PENGARUH SUHU DAN LAMA THAWING DI DATARAN RENDAH TERHADAP KUALITAS SEMEN BEKU SAPI BRAHMAN

Effect of Temperature and Duration of Thawing in Lowlands of Brahman Frozen Semen's Quality

Muhammad Fauzan^a, Madi Hartono^b, and Purnama Edy Santosa^b

^aThe Student of Department of Animal Husbandry Faculty of Agriculture Lampung University
 ^b The Lecture of Department of Animal Husbandry Faculty of Agriculture Lampung University
 Department of Animal Husbandry, Faculty of Agriculture Lampung University
 Soemantri Brojonegoro No.1 Gedung Meneng Bandar Lampung 35145
 Telp (0721) 701583. e-mail: kajur-jptfp@unila.ac.id. Fax (0721)770347

ABSTRACT

Thawing is a method by melting back of semen that had been frozen prior to artificial insemination (AI). The temperature and duration of thawing has a major influence on the state of the spermatozoa, especially the integrity of spermatozoa in the semen. The combination of temperature and duration of thawing that will either be able to prevent damage to sperm, so it still has a high fertility rate. In common, lowland is an area that has low temperature and humidity, so it will have an effect of *thawing's* temperature. The purpose of this study was to determine the temperature and duration of thawing of Brahman's frozen semen which have the most optimal to get used in artificial inseminations in lowlands area.

Research was conducted in March 2014 using a completely randomized design (CRD) with a 3x3 factorial. The first factor is the temperature (34°C, 37°C, and 40°C) and Factor II is duration of thawing (10 seconds, 15 seconds, and 20 seconds) with 3 replications. Parameters observed in this study is the percentage of sperm motility and live spermatozoa. The results were analyzed using ANOVA and Duncan's test at the advanced level of 5 % and 1%. The results showed that temperature and duration of thawing give effects to the quality of the frozen semen of Brahman cattle, but has no interaction between them. The most good quality spermatozoa at a temperature of 40°C sperm motility is 37,77% and the percentage of live spermatozoa is a 40,83%. Duration of thawing at 15 seconds sperm motility is 38,33% and the percentage of live spermatozoa is a 39,77%.

Key words: Temperature thawing, duration thawing, the lowlands, quality, Brahman frozen semen.

PENDAHULUAN

Pembangunan peternakan merupakan program pembangunan nasional yang sangat penting karena peternakan berperan penting dalam memenuhi kebutuhan pangan nasional. Meningkatnya jumlah penduduk Indonesia serta meningkatnya kesadaran masyarakat tentang pentingnya makanan bergizi kebutuhan menjadikan produk ternak khususnya kebutuhan daging sebagai sumber protein hewani meningkat. Salah satu usaha yang dilakukan adalah mempertahankan dan meningkatkan populasi ternak sapi potong (Kaiin and Rasdik, 2005).

Sapi Brahman merupakan tipe sapi potong yang baik untuk dikembangkan. Sapi Brahman memiliki keunggulan pertumbuhan yang cepat dan harga jualnya yang tinggi Blakely and Bade, 1991). Usaha yang dilakukan untuk peningkatan populasi sapi Brahman melalui pemanfaatan teknologi reproduksi peternakan yaitu teknik Inseminasi Buatan (IB) dengan menggunakan semen beku.

Semen beku adalah semen yang telah diencerkan dan selanjutnya dibekukan jauh di bawah titik beku air yang bertujuan untuk penghentian sementara kegiatan hidup dari sel tanpa mematikan fungsi sel. Sebelum digunakan, semen beku harus dithawing terlebih dahulu. Prinsip thawing yakni peningkatan suhu semen secara konstan, perubahan suhu yang mendadak menyebabkan kematian spermatozoa. Untuk Indonesia, metode thawing yang paling praktis adalah dengan menggunakan air kran atau sumur, dengan catatan semen yang sudah dicairkan harus diinseminasikan dalam waktu kurang dari 5 menit (Sanjaya, 1976).

Dataran rendah pada umumnya merupakan daerah yang memiliki temperatur udara panas dan kelembaban udara yang rendah, sehingga berpengaruh terhadap suhu thawing. Suhu thawing yang lebih rendah dari pada suhu lingkungan maka suhu thawing akan memerlukan waktu yang lama untuk menyesuaikan ke suhu air di dataran rendah. Namun apabila suhu thawing lebih tinggi dari pada suhu lingkungan maka sebagian panas akan hilang dari molekul air karena diserap oleh lingkungan yang suhunya rendah dari suhu air thawing. Saat thawing akan mencapai suhu air biasa di lingkungan tempat pelaksanaan thawing, sehingga melalui transfer panas melalui cara konveksi suhu lingkungan dan suhu thawing akan berubah karena dipengaruhi oleh kecepatan angin (Sientje, 2003)

Banyak hal-hal yang dapat menyebabkan rendahnya kualitas semen beku terutama terhadap motilitas diantaranya suhu dan kelembaban udara. Suhu dan kelembaban udara, menurut Rosnah (1998) merupakan bagian dari faktor lingkungan yang dapat mempengaruhi kualitas semen dikarenakan suhu berperan sangat besar dalam menentukan motilitas, sebab kadar metabolisme dan motilitas sperma berbeda menurut suhu dan kelembaban.

Hasil penelitian Calderon and Zainsar, menunjukkan bahwa terdapat perbedaan yang nyata mengenai penampilan reproduksi ternak di daerah panas dengan di daerah dingin. Perbedaan produktivitas ini berkaitan erat dengan faktor suhu dan Suhu dan panas serta kelembaban udara. kelembaban yang terlalu rendah atau dingin secara terus menerus lebih berpengaruh buruk terhadap fertilitas dari pada suhu dan kelembaban yang berganti-ganti panas dan dingin sehingga berpengaruh terhadap kualitas dan kuantitas semen beku terutama motilitas yang akhirnya menurunkan angka konsepsi pada semen tersebut (Toelihere, 1993).

Uraian diatas menjadi dasar diadakannya penelitian mengenai pengaruh suhu dan lama thawing di dataran rendah terhadap kualitas semen beku sapi Brahman.

MATERI DAN METODE

Penelitian ini dilakukan dengan menggunakan Rancangan Acak Lengkap (RAL) dengan pola faktorial 3x3. Faktor I suhu (34°C, 37°C, dan 40°C) dan Faktor II lama thawing (10 detik, 15 detik, dan 20 detik) dengan 3 kali ulangan.

Peubah yang diamati dalam penelitian ini adalah motilitas spermatozoa dan persentase spermatozoa hidup.

Data yang diperoleh dianalisis ragam secara statistik pada taraf nyata 5% apabila berpengaruh nyata maka akan dilanjutkan ke taraf nyata 1% kemudian diuji lanjut dengan menggunakan uji Duncan pada taraf 5% apabila berpengaruh nyata maka akan dilanjutkan ke taraf nyata 1%.

HASIL DAN PEMBAHASAN

A. Motilitas spermatozoa semen beku setelah thawing

Motilitas atau daya gerak spermatozoa merupakan kemampuan gerak maju progresif spermatozoa, yang merupakan salah satu indikasi dalam menentukan kualitas spermatozoa. Daya gerak sangat dibutuhkan spermatozoa untuk mencapai tempat pembuahan saat menembus lapisan pelindung sel telur. Daya fertilitas spermatozoa sangat ditentukan oleh jumlah total spermatozoa yang hidup dan bergerak aktif ke depan (Hafez, 1993). Ekor spermatozoa mengandung semua sarana yang diperlukan untuk motilitas yang memberi gerak progresif kepada spermatozoa dengan gelombang-gelombang yang dimulai dari daerah implantasi ekor sampai kepala dan berjalan ke arah distal sepanjang ekor (Hunter, 1995).

Rata-rata motilitas spermatozoa setelah thawing dilakukan di dataran rendah pada suhu lingkungan 31°C dengan kelembaban 58% dapat dilihat pada Tabel 1.

Tabel 1. Rata-rata motilitas spermatozoa (%) setelah thawing

	Lama			
Suhu	10	15	20	Rerata
34° C	31,66	36,66	31,66	33,33 ^a
37° C	35,00	38,33	33,33	35,55 ^a
40° C	36,66	40,00	36,66	37,77 ^b
Rerata	34.44 ^a	38.33 ^b	33.88 ^a	

Keterangan : Rata-rata perlakuan yang diikuti oleh huruf yang sama pada baris dan kolom yang sama berarti tidak berbeda nyata pengaruhnya terhadap respon yang diamati (P>0,05) menurut uji Duncan pada taraf nyata 5%

Berdasarkan hasil analisis ragam diketahui bahwa terdapat pengaruh yang nyata

faktor A (lama thawing) dan faktor B (suhu) terhadap kualitas semen beku sapi Brahman, tetapi tidak memberikan pengaruh yang nyata pada interaksi suhu dan lama thawing terhadap kualitas semen beku sapi Brahman. Hasil ini menunjukkan bahwa lama thawing dan suhu air memberikan pengaruh yang sama terhadap kualitas semen beku sapi Brahman.

Dari hasil uji Duncan pada motilitas spermatozoa dapat diketahui bahwa pada lama thawing 10 detik dan 20 detik tidak memberikan perbedaan yang nyata (P>0,05) tetapi pada lama thawing 15 detik memberikan perbedaan yang nyata (P<0,05) terhadap kualitas semen beku sapi Brahman. Pada suhu thawing 34°C dan 37°C tidak menunujukkan perbedaan yang nyata (P>0,05), namun pada suhu 40°C menunjukkan perbedaan yang nyata (P<0,05) terhadap kualitas semen beku sapi Brahman.

Hasil thawing pada durasi 20 detik progresif mempunyai gerakan yang tidak dengan persentase sebesar 33,88%, durasi 10 detik dengan gerakan agak cepat atau semi progresif dengan persentase 34,44%, dan durasi 15 detik dengan gerakan yang progresif dengan persentase 38,33%. Rata-rata persentase spermatozoa setelah menunjukkan bahwa spermatozoa tersebut tidak layak untuk dipakai dalam IB karena belum memenuhi ketentuan uji setelah thawing, yaitu motilitas spermatozoa setelah thawing yang layak digunakan untuk IB minimal 40%. Sesuai dengan teori pada petunujuk teknis pengawasan mutu bibit ternak, Direktorat Jenderal Peternakan (2009) bahwa persentase motilitas setelah thawing minimal sebesar 40%.

Persentase motilitas pada lama thawing 10 detik menunjukkan motilitas yang rendah, hal ini disebabkan karena pada durasi thawing yang terlalu singkat akan menyebabkan kristalkristal es yang terdapat di dalam semen beku belum mencair secara sempurna sehingga menghambat pergerakan sel spermatozoa secara aktif, kristal-kristal es yang terdapat di dalam semen beku terbentuk karena semen beku disimpan pada suhu yang sangat rendah vaitu di kontainer vang berisi nitrogen cair yang mempunyai suhu -196°C yang berbentuk padatan akibatnya pada sel spermatozoa akan mengalami dehidrasi (pengeluaran air dalam sel) maka akan menimbulkan kekeringan yang sangat besar sehingga organ intraseluler seperti mitokondria dan lisosom akan mengalami kerusakan. Mitokondria merupakan tempat terjadinya respirasi sel yang menghasilkan energi, apabila mitokondria mengalami kerusakan maka akan mengganggu proses metabolisme yang mana rantai oksidasi akan terputus sehingga mengakibatkan sperma akan berhenti bergerak karena tidak ada pasokan energi dari organel mitokondria. diketahui bahwa sumber energi mitokondria berperan untuk menggertak mikrotubul sehingga terjadi pergesekan diantara mikrotubul yang akan menyebabkan sperma akan bebas untuk bergerak (motil), dan kerusakan lisosom akan mengakibatkan lisisnya enzim yang ada dalam spermatozoa. Sesuai dengan teori Ghustari (1993) bahwa thawing durasi yang singkat akan menyebabkan persentase motilitas spermatozoa rendah.

Lama thawing pada durasi waktu 20 detik sudah termasuk dalam kategori waktu thawing dengan durasi yang cukup lama sehingga akan menyebabkan penurunan motilitas individu pada spermatozoa. Durasi thawing yang terlalu lama maka akan menyebabkan aktivitas metabolisme di dalam sel spermatozoa meningkat sehingga banyak energi yang akan dikeluarkan maka energi yang digunakan akan habis dengan cepat. Habisnya energi maka akan menyebabkan penurunan PH akibat peningkatan asam laktat sehingga akan terjadi penurunan daya gerak spermatozoa sampai teriadi kematian. Menurut Darnel et al., (1990) spermatozoa yang terlalu lama mengalami proses thawing akan menyebabkan peningkatan maka produksi asam laktat yang beracun bagi spermatozoa akibat aktivitas metabolisme spermatozoa yang berlangsung lama serta telah terjadi peningkatan radikal bebas yang menghasilkan peroksidasi lipid sebagai faktor penyebab kerusakan daya gerak spermatozoa.

Motilitas spermatozoa terbaik dicapai pada lama thawing 15 detik hal ini disebabkan karena pada proses thawing pada durasi waktu 15 detik semen beku telah mencair secara sempurna akibat dari aktivitas metabolisme di dalam sel spermatozoa. Akibat dari aktifitas metabolisme tersebut akan menyebabkan tersedianya sumber energi yang dibutuhkan oleh sel spermatozoa, perlu diketahui bahwa motilitas spermatozoa berhubungan erat dengan proses metabolisme yang terjadi di dalam organ sel spermatozoa. Metabolisme bertujuan untuk menghasilkan ATP dan ADP yang digunakan untuk daya gerak sel spermatozoa, apabila persediaan fosfat organik di dalam ATP habis maka kontraksi fibril sel spermatozoa akan berhenti sehingga daya gerak sel spermatozoa juga akan berhenti. Sesuai dengan pendapat Ikhsan (1992) bahwa thawing yang baik dilakukan pada durasi 15 detik karena pada durasi tersebut belum terjadi penurunan motilitas individu sehingga didapat angka motilitas yang tinggi.

Suhu air 34°C dan 37°C pada saat thawing tidak menunjukkan perbedaan yang Pada suhu air 40°C nyata (P>0,05). menunjukkan perbedaan yang nyata (P<0.05) sehingga motilitas spermatozoa terbaik dicapai pada suhu ini karena pada proses thawing pada suhu air 40°C dikategorikan ke dalam suhu air yang tinggi. Suhu air yang tinggi pada saat pelaksanaan thawing maka akan menghasilkan angka motilitas yang tinggi dikarenakan semakin tinggi suhu thawing mengakibatkan maka akan proses metabolisme spermatozoa berlangsung dengan cepat sehingaa sel spermatozoa mampu mengurangi tekanan panas akibat terjadinya aktivitas metabolisme serta akan mampu melewati masa tidak stabil (kritis) lebih cepat sehingga daya gerak spermatozoa akan bergerak dengan baik. Sesuai dengan pendapat Chaiprasat et al., (2006) bahwa suhu thawing yang rendah maka akan menyebabkan terjadinya penurunan daya motilitas individu pada spermatozoa.

Pada suhu air 34°C dan 37°C memiliki persentase motilitas spermatozoa yang rendah karena pada saat thawing, suhu air yang rendah akan menyebabkan hilangnya energi saat berlangsungnya proses metabolisme di dalam sel spermatozoa sehingga spermatozoa akan kesulitan untuk bergerak sehingga diperoleh persentase motilitas spermatozoa yang rendah. Perlu diketahui bahwa energi untuk yang digunakan daya spermatozoa berasal dari perombakan ATP di dalam selubung mitokondria melalui reaksireaksi penguraiannya menjadi ADP dan AMP, energi yang dihasilkan ini akan dipakai sebagai energi mekanik (pergerakan) untuk kelangsungan hidup dan daya gerak spermatozoa. Pramunico (2003) menyatakan bahwa, suhu thawing yang rendah akan menghasilkan angka motilitas yang lebih rendah begitu juga sebaliknya suhu thawing yang tinggi maka akan menghasilkan angka motilitas yang tinggi.

Thawing yang dilakukan pada suhu air 34°C mempunyai gerakan yang tidak progresif dengan persentase sebesar 33,33% hal ini disebabkan karena suhu air pada saat thawing lebih tinggi dibandingkan dengan suhu lingkungan di tempat pelaksanaan thawing yaitu 31°C maka akan terjadi penyerapan panas secara konveksi oleh lingkungan. Maka pada suhu air akan mengalami penurunan suhu yang sangat signifikan sehingga pada saat thawing semen beku tersebut tidak bisa

mencair secara sempurna sehingga didapat angka motilitas yang rendah.

Pada suhu air 37°C dengan gerakan agak cepat atau semi progresif dengan persentase sebesar 35,55%. Mengalami peningkatan persentase motilitas spermatozoa dari suhu 34°C, karena pada suhu 37°C mengalami penyerapan panas secara konveksi oleh suhu lingkungan sehingga suhu air akan mengalami penurunan namun tidak sesignifikan pada penurunan suhu 34°C sehingga pada suhu 37°C angka motilitas lebih tinggi dibandingkan suhu 34°C.

Pada suhu air 40°C dengan gerakan yang progresif dengan persentase 37,77%. Hasil ini menunjukkan bahwa pada suhu 40°C diperoleh persentase motilitas spermatozoa yang paling tinggi dibandingkan pada suhu air 34°C dan 37°C. Pada suhu 40°C sama mengalami penyerapan panas secara konveksi oleh suhu lingkungan tetapi tidak sesignifikan pada suhu 34°C dan 37°C sehingga penurunan suhu tidak serendah suhu pada 34°C dan 37°C akibat diserap oleh suhu lingkungan sehingga pada suhu 40°C semen beku dapat mencair secara sempurna sehingga didapat persentase motilitas yang paling baik. Sesuai dengan pendapat Sientje (2003) apabila suhu air pada saat pelaksanaan thawing di lapangan lebih tinggi dari pada suhu lingkungan maka sebagian panas pada suhu air akan hilang dari molekul air karena diserap oleh lingkungan, akibatnya pada saat thawing suhu air akan mengalami penurunan di lingkungan tersebut dan melalui transfer panas dengan cara konveksi terhadap suhu lingkungan maka akan menyebabkan penurunan motilitas spermatozoa.

Suhu air yang rendah akan menyebabkan penurunan kualitas spermatozoa yang disebabkan karena adanya pengaruh dari suhu lingkungan di dataran rendah yang bersuhu panas sehingga ketika dalam pelaksanaan thawing semen beku tersebut menyerap panas secara konveksi terhadap suhu lingkungan sehingga akan menyebabkan turunnya persentase motilitas spermatozoa. Suhu air yang lebih rendah dari pada suhu lingkungan pada saat thawing maka suhu air akan lama untuk menyesuaikan ke suhu lingkungan di dataran rendah (Sientje, 2003).

B. Persentase Spermatozoa Hidup Setelah Thawing

Rata-rata persentase spermatozoa hidup setelah thawing terhadap semen beku sapi Brahman yang dilakukan di dataran rendah pada suhu lingkungan 31°C dengan kelembaban 58% dapat dilihat pada Tabel 2.

Tabel 2. Rata-rata persentase spermatozoa hidup (%) setelah thawing

	Lama			
Suhu	10	15	20	Rerata
34° C	37,59	37,94	37,77	37,76 ^a
37° C	37,46	39,89	39,15	38,83 ^a
40° C	40,61	41,49	40,38	40,83 ^b
Rerata	38,55 ^a	39,77 ^b	$39,10^{a}$	

Keterangan: Rata-rata perlakuan yang diikuti oleh huruf yang sama pada baris dan kolom yang sama berarti tidak berbeda nyata pengaruhnya terhadap respon yang diamati (P>0,05) menurut uji Duncan pada taraf nyata 5%.

Berdasarkan hasil analisis ragam, diketahui bahwa terdapat pengaruh yang nyata faktor A (lama thawing) dan pengaruh sangat nyata faktor B (suhu) terhadap kualitas semen beku sapi Brahman, tetapi tidak memberikan pengaruh yang nyata pada interaksi suhu dan lama thawing terhadap kualitas semen beku sapi Brahman. Hasil ini menunjukkan bahwa lama thawing dan suhu air memberikan pengaruh yang sama terhadap persentase spermatozoa hidup sapi Brahman.

Dari hasil uji Duncan terhadap persentase spermatozoa hidup dapat diketahui bahwa pada lama thawing 10 detik dan 20 detik tidak memberikan perbedaan yang nyata (P>0,05) tetapi pada lama thawing 15 detik memberikan perbedaan yang nyata (P<0,05) terhadap kualitas semen beku sapi Brahman. Pada suhu thawing 34°C dan 37°C tidak menunjukkan perbedaan yang nyata (P>0,05), namun pada suhu 40°C menunjukkan perbedaan yang nyata (P<0,05) terhadap kualitas semen beku sapi Brahman.

Persentase spermatozoa hidup pada durasi 10 detik sebesar 38,55%, 15 detik sebesar 39,77% dan pada durasi 20 detik sebesar 39,10%. Lama thawing 20 detik mengalami penurunan persentase spermatozoa hidup yang disebabkan karena pada durasi thawing 20 detik telah dikategorikan dalam durasi thawing yang terlalu lama sehingga akan menyebabkan peroksidasi lipid yang semakin banyak, lipid merupakan komponen penting dalam membran sel (fosfolipid, glikolipid, kolesterol). Komponen dalam membran sel ini mengandung asam lemak tak jenuh ganda yang sangat rentan terhadap oksidasi yang akan menyebabkan terjadinya radikal bebas, terutama radikal bebas

hidroksil. Radikal bebas hidroksil ini dapat menimbulkan reaksi berantai yang dikenal peroksidasi lipid. Proses peroksidasi lipid ini akan mengubah struktur spermatozoa terutama pada bagian membran sehingga akan kehilangan fungsi permeabilitas, sehingga akan meningkatkan kerusakan spermatozoa yang mengakibatkan peningkatan kematian spermatozoa. Partodiharjo (1992) menyatakan bahwa durasi thawing yang terlalu lama akan menyebabkan kerusakan pada membran spermatozoa sehingga mengakibatkan viabilitas spermatozoa rendah.

Durasi thawing 10 detik dikategorikan durasi thawing yang singkat sehingga menyebabkan persentase spermatozoa hidup rendah karena telah mengalami kerusakan pada dinding membran spermatozoa selama proses thawing yang singkat. Kerusakan membran spermatazoa disebabkan karena telah terjadi proses radikal bebas metabolit oksigen yang bersifat toksik pada tingkatan yang rendah di dalam sel spermatozoa yang bersamaan dengan suplai oksigen yang peningkatan terbatas sehingga terjadi peroksidasi lipid sebagai faktor penyebab kerusakan membran spermatozoa. Selain itu pada proses thawing yang singkat akan mempengaruhi stabilitas membran spermatozoa sehingga segmen intraseluler seperti mitokondria dan lisosom dapat berubah dengan cepat menjadi kristal-kristal es yang dapat mengakibatkan permeabilitas membran tidak berfungsi lagi dengan baik sehingga zat pewarna dapat masuk ke dalam organel sel tanpa terbatas. Datta et al., (2009) menyatakan apabila terjadi perubahan suhu yang tidak sesuai secara ekstraseluler, maka permeabilitas fosfolipid rusak menyebabkan fluiditas membran terganggu sehingga terjadi kematian pada spermatozoa.

Pada durasi thawing 15 detik diperoleh persentase spermatozoa hidup yang paling tinggi, hal ini disebabkan karena dinding membran spermatozoa masih berfungsi dengan baik sehingga tidak akan terganggu oleh aktivitas metabolisme spermatozoa yang dapat meningkatkan produksi asam laktat sehingga zat pewarna tidak dapat masuk ke dalam dinding membran spermatozoa, maka spermatozoa akan tetap tampak transparan sehingga diperoleh persentase spermatozoa hidup yang paling tinggi. Partodiharjo (1992) menyatakan, bahwa thawing yang baik dilakukan pada durasi 15 detik karena pada durasi ini dinding membran spermatozoa tetap terjaga dengan baik sehingga didapat persentase spermatozoa hidup yang baik.

Rata-rata persentase hidup spermatozoa pada suhu thawing diketahui bahwa pada suhu 34°C sebesar 37,76%, suhu 37°C sebesar 38,83% dan pada suhu 40°C sebesar 40,83%. Dari hasil tersebut terlihat bahwa pada suhu 34°C, 37°C, 40°C mengalami peningkatan ditiap suhu hal ini disebabkan karena suhu 34°C dan 37°C dikategorikan ke dalam suhu yang rendah, suhu yang terlalu rendah maka akan menghasilkan persentase spermatozoa hidup yang rendah hal ini disebabkan karena suhu yang rendah akan mengakibatkan bocornya substansi vital pada sel spermatozoa sehingga enzim intraseluler, lipoprotein, ATP, kalium intraseluler dan lemak fosfor berkurang yang akan dapat menyebabkan kerusakan pada dinding membran spermatozoa sehingga zat pewarna dapat masuk tanpa terbatas yang mengakibatkan persentase spermatozoa hidup menurun. Yudhaningsih (2004) menyatakan bahwa kondisi membran spermatozoa apabila fungsi permeabilitas tidak befungsi dengan baik maka pewarna bisa masuk tanpa terkontrol.

Suhu thawing 40°C dikategorikan ke dalam suhu thawing yang tinggi, suhu thawing yang tinggi maka akan menghasilkan persentase spermatozoa hidup tinggi karena proses metabolisme di dalam sel spermatozoa tetap berjalan dengan baik sehingga enzim ATP dan ADP yang digunakan untuk menjaga spermatozoa hidup akan tetap dihasilkan dengan baik. Apabila fosfat organik di dalam ATP dan ADP tidak dapat dihasilkan dengan baik maka kontraksi fibril sel spermatozoa akan terhenti sehingga akan terjadi kerusakan pada membran spermatozoa. Apabila membran spermatozoa mengalami kerusakan maka akan mengakibatkan zat pewarna masuk tanpa terbatas. Selain itu suhu thawing yang tinggi belum menyebabkan terjadinya tekanan osmotik secara ekstrim pada membran spermatozoa sehingga permeabilitas membran utuh dan tidak terganggu. Sesuai dengan pendapat Pramunico (2003) bahwa suhu thawing yang tinggi akan menyebabkan persentase spermatozoa hidup yang baik karena pada suhu yang tinggi membran spermatozoa akan tetap teriaga dengan baik sehingga permeabilitas membran terganggu, hal ini menjamin fluiditas dan keseimbangan homeostatis membran sel karena pertukaran senyawa berlangsung secara normal.

Suhu air saat pelaksanaan thawing lebih tinggi dibandingkan suhu lingkungan, sebagian panas pada suhu air akan hilang karena diserap oleh lingkungan akibatnya pada saat thawing suhu air akan mengalami penurunan di lingkungan tersebut dan melalui transfer panas dengan cara konveksi terhadap suhu lingkungan maka akan menyebabkan penurunan persentase spermatozoa hidup. Persentase motilitas spermatozoa hidup rendah terjadi pada suhu air 34°C dan 37°C dikarenakan pada suhu 34°C dan 37°C akan iauh mengalami penurunan suhu air pada saat thawing yang disebabkan karena terjadi penyerapan panas secara konveksi oleh suhu lingkungan akibatnya pada saat thawing akan terjadi bocornya substansi vital dalam spermatozoa sehingga enzim intraseluler berkurang dan menyebabkan kerusakan membran plasma sehingga persentase hidup spermatozoa menurun. Sesuai dengan pendapat Hafez (1993)bahwa lingkungan yang rendah dibandingkan dengan suhu air maka suhu air tersebut akan jauh mengalami penurunan suhu sehingga pada saat thawing akan menyebabkan persentase spermatozoa hidup yang rendah.

Pada suhu 40°C didapat persentase spermatozoa hidup yang tinggi, hal ini disebabkan karena pada suhu 40°C penyerapan panas melalui cara konveksi oleh suhu lingkungan tidak terlalu jauh mengalami penurunan suhu dibandingkan dengan suhu air 34°C dan 37°C sehingga pada saat thawing suhu 40°C belum menyebabkan terjadinya tekanan osmotik secara ekstrim pada membran spermatozoa sehingga permeabilitas membran utuh dan tidak terganggu. Widjaya (1997), suhu yang tinggi akan menyebabkan membran spermatozoa akan tetap terjaga dengan baik sehingga permeabilitas membran tidak terganggu.

Persentase spermatozoa hidup yang rendah akan menghasilkan persentase motilitas yang rendah, artinya nilai persentase spermatozoa hidup berpengaruh terhadap nilai motilitas spermatozoa. Persentase motilitas spermatozoa yang tinggi mempunyai daya gerak yang progresif dan menghasilkan gerakan massa sehingga menunjukkan bahwa spermatozoa masih banyak yang hidup dan menghasilkan persentase spermatozoa hidup yang tinggi.

SIMPULAN DAN SARAN

Simpulan

Berdasarkan hasil penelitian dapat disimpulkan bahwa :

 suhu dan lama thawing yang berbeda memberi pengaruh terhadap kualitas spermatozoa semen beku sapi brahman,

- 2. suhu optimal yang memberikan pengaruh terbaik terhadap kualitas semen beku sapi brahman adalah 40°C,
- 3. lama thawing yang memberikan pengaruh terbaik terhadap kualitas semen beku sapi brahman adalah 15 detik,
- 4. tidak terdapat interaksi antara suhu dan lama tha wing di dataran rendah.

Saran

Disarankan kepada para inseminator yang bertugas di daerah dataran rendah saat melakukan thawing sebaiknya dilakukan pada suhu 40°C selama 15 detik.

DAFTAR PUSTAKA

- Blakely, J & D.H Bade.1991. Ilmu Peternakan edisi ke empat. Terjemahan Bambang Sri Hardono. Gadjah Mada University Press, Yogyakarta.
- Calderon and Zainsar. 2005. Perbedaan Penampilan Reproduksi Ternak. Gadjah Mada University Press, Yogyakarta.
- Chaiprasat, S., Benjakul, W., Chartchue, A., Joemplang, P and Punyapornwithaya, V., 2006. Effect of Bull Semen Thawing Methods on Sperm Progressive Motility. Chiang Veterinary Journal 4 (1): 25 –29
- Darnel and Depison. 1990. Apllied Animal Reproduction. 2th Edition.Reston Pubblising Company Inc. A Practice Hall Company. Reston. Virginia.
- Direktorat Jenderal Peternakan. 2009.
 Problem dan Prospek
 Pengembangan Usaha Pembibitan
 Sapi Potong di Indonesia.
 www.pustaka-deptan.go.id. Tanggal
 akses: 8 September 2008
- Datta, U., Sekar, M. C., Hembram, M. L., Dasgupta, R., 2009. Development of a New Methode to Preserve Caprine Cauda Epididymal Spermatozoa in situ at 10°C. Procedings. Departement of Veterinary Gynaecology & Obstetrics Faculty of Veterinary and Animal Sciences West Bengal University of

- Animal and Fishery Sciences. Kolkata West Bengal. India.
- Gustari.1993. Spermatozoa dan Seminal Plasma Dalam: Hafez B, Hafes ESE. Reproduction in farm animals, 7thed. USA: Lippincott Williams and Wilkins. Pp. 96-109.
- Hafez. 1993. Spermatozoa and Seminal Plasma in Reproduction In Farm Animals. Edited by E. S. E. Hafez. 6 edition. Lea and Febiger, Philadelphia.
- Hunter. 1995. Semen Evaluation in Reproduction In Farm Animals.7 edition. Lippincott Wiliams and Wilkins. Maryland, USA.
- Kaiin and Rasdik. 2005. Breeding Soundness Evaluation of Bulls. www.fao.org. Tanggal akses: 8 September 2008.
- Parks. J. E and Graham. J. K., 1992. Effects of Cryopreservation Procedures on Sperm Membranes. Theriogenology. 30. 209-22
- Partodiharjo. 1992. Fisiologi Reproduksi Hewan. Mutiara Sumber Widya. IPB. Bogor.
- Pramunico. 2003. Pengantar Fisiologi Reproduksi. LUW Animal Husbandry Project Universitas Brawijaya. Malang.
- Rosnah. 1998. Pemeliharaan Ternak. Balai Pengkajian Tekhnolgi Pertanian, Sumatera Selatan.
- Samsudewa dan Suryawijaya. 2008. Reproduksi Ternak di Indonesia. Fakultas Peternakan dan Perikanan. Universitas Brawijaya. Malang.
- Sanjaya. 1976. Penggunaan Katalase Dalam Produksi Semen Dingin Sapi. Pros. Seminar Nasional Teknologi Peternakan dan Veteriner. Bogor, 4-5 Agustus 2004. Puslitbang Peternakan, Bogor.
- Sientje. 2003. Stres Panas Pada Sapi Perah Laktasi. IPB. Bogor.
- Toelihere. 1993. Inseminasi Buatan Pada Ternak. Angkasa, Bandung.
- Yudhaningsih, H. 2004. Kualitas dan Integritas Membran Spermatozoa Sapi Madura Menggunakan Motilitas dan Pengencer yang Berbeda Pada Proses Pembekuan Semen. Skripsi. Fakultas Peternakan. Universitas Brawijaya.