Biofilm Properties and Their Association to Antibiotic Resistance of Staphylococcus aureus from Animal Isolates
DOI:
https://doi.org/10.23960/jipt.v13i2.p558-571
Keywords:
Antibiotic resistance, Biofilm, Glucose, Staphylococcus aureusAbstract
Staphylococcus aureus (S. aureus) is a Gram positive bacterium that has many virulence factor including the ability to produce biofilm. Biofilm formation is one of the important ability in the persistance and resistant to antibiotic treatment. This study aimed to determine the phenotypic and genotypic characteristics of S. aureus isolates from animal origin in their capacity to produce biofilm in vitro. Eight S. aureus isolates collection from goat mastitis and raw chicken meat origin were phenotypically evaluated the ability to produce biofilm in 96 well culture plate, while genotypic were determinated by detecting the icaA, icaC and icaD genes. We employed minimum of inhibitory concentration (MIC) data from previous research to clarify their correlation to biofilm production in respected isolates. The results showed that 75% (6/8) of S. aureus isolates had ability to produced biofilm, whereas 50% (4/8) showed the elevation of biofilm production after glucose was added. PCR determination showed that majority isolates were positive for icaA, icaC and icaD genes, while one of the isolates was negative for the icaA. The statistical analysis tests indicated no correlation between the optical density of biofilm production and MIC of antibiotics. Further research is needed to clarify the association of biofilm and antibiotic resistance.Downloads
References
Aniba, R., Dihmane, A., Raqraq, H., Ressmi, A., Nayme, K., Timinouni, M. &Barguigua, A. (2024). Molecular and phenotypic characterization of biofilm formation and antimicrobial resistance patterns of uropathogenic staphylococcus haemolyticus isolates in Casablanca, Morocco. Diagnostic Microbiology and Infectious Disease, 110(4), p.116483. https://doi.org/10.1016/j.diagmicrobio.2024.116483
Arciola, C. R., Baldassarri, L., & Montanaro, L. (2001). Presence of icaA and icaD genes and slime production in a collection of Staphylococcal strains from catheter-associated infections. Journal of Clinical Microbiology, 39(6), 2151–2156. https://doi.org/10.1128/JCM.39.6.2151-2156.2001
Ariyanti, D., Salasia, S. I. O., & Tato, S. (2011). Characterization of Haemolysin of Staphylococcus aureus Isolated from Food of Animal Origin. Indonesian Journal of Biotechnology, 16(1), 32–37. https://doi.org/10.22146/ijbiotech.7834
Aziz, F., Lestari, F.B., Indarjulianto, S. and Fitriana, F., 2022. Identifikasi dan Karakterisasi Resistensi Antibiotik Terduga Staphylococcus aureus pada Susu Mastitis Subklinis asal Sapi Perah di Kelompok Ternak Sedyo Mulyo, Pakem, Sleman Yogyakarta. Jurnal Ilmu Peternakan dan Veteriner Tropis (Journal of Tropical Animal and Veterinary Science), 12(1), 66-74. https://doi.org/10.46549/jipvet.v12i1.226
Aziz, F., Fitriana, F., Setyorini, D. R., Putri, S. A., Maulina, T. R., Dewi, V. K., Prihanani, N. I., & Andityas, M. (2023). The Comparisons of Phenotypic and Genotypic Resistance of Staphylococcus aureus Isolates Against β-lactam and Tetracycline Antibiotics. Jurnal Sain Veteriner, 41(3), 313-322. https://doi.org/10.22146/jsv.84806
Bhattacharya, M., Wozniak, D. J., Stoodley, P., & Hall-Stoodley, L. (2015). Prevention and treatment of Staphylococcus aureus biofilms. Expert review of anti-infective therapy, 13(12), 1499-1516. https://doi.org/10.1586/14787210.2015.1100533
Chan, Y. L., Chee, C. F., Tang, S. N., & Tay, S. T. (2024). Unveilling genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance in Staphylococcus aureus isolated from a Malaysian Teaching Hospital. European Journal of Medical Research, 29(1), 246. https://doi.org/10.1186/s40001-024-01831-6
Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688
Dai, J., Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J., Wang, J., Ding, Y., Zhang, S., Yang, X., & Lei, T. (2019). Prevalence and characterization of Staphylococcus aureus isolated from pasteurized milk in China. Frontiers in microbiology, 10, 641. https://doi.org/10.3389/fmicb.2019.00641
Divyakolu, S., Chikkala, R., Ratnakar, K.S., & Sritharan, V. (2019). Hemolysins of Staphylococcus aureus—an update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Advances in Infectious Diseases, 9(2), 80-104. https://doi.org/10.4236/aid.2019.92007
Donadu, M. G., Ferrari, M., Mazzarello, V., Zanetti, S., Kushkevych, I., Rittmann, S. K-M. R., Stájer, A., Baráth, Z., Szabó, D., Urbán, E., & Gajdács, M. (2022). No correlation between biofilm-forming capacity and antibiotic resistance in environmental Staphylococcus spp.: in vitro results. Pathogens 11(4), 471. https://doi.org/10.3390/pathogens11040471
Eftekhar, F., & Dadaei, T. (2011). Biofilm formation and detection of icaAB genes in clinical isolates of methicillin resistant Staphylococcus aureus. Iranian Journal of Basic Medical Sciences, 14(2), 132-136. https://doi.org/10.22038/ijbms.2011.4978
Francis, D., Hari, G. V., Subash, A.K., Bhairaddy, A., & Joy, A. (2024). The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. Advances in protein chemistry and structural biology, 138, 327-400. https://doi.org/10.1016/bs.apcsb.2023.08.002
Gudeta, D. D., Lei, M. G., & Lee, C. Y. (2019). Contribution of hla regulation by SaeR to Staphylococcus aureus USA300 pathogenesis. Infection and Immunity, 87(9), e00231-19. https://doi.org/10.1128/IAI.00231-19
Howden, B.P., Giulieri, S.G., Wong Fok Lung, T., Baines, S.L., Sharkey, L.K., Lee, J.Y., Hachani, A., Monk, I.R., & Stinear, T.P. (2023). Staphylococcus aureus host interactions and adaptation. Nature Reviews Microbiology, 21(6), 380-395. https://www.nature.com/articles/s41579-023-00852-y
Idrees, M., Sawant, S., Karodia, N., & Rahman, A. (2021). Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health, 18(14), 7602. https://doi.org/10.3390/ijerph18147602
Maulina, T. R. (2022). Metode identifikasi Staphylococcus aureus pada susu kambing mastitis di kecamatan Samigaluh, Kulonprogo, Yogyakarta. Proyek Akhir. Program Studi Teknologi Veteriner Sekolah Vokasi Universitas Gadjah Mada. Yogyakarta.
Michu, E., Cervinkova, D., Babak, V., Kyrova, K., & Jaglic, Z. (2011). Biofilm formation on stainless steel by Staphylococcus epidermidis in milk and influence of glucose and sodium chloride on the development of ica-mediated biofilms. International Dairy Journal, 21(3), 179-184. https://doi.org/10.1016/j.idairyj.2010.10.004
Miyake, R., Iwamoto, K., Sakai, N., Matsunae, K., Aziz, F., Sugai, M., Takahagi, S., Tanaka, A., & Hide, M. (2022). Uptake of Staphylococcus aureus by keratinocytes is reduced by interferon–fibronectin pathway and filaggrin expression. The Journal of dermatology, 49(11), 1148-1157. https://doi.org/10.1111/1346-8138.16546
Moormeier, D. E., & Bayles, K. W. (2017). Staphylococcus aureus biofilm: a complex developmental organism. Molecular Microbiology, 104(3), 365-376. https://doi.org/10.1111/mmi.13634
Lade, H., Park, J. H., Chung, S. H., Kim, I. H., Kim, J. M., Joo, H. S., & Kim, J. S. (2019). Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. Journal of clinical medicine, 8(11), 1853. https://doi.org/10.3390/jcm8111853
Lee, J. S., Bae, Y. M., Lee, S. Y., & Lee, S. Y. (2015). Biofilm formation of Staphylococcus aureus on various surfaces and their resistance to chlorine sanitizer. Journal of Food Science, 80(10), M2279-M2286. https://doi.org/10.1111/1750-3841.13017
Li, Z., Ding, Z., Liu, Y., Jin, X., Xie, J., Li, T., Zeng, Z., Wang, Z., & Liu, J. (2021). Phenotypic and genotypic characteristics of biofilm formation in clinical isolates of Acinetobacter baumannii. Infection and Drug Resistance, 14, 2613-2624. https://doi.org/10.2147/IDR.S310081
Peng, Q., Tang, X., Dong, W., Sun, N., & Yuan, W. (2022). A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. Antibiotics, 12(1), 12. https://doi.org/10.3390/antibiotics12010012
Pokharel, K., Dawadi, B. R., & Shrestha, L. B. (2022). Role of biofilm in bacterial infection and antimicrobial resistance. JNMA: Journal of the Nepal Medical Association, 60(253), 836-840. https://doi.org/10.31729/jnma.7580
Pokhrel, S., Sharma, N., Aryal, S., Khadka, R., Thapa, T. B., Pandey, P., & Joshi, G. (2024). Detection of Biofilm Production and Antibiotic Susceptibility Pattern among Clinically Isolated Staphylococcus aureus. Journal of Pathogens, 2024(1), 2342468. https://doi.org/10.1155/2024/2342468
Pereyra, E.A., Picech, F., Renna, M. S., Baravalle, C., Andreotti, C. S., Russi, R., Calvinho, L. F., Diez, C., & Dallard, B. E. (2016). Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Veterinary Microbiology, 183, 69-77. https://doi.org/10.1016/j.vetmic.2015.12.002
Putri, S.A., 2023. Isolasi dan Identifikasi Staphylococcus sp. dan Staphylococcus aureus dari sampel daging ayam yang dijual di sepuluh pasar wilayah kota Yogyakarta. Proyek Akhir. Program Studi Teknologi Veteriner Sekolah Vokasi Universitas Gadjah Mada. Yogyakarta.
Sabino, Y. N. V., Cotter, P. D., & Mantovani, H. C. (2023). Anti-virulence compounds against Staphylococcus aureus associated with bovine mastitis: A new therapeutic option?. Microbiological Research, 271, 127345. https://doi.org/10.1016/j.micres.2023.127345
Sato'o, Y., Hisatsune, J., Aziz, F., Tatsukawa, N., Shibata-Nakagawa, M., Ono, H.K., Naito, I., Omoe, K. and Sugai, M., 2024. Coordination of prophage and global regulator leads to high enterotoxin production in staphylococcal food poisoning-associated lineage. Microbiology Spectrum, 12(3), e02927-23. https://doi.org/10.1128/spectrum.02927-23
Sharan, M., Dhaka, P., Bedi, J.S., Mehta, N. and Singh, R., 2024. Assessment of biofilm-forming capacity and multidrug resistance in Staphylococcus aureus isolates from animal-source foods: implications for lactic acid bacteria intervention. Annals of Microbiology, 74(1), 22. https://doi.org/10.1186/s13213-024-01768-5
Torlak, E., Korkut, E., Uncu, A.T. and Şener, Y., 2017. Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of Infection and Public Health, 10(6), 809-813. https://doi.org/10.1016/j.jiph.2017.01.004
Aziz, F., Fitriana, F., Setyorini, D. R., Putri, S. A., Maulina, T. R., Dewi, V. K. and Prihanani, N. I. (2023). Karakterisasi Feno-Genotipik Kemampuan Hemolisa Isolat Staphylococcus aureus Asal Susu Kambing Mastitis dan Daging Ayam Segar. Jurnal Ilmu Peternakan dan Veteriner Tropis, 13(3), 129-136. https://doi.org/10.46549/jipvet.v13i3.393
Straub, J. A., Hertel, C., & Hammes, W. P. (1999). A 23S rDNA-targeted polymerase chain reaction–based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. Journal of Food Protection, 62(10), 1150-1156. https://doi.org/10.4315/0362-028x-62.10.1150
Vasu, D., Kumar, P. S., Prasad, U. V., Swarupa, V., Yeswanth, S.,
Srikanth, L., Sunitha, M. M., Choudhary, A., & Sarma, P. V. G. K. (2017). Phosphorylation of staphylococcus aureus protein-tyrosine kinase affects the function of glucokinase and biofilm formation. Iranian Biomedical Journal, 21(2), 94-105. https://doi.org/10.18869/acadpub.ibj.21.2.94
Vasudevan, P., Nair, M.K.M., Annamalai, T., & Venkitanarayanan, K. S. (2003). Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Veterinary microbiology, 92(1-2), 179-185. https://doi.org/10.1016/s0378-1135(02)00360-7
Wu, X., Wang, H., Xiong, J., Yang, G.X., Hu, J.F., Zhu, Q., & Chen, Z. (2024). Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm, 7, 100175. https://doi.org/10.1016/j.bioflm.2023.100175
Yu, L., Hisatsune, J., Hayashi, I., Tatsukawa, N., Sato’o, Y., Mizumachi, E., Kato, F., Hirakawa, H., Pier, G. B., & Sugai, M., 2017. A novel repressor of the ica locus discovered in clinically isolated super-biofilm-elaborating Staphylococcus aureus. MBio, 8(1), e02282-16. https://doi.org/10.1128/mBio.02282-16
Downloads
Published
How to Cite
Issue
Section
License
Jurnal Ilmiah Peternakan Terpadu(JIPT) is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).