Blend and Phargamites karka Nanocomposite. Composites Science and Technology 70(12): 1755-1761. DOI: 10.1016/j.compscitech.2010.07.010
Doan, T. T. L., Gao, S. L., and Mäder, E. 2006. Jute/Polypropylene Composites I. Effect of Matrix Modification. Composites Science and Technology 66(7-8): 952-963. DOI: 10.1016/j.compscitech.2005.08.009
Dobreva, D., Nenkova, S., and Vasileva, S. 2006. Morphology and Mechanical Properties of Polypropylene-Wood Flour Composites. BioResources 1: 209-219.
El-Haggar, S. M., and Kamel, M. A. 2011. Wood Plastic Composites. in: Advances in Composite Materials - Analysis of Natural and Man-Made Materials InTech. DOI: 10.5772/18172
Espert, A., Vilaplana, F., and Karlsson, S. 2004. Comparison of Water Absorption in Natural Cellulosic Fibres from Wood and One-Year Crops in Polypropylene Composites and Its Influence on Their Mechanical Properties. Composites Part A: Applied Science and Manufacturing 35(11): 1267-1276. DOI: 10.1016/j.compositesa.2004.04.004
Fabiyi, J. S., McDonald, A. G., Morrell, J. J., and Freitag, C. 2011. Effects of Wood Species on Durability and Chemical Changes of Fungal Decayed Wood Plastic Composites. Composites Part A: Applied Science and Manufacturing 42(5): 501-510. DOI: 10.1016/j.compositesa.2011.01.009
Fabiyi, J. S., McDonald, A. G., Wolcott, M. P., and Griffiths, P. R. 2008. Wood Plastic Composites Weathering: Visual Appearance and Chemical Changes. Polymer Degradation and Stability 93(8): 1405-1414. DOI: 10.1016/j.polymdegradstab.2008.05.024
Fang, Y., Wang, Q., Guo, C., Song, Y., and Cooper, P. A. 2013. Effect of Zinc Borate and Wood Flour on Thermal Degradation and Fire Retardancy of Polyvinyl Chloride (PVC) Composites. Journal of Analytical and Applied Pyrolysis 100: 230-236. DOI: 10.1016/j.jaap.2012.12.028
Farhadinejad, Z., Ehsani, M., Khosravian, B., and Ebrahimi, G. 2012. Study of Thermal Properties of Wood Plastic Composite Reinforced with Cellulose Micro Fibril and Nano Inorganic Fiber Filler. European Journal of Wood and Wood Products 70(6): 823-828. DOI: 10.1007/s00107-012-0630-y
Farsheh, A. T., Talaeipour, M., Hemmasi, A. H., Khademieslam, H., and Ghasemi, I. 2011. Investigation on the Mechanical and Morphological Properties of Foamed Nanocomposites based on Wood Flour/PVC/Multi-Walled Carbon Nanotube. BioResources 6(1): 841-852.
Faruk, O., and Matuana, L. M. 2008. Nanoclay Reinforced HDPE as a Matrix for Wood-Plastic Composites. Composites Science and Technology 68(9): 2073-2077. DOI: 10.1016/j.compscitech.2008.03.004
García, M., Hidalgo, J., Garmendia, I., and García-Jaca, J. 2009. Wood-Plastics Composites with better Fire Retardancy and Durability Performance. Composites Part A: Applied Science and Manufacturing 40(11): 1772-1776. DOI: 10.1016/j.compositesa.2009.08.010
Gardner, D. J., Han, Y., and Wang, L. 2015. Wood-Plastic Composite Technology. Current Forestry Reports 1(3): 139-150. DOI: 10.1007/s40725-015-0016-6
Gardner, D. J., and Murdock, D. 2002. Extrusion of Wood Plastic Composites. Advanced Engineered Wood Composites Center. Brewer, Main, U.S.
Gassan, J., and Bledzki, A. K. 2000. Possibilities to Improve the Properties of Natural Fiber Reinforced Plastics by Fiber Modification - Jute Polypropylene Composites. Applied Composite Materials 7(5-6): 373-385. DOI: 10.1023/A:1026542208108
Gebhardt, A. 2011. Understanding Additive Manufacturing. Hanser Publications, Cincinnati. DOI: 10.3139/9783446431621
George, J., Bhagawan, S. S., Prabhakaran, N., and Thomas, S. 1995. Short Pineapple-Leaf-Fiber-Reinforced Low-Density Polyethylene Composites. Journal of Applied Polymer Science 57(7): 843-854. DOI: 10.1002/app.1995.070570708
Georgopoulos, S. T., Tarantili, P. A., Avgerinos, E., Andreopoulos, A. G., and Koukios, E. G. 2005. Thermoplastic Polymers Reinforced with Fibrous Agricultural Residues. Polymer Degradation and Stability 90(2): 303-312. DOI: 10.1016/j.polymdegradstab.2005.02.020
Ghasemi, I., and Kord, B. 2009. Long-Term Water Absorption Behaviour of Polypropylene/Wood Flour/Organoclay Hybrid Nanocomposite. Iranian Polymer Journal 18(9): 683-691.
Gosselin, R., Rodrigue, D., and Riedl, B. 2006. Injection Molding of Postconsumer Wood–Plastic Composites I: Morphology. Journal of Thermoplasctic Composite Materials 19(6): 639-657. DOI: 10.1177/0892-705706067484
Griswold, B. M. 2006. Old Computers to be Recycled into Decking. Plastic News 1-3.
Gwon, J. G., Lee, S. Y., Chun, S. J., Doh, G. H., and Kim, J. H. 2010. Effects of Chemical Treatments of Hybrid Fillers on the Physical and Thermal Properties of Wood Plastic Composites. Composites Part A: Applied Science and Manufacturing 41(10): 1491-1497. DOI: 10.1016/j.compositesa.2010.06.011
Hetzer, M., and De Kee, D. 2008. Wood/Polymer/Nanoclay Composites, Environmentally Friendly Sustainable Technology: A Review. Chemical Engineering Research and Design 86(10): 1083-1093. DOI: 10.1016/j.cherd.2008.05.003
Holbery, J., and Houston, D. 2006. Natural-Fiber-Reinforced Polymer Composites in Automotive Applications. JOM 58(11): 80-86. DOI: 10.1007/s11837-006-0234-2
Homami, S. S., Seydei, M. K., and Moradi, S. 2013. Preparation of Wood Plastic Composite with High Density Polyethylene and Bagasse. World Applied Sciences Journal 21(9): 1302-1304. DOI: 10.5829/idosi.wasj.2013.21.9.2669
Hong, M. K., Lubis, M. A. R., Park, B. D., Sohn, C. H., and Roh, J. 2020. Effects of Surface Laminate Type and Recycled Fiber Content on Properties of Three-Layer Medium Density Fiberboard. Wood Material Science and Engineering 15(3): 163-171. DOI: 10.1080/17480272.2018.1528479
Jayaraman, K. 2003. Manufacturing Sisal-Polypropylene Composites with Minimum Fibre Degradation. Composites Science and Technology 63(3-4): 367-374. DOI: 10.1016/S0266-3538(02)00217-8
John, M. J., and Thomas, S. 2008. Biofibres and Biocomposites. Carbohydrate Polymers 71(3): 343-364. DOI: 10.1016/j.carbpol.2007.05.040
Johnson, R. K., Zink-Sharp, A., Renneckar, S. H., and Glasser, W. G. 2008. Mechanical Properties of Wetlaid Lyocell and Hybrid Fiber-Reinforced Composites with Polypropylene. Composites Part A: Applied Science and Manufacturing 39(3): 470-477. DOI: 10.1016/j.compositesa.2007.12.007
Jördens, C., Wietzke, S., Scheller, M., and Koch, M. 2010. Investigation of the Water Absorption in Polyamide and Wood Plastic Composite by Terahertz Time-Domain Spectroscopy. Polymer Testing 29(2): 209-215. DOI: 10.1016/j.polymertesting.2009.11.003
Kabir, M.M., Wang, H., Lau, K.T., and Cardona, F. 2012. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Composites Part B: Engineering 43(7): 2883-2892. DOI: 10.1016/j.compositesb.2012.04.053
Kamdem, D. P., Jiang, H., Cui, W., Freed, J., and Matuana, L. M. 2004. Properties of Wood Plastic Composites Made of Recycled HDPE and Wood Flour from CCA-Treated Wood Removed from Service. Composites Part A: Applied Science and Manufacturing 35(3): 347-355. DOI: 10.1016/j.compositesa.2003.09.013
Kamel, S. 2007. Nanotechnology and Its Applications in Lignocellulosic Composites, a Mini Review. Express Polymer Letters 1(9): 546-575. DOI: 10.3144/expresspolymlett.2007.78
Karmaker, A. C., and Youngquist, J. A. 1996. Injection Molding of Polypropylene Reinforced with Short Jute Fibers. Journal of Applied Polymer Science 62: 1147-1151. DOI: 10.1002/(sici)1097-4628(19961121)62:8<1147::aid-app2>3.0.co;2-i
Karmarkar, A., Chauhan, S. S., Modak, J. M., and Chanda, M. 2007. Mechanical Properties of Wood–Fiber Reinforced Polypropylene Composites: Effect of a Novel Compatibilizer with Isocyanate Functional Group. Composites Part A: Applied Science and Manufacturing 38(2): 227-233. DOI: 10.1016/j.compositesa.2006.05.005
Keener, T. J., Stuart, R. K., and Brown, T. K. 2004. Maleated Coupling Agents for Natural Fibre Composites. Composites Part A: Applied Science and Manufacturing 35(3): 357-362. DOI: 10.1016/j.compositesa.2003.09.014
Khalid, M., Ali, S., Abdullah, L. C., Ratnam, C. T., and Choong, S. Y. T. 2006. Effect of MAPP as Coupling Agent on the Mechanical Properties of Palm Fiber Empty Fruit Bunch and Cellulose Polypropylene Biocomposites. International Journal of Engineering and Technology 3(1): 79-84.
Kim, J. P., Yoon, T. H., Mun, S. P., Rhee, J. M., and Lee, J. S. 2006. Wood-Polyethylene Composites using Ethylene-Vinyl Alcohol Copolymer as Adhesion Promoter. Bioresource Technology 97(3): 494-499. DOI: 10.1016/j.biortech.2005.02.048
Kord, B. 2011. Effect of Bark Flour Content on Mechanical Properties of Wood Plastic Composites. World Applied Sciences Journal 14(3): 398-401.
Kord, B., and Kiakojouri, S. 2011. Effect of Nanoclay Dispersion on Physical and Mechanical Properties of Wood Flour/Polypropylene/Glass Fibre Hybrid Composites. BioResources 6: 1741-1751.
Kordkheili, H. Y., Farsi, M., and Rezazadeh, Z. 2013. Physical, Mechanical and Morphological Properties of Polymer Composites Manufactured from Carbon Nanotubes and Wood Flour. Composites Part B: Engineering 44(1): 750-755. DOI: 10.1016/j.compositesb.2012.04.023
Kordkheili, H. Y., Hiziroglu, S., and Farsi, M. 2012. Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber. Materials & Design Elsevier Ltd 33: 395–398. DOI: 10.1016/j.matdes.2011.04.027
Kuo, P. Y., Wang, S. Y., Chen, J. H., Hsueh, H. C., and Tsai, M. J. 2009. Effects of Material Compositions on the Mechanical Properties of Wood-Plastic Composites Manufactured by Injection Molding. Materials and Design 30(9): 3489-3496. DOI: 10.1016/j.matdes.2009.03.012
Lee, S. Y., Kang, I. A., Doh, G. H., Kim, W. J., Kim, J. S., Yoon, H. G., and Wu, Q. 2008. Thermal, Mechanical and Morphological Properties of Polypropylene/Clay/Wood Flour Nano composites. Express Polymer Letters 2(2): 78-87. DOI: 10.3144/expresspolymlett.2008.11
Lei, B., Zhang, Y., He, Y., Xie, Y., Xu, B., Lin, Z., Huang, L., Tan, S., Wang, M., and Cai, X. 2015. Preparation and Characterization of Wood-Plastic Composite Reinforced by Graphitic Carbon Nitride. Materials and Design 66: 103-109. DOI: 10.1016/j.matdes.2014.10.041
Lertwimolnun, W., and Vergnes, B. 2005. Influence of Compatibilizer and Processing Conditions on the Dispersion of Nanoclay in a Polypropylene Matrix. Polymer 46(10): 3462-3471. DOI: 10.1016/j.polymer.2005.02.018
Li, X., Lei, B., Lin, Z., Huang, L., Tan, S., and Cai, X. 2014. The Utilization of Bamboo Charcoal enhances Wood Plastic Composites with Excellent Mechanical and Thermal Properties. Materials and Design 53: 419-424. DOI: 10.1016/j.matdes.2013.07.028
Li, X., Tabil, L. G., and Panigrahi, S. 2007. Chemical Treatments of Natural Fiber for use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment 15(1): 25-33. DOI: 10.1007/s10924-006-0042-3
Loos, J., Alexeev, A., Grossiord, N., Koning, C. E., and Regev, O. 2005. Visualization of Single-Wall Carbon Nanotube (SWNT) Networks in Conductive Polystyrene Nanocomposites by Charge Contrast Imaging. Ultramicroscopy 104(2): 160-167. DOI: 10.1016/j.ultramic.2005.03.007
Lubis, M. A. R., and Park, B. D. 2020. Enhancing the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives via In-Situ Modification with Intercalated Nanoclay. The Journal of Adhesion (Article in Press). DOI: 10.1080/00218464.2020.1753515
Lundin, T., Falk, R. H., and Felton, C. 2001. Accelerated Weathering of Natural Fiber-Thermoplastic Composites: Effects of Ultraviolet Exposure on Bending Strength and Stiffness. The Sixth International Conference on Woodfiber-Plastic Composites. May 15-16, 2001. The Madison Concourse Hotel Madison, Wisconsin.
Magaraphan, R., Lilayuthalert, W., and Sirivat, A. 2001. Preparation, Structure, Properties and Thermal Behavior of Rigid-Rod Polyimide/Montmorillonite Nanocomposites. Composites Science and Technology 61: 1253-1264.
Markarian, J. 2008. Outdoor Living Space Drives Growth in Wood-Plastic Composites. Plastics, Additives and Compounding 10(4): 20-25. DOI: 10.1016/s1464-391x(08)70131-4
Metin, D., Tihminlioǧlu, F., Balköse, D., and Ülkü, S. 2004. The Effect of Interfacial Interactions on the Mechanical Properties of Polypropylene/Natural Zeolite Composites. Composites Part A: Applied Science and Manufacturing 35(1): 23-32. DOI: 10.1016/j.compositesa.2003.09.021
Migneault, S., Koubaa, A., Erchiqui, F., Chaala, A., Englund, K., and Wolcott, M. P. 2009. Effects of Processing Method and Fiber Size on the Structure and Properties of Wood-Plastic Composites. Composites Part A: Applied Science and Manufacturing 40(1): 80-85. DOI: 10.1016/j.compositesa.2008.10.004
Mwaikambo, L. Y., and Ansell, M. P. 1999. The Effect of Chemical Treatment on the Properties of Hemp, Sisal, Jute and Kapok for Composite Reinforcement. Angewandte Makromolekulare Chemie. DOI: 10.1002/(sici)1522-9505(19991201)272:1<108::aid-apmc108>3.3.co;2-0
Ndiaye, D., and Tidjani, A. 2012. Effects of Coupling Agents on Thermal Behavior and Mechanical Properties of Wood Flour/Polypropylene Composites. Journal of Composite Materials 46(2): 3067-3075. DOI: 10.1177/0021998311435675
Njuguna, J., Pielichowski, K., and Desai, S. 2008. Nanofiller-Reinforced Polymer Nanocomposites. Polymer Advance Technology 19(8): 947-959. DOI: 10.1002/pat.1074
Odenberger, P. T., Andersson, H. M., and Lundström, T. S. 2004. Experimental Flow-Front Visualisation in Compression Moulding of SMC. Composites Part A: Applied Science and Manufacturing 35(10): 1125-1134. DOI: 10.1016/j.compositesa.2004.03.019
Okamoto, M. 2006. Recent Advances in Polymer/Layered Silicate Nanocomposites: An Overview from Science to Technology. Materials Science and Technology 22(7): 756-779. DOI: 10.1179/174328406X101319
Panthapulakkal, S., Zereshkian, A., and Sain, M. 2006. Preparation and Characterization of Wheat Straw Fibers for Reinforcing Application in Injection Molded Thermoplastic Composites. Bioresource Technology 97(2): 265-272. DOI: 10.1016/j.biortech.2005.02.043
Park, S. J., Seo, D. I., and Lee, J. R. 2002. Surface Modification of Montmorillonite on Surface Acid-Base Characteristics of Clay and Thermal Stability of Epoxy/Clay Nanocomposites. Journal of Colloid and Interface Science 251(1): 160-165. DOI: 10.1006/jcis.2002.8379
Rahman, K. S., Islam, M. N., Rahman, M. M., Hannan, M. O., Dungani, R., and Khalil, H. A. 2013. Flat-Pressed Wood Plastic Composites from Sawdust and Recycled Polyethylene Terephthalate (PET): Physical and Mechanical Properties. SpringerPlus 2: 629. DOI: 10.1186/2193-1801-2-629
Ratanawilai, T., Thanawattanasirikul, N., and Homkhiew, C. 2012. Mechanical and Thermal Properties of Oil Palm Wood Sawdust Reinforced Post-Consumer Polyethylene Composites. ScienceAsia 38(3): 289-294. DOI: 10.2306/scienceasia1513-1874.2012.38.289
Ray, D., Sarkar, B. K., and Bose, N. R. 2002. Impact Fatigue Behaviour of Vinylester Resin Matrix Composites Reinforced with Alkali Treated Jute Fibres. Composites Part A: Applied Science and Manufacturing 33(2): 233-241. DOI: 10.1016/s1359-835x(01)00096-3
Ren, W., Zhang, D., Wang, G., and H. C. 2014. Mechanical and Thermal Properties of Bamboo Pulp Fiber Reinforced Polyethylene Composites. BioResources 9(3): 4117-4127.
Tong, J. Y., Royan, N. R. R., Chuen Ng, Y., Ab Ghani, M. H., and Ahmad, S. 2014. Study of the Mechanical and Morphology Properties of Recycled HDPE Composite using Rice Husk Filler. Advances in Materials Science and Engineering 2014: 938961. DOI: 10.1155/2014/938961
Rude, E. F. 2007. Evaluation of Coupling Mechanisms in Wood Plastic Composites. Thesis. Washington State University, U.S.
Sain, M., Park, S. H., Suhara, F., and Law, S. 2004. Flame Retardant and Mechanical Properties of Natural Fibre-PP Composites Containing Magnesium Hydroxide. Polymer Degradation and Stability 83(2): 363-367. DOI: 10.1016/S0141-3910(03)00280-5
Salmah, H., Ruzaidi, C. M., and Ghani, S. A. 2007. The Effect of Coupling Agent on Thermal Properties and Morphology of Paper Sludge Filled Polypropylene (PP)/Ethylene Propylene Diene Terpolymer (EPDM) Composites. Working Paper. Universiti Malaysia Perlis (UniMAP), Malaysia.
Schadler, L. S., Brinson, L. C., and Sawyer, W. G. 2007. Polymer Nanocomposites: A Small Part of the Story. JOM 59(3): 53-60. DOI: 10.1007/s11837-007-0040-5
Segerholm, K. 2007. Wood Plastic Composites made from Modified Wood: Aspects on Moisture Sorption, Micromorphology and Durability. Working Paper. School of Architecture and the Built Environment, Royal Institute of Technlogy.
Sheshmani, S., Ashori, A., and Fashapoyeh, M. A. 2013. Wood Plastic Composite using Graphene Nanoplatelets. International Journal of Biological Macromolecules 58: 1-6. DOI: 10.1016/j.ijbiomac.2013.03.047
Sihombing, H., Rassiah, K., Ashaari, Z., and Yuharzi, M. Y. 2012. Analysis and Development of Recycled Materials for Wood Plastic Composite Product. Elixir Mechanical Engineering 51: 10834-10840.
Singh-Beemat, J., and Iroh, J. O. 2012. Characterization of Corrosion Resistant Clay/Epoxy Ester Composite Coatings and Thin Films. Progress in Organic Coatings 74(1): 173-180. DOI: 10.1016/j.porgcoat.2011.12.006
Srikanth, M., Misak, H., and Asmatulu, R. 2013. Evaluating Nanosafety of Nanomaterials by In-vitro Cytotoxicity Tests on Fibroblast Cells. In Proceedings: 9th Annual Symposium: Graduate Research and Scholarly Projects. Wichita, KS: Wichita State University, p.85-86.
Stark, N. M., Matuana, L. M., and Clemons, C. M. 2004. Effect of Processing Method on Surface and Weathering Characteristics of Wood-Flour/HDPE Composites. Journal of Applied Polymer Science 93(3): 1021-1030. DOI: 10.1002/app.20529
Stark, N. M., and Rowlands, R. E. 2003. Effects of Wood Fiber Characteristics on Mechanical Properties of Wood/Polypropylene Composites. Wood and Fiber Science 35(2): 167-174. DOI: 10.1016/s0008-8846(03)00193-5
Stark, N. M., White, R. H., Mueller, S. A., and Osswald, T. A. 2010. Evaluation of Various Fire Retardants for Use in Wood Flour-Polyethylene Composites. Polymer Degradation and Stability 95(9): 1903-1910. DOI: 10.1016/j.polymdegradstab.2010.04.014
Sykacek, E., Hrabalova, M., Frech, H., and Mundigler, N. 2009. Extrusion of Five Biopolymers Reinforced with Increasing Wood Flour Concentration on a Production Machine, Injection Moulding and Mechanical Performance. Composites Part A: Applied Science and Manufacturing 40(8): 1272-1282. DOI: 10.1016/j.compositesa.2009.05.023
Taib, R. M., Zauzi, N. S. A., Ishak, Z. a M., and Rozman, H. D. 2010. Effects of Photo-Stabilizers on the Properties of Recycled High-Density Polyethylene (HDPE)/Wood Flour (WF) Composites Exposed to Natural Weathering. PRIM Malaysia Polymer Journal 5(2): 193-203.
Tajan, M., Chaiwutthinan, P., and Leejarkpai, T. 2008. Thermal and Mechanical Properties of Wood-Plastic Composites from Iron Wood Flour and Recycled Polypropylene Foam. Journal of Metals, Materials and Minerals 18(2): 53-56.
Wang, Y. 2007. Morphological Characterization of Wood Plastic Composite (WPC) with Advanced Imaging Tools: Developing Methodologies for Reliable Phase and Internal Damage Characterization. Thesis. Oregon State University, U.S.
WRAP. 2003. Wood Plastic Composite Study-Technology and UK Market Opportunities. The Waste and Reources Action Programme (WRAP). Banbury, UK.
Wolcott, M. P. 1999. A Technology Review of WPC. 33rd International Particleboard/Composite Materials Symposium.
Xie, Y., Hill, C. a S., Xiao, Z., Militz, H., and Mai, C. 2010. Silane Coupling Agents used for Natural Fiber/Polymer Composites: A Review. Composites Part A: Applied Science and Manufacturing 41(7): 806-819. DOI: 10.1016/j.compositesa.2010.03.005
Yadav, S. M., Lubis, M. A. R., Wibowo, E. S., and Park, B. 2020. Effects of Nanoclay Modification with Transition Metal Ion on the Performance of Urea-Formaldehyde Resin Adhesives. Polymer Bulletin. DOI: 10.1007/s00289-020-03214-3
Yang, B. Z., Seale, R. D., Dahlen, J., Shmulsky, R., and Jones, P. D. 2014. Bending Properties of a Novel Engineered Composite from Southern Pine Lumber. European Journal of Wood and Wood Products 72(5): 601-607. DOI: 10.1007/s00107-014-0821-9
Yeh, S. K. 2007. Polypropylene-Based Wood-Plastic Composites Reinforced with Nanoclay. Dissertation. West Virginia University. West Virginia, U.S.
Yeh, S. K., Agarwal, S., and Gupta, R. K. 2009. Wood-Plastic Composites Formulated with Virgin and Recycled ABS. Composites Science and Technology 69(13): 2225-2230. DOI: 10.1016/j.compscitech.2009.06.007
Yeh, S. K., and Gupta, R. K. 2008. Improved Wood-Plastic Composites through better Processing. Composites Part A: Applied Science and Manufacturing 39(11): 1694-1699. DOI: 10.1016/j.compositesa.2008.07.013
Yue, L., Pircheraghi, G., Monemian, S. A., and Manas-Zloczower, I. 2014. Epoxy Composites with Carbon Nanotubes and Graphene Nanoplatelets - Dispersion and synergy effects. Carbon 78: 268-278. DOI: 10.1016/j.carbon.2014.07.003
Zhou, X., Yu, Y., Lin, Q., and Chen, L. 2013. Effects of Maleic Anhydride-Grafted Polypropylene (MAPP) on the Physico-Mechanical Properties and Rheological Behavior of Bamboo Powder-Polypropylene Foamed Composites. BioResources 8(4): 6263-6279.
Zolfaghari, A., Behravesh, A. H., and Adli, A. 2013. Continuous Glass Fiber Reinforced Wood Plastic Composite in extrusion Process: Mechanical Properties. Materials and Design 51: 701-708. DOI: 10.1016/j.matdes.2013.04.082
Downloads
Published
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 Licence that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).