

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

PEMANFAATAN AGENSIA HAYATI UNTUK MENGENDALIKAN HAMA DAN PENYAKIT JAGUNG DI DESA REJO MULYO, LAMPUNG SELATAN

Puji Lestari¹, Selvi Helina^{1*}, Cipta Ginting¹, & Tri Maryono¹

¹Jurusan Proteksi Tanaman, Fakultas Pertanian, Universitas Lampung

*Email: selvi.helina@fp.unila.ac.id

Perkembangan Artikel:

Disubmit: 16 Januari 2023 Diperbaiki: 3 Februari 2023 Diterima: 5 Maret 2023

Kata Kunci: agensia hayati, jagung, hama dan penyakit jagung

Abstrak: Kecamatan Tanjung Bintang merupakan salah satu penyokong produksi jagung provinsi Lampung. Produksi jangung di Desa Rejo Mulyo, Kecamatan Tanjung Bintang belum mencapai produksi optimum. Hal ini karena berbagai permasalahan yang dihadapi oleh petani, diantaranya benih, pemupukan, serta permasalahan hama dan penyakit tanaman jagung. Upaya mengatasi masalah hama dan penyakit umumnya dilakukan dengan penyemprotan pestisida oleh petani. Beberapa pestisida sulit terurai, sehingga penggunaan pestisida dalam jangka waktu yang lama berdampak negatif terhadap lingkungan, pencemaran terhadap produk pertanian, serta resistensi hama dan patogen tanaman. Metode yang digunakan adalah pembimbingan melalui sosialisasi mengenai hama dan penyakit pada tanaman jagung, pemanfaatan agensia hayati untuk pengendalian hama dan penyakit jagung, dan pelatihan pembuatan dan perbanyakan massal agens hayati Trichoderma. Hasil kegiatan pengabdian kepada masyarakat yang telah dilaksanakan dapat disimpulkan: 1. Kegiatan pengabdian masyarakat diikuti oleh anggota dan pengurus Gapoktan Jaya Makmur, Desa Rejo Mulyo, kecamatan Tanjung Bintang, Lampung Selatan, Penyuluh Pertanian Desa Rejo Mulyo, dan para petani; 2. Peserta sangat antusias mengikuti kegiatan yang ditunjukan oleh keaktfannya dalam menyimak dan penyampaian materi serta aktif bertanya dan memberi tanggapan terhadap setiap permasalahan yang dibahas, 3. Adanya peningkatan penguasaan pengetahuan tentang pengenalan hama dan penyakit pada tanaman jagung yang signifikan yang ditunjukkan oleh hasil evalusai setelah diberi penyuluhan lebih yaitu mayoritas

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

peserta memiliki pengetahuan yang baik hingga sangat baik (85,9%) dan tidak ada peserta yang memiliki nilai dengan kriteria kurang.

Pendahuluan

Lampung Selatan adalah daerah agraris yang sebagian besar masyarakatnya bekerja di sektor pertanian. Pertanian menyumbang konstribusi yang cukup besar bagi perekonomian di Lampung Selatan. Kabupaten Lampung Selatan adalah sentra produksi jagung terbesar kedua di Provinsi Lampung dengan luas lahan pertanaman jagung pada tahun 2017 mencapai 128.034 ha (BPS, 2018). Luas lahan jagung makin bertambah seiring dengan alih fungsi lahan karet milik PTPN VII menjadi pertanaman jagung di Kecamatan Tanjung Bintang. Dengan demikian kecamatan menjadi penyumbang angka produksi jagung di Lampung Selatan.

Pertanian jagung di Kecamatan Tanjung Bintang umumnya adalah di lahan kering. Budidaya jagung dilakukan menunggu musim penghujan yaitu pada bulan Oktober (Musim 1) dan pada bulan Maret (Musim 2). Berbagai kendala yang dihadapi oleh petani dalam budidaya jagung adalah masalah organisme pengganggu tumbuhan (OPT) yang berdampak terhadap penurunan produksi dan juga meningkatnya biaya produksi. Terlebih lagi belakangan ini petani jagung dihadapkan dengan masalah hama baru *Spodoptera frugiperda* yang dapat menyerang dari awal tanam hingga jagung berbuah.

Desa Rejo Mulyo adalah salah satu sentra produksi jagung di Kecamatan Tanjung Bintang. Petani umumnya menanam jagung 2-3 kali dalam setahun, bergantung pada kondisi curah hujan. Penanaman jagung dilakukan pada lahan kering sehingga sangat bergantung pada air hujan. Hal ini menjadi faktor penyebab sulitnya menanam jagung secara serempak. Dengan kondisi ini, masalah hama dan penyakit sulit dikendalikan.

Hama dan penyakit tanaman adalah bagian dari organisme pengganggu tanaman (OPT). Hama tanaman merupakan organisme atau hewan yang keberadaannya mengganggu manusia dan merugikan secara ekonomis. Kebaradaan hewan yang belum menimbulkan kerugian belum disebut sebagai hama tanaman. Penyakit tanaman didefisnisikan sebagai gangguan secara fisiologis pada tanaman yang disebabkan oleh keberadaan patogen atau penyebab penyakit. Sebagian besar patogen merupakan golongan jamur, bakteri dan virus yang mengganggu tanaman sehingga menurunkan produksi tanaman. Pengelolaan agroekosistem merupakan prinsip penting dalam pengendalian hama dan penyakit tanaman.

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

Kerusakan tanaman akibat serangan OPT merupakan bagian dari budidaya pertanian sejak manusia mengusahakan pertanian. Pengendalian hama dan penyakit umumnya dilakukan petani dengan menggunakan pestisida kimia. Penggunaan pestisida dinilai lebih praktis, efektif dan efisien dalam mengendalikan hama dan penyakit tanaman. Penggunaan bahan kimia dinilai lebih baik karena dianggap produksi pertanian menjadi semakin tinggi. cara pandang demikian masih berkembang di kalangan petani hingga saat ini. Hakikat pestisida sebagai bahan racun tertutupi oleh keberhasilan penggunaan pestisida. Sayangnya penggunaan pestisida oleh petani seringkali tidak bijaksana dengan tanpa memperhatikan aturan penggunaan pestisida. Hal ini berdampak berbagai aspek baik terjadinya pencemaran lingkungan, resistensi hama dan penyakit, bahkan resurjensi hama. Berdasarkan kondisi tersebut, tim pelaksana mecoba memberikan informasi terkait pengelolaan hama dan penyakit tanaman jagung yang benar dan pemanfaatan agensia hayati dalam menekan hama dan penyakit tanaman jagung.

Metode

Metode yang digunakan dalam kegiatan ini adalah sosialisasi/penyuluhan tentang pengelolaan hama dan penyakit tanaman jagung yang benar dan pemanfaatan agensia hayati dalam menekan hama dan penyakit tanaman jagung.

Tahapan pertama yaitu sosialisasi mengenai pengenalan hama dan penyakit pada tanaman jagung. Prosedur pengabdian yang dilakukan yaitu tim pelaksana mengedukasi petani bagaimana pengolahan lahan yang baik. Kemudian tim pelaksana membantu petani dalam memilih dan menentukan varietas tanaman yang baik digunakan yaitu varietas yang tahan terhadap hama dan penyakit tumbuhan serta memiliki daya hasil yang tinggi. Tim pelaksana menjelaskan bagaimana pengendalian gulma dilakukan, kapan waktu yang tepat dalam mengendalikan gulma. Tahapan selanjutnya adalah monitoring yang dilakukan oleh tim pelaksana dan mitra untuk mengetahui bagaimana kondisi tanaman, terdapat hama dan penyakit apa saja yang ada pada pertanaman. Monitoring pada tanaman jagung dimulai sejak tanaman berusia 4 hari setelah tanam untuk mencegah gagalnya budidaya akibat serangan hama *S. frugiperda*. Proses monitoring dilakukan sesesering mungkin, minimal tiga hari sekali untuk melihat keberadaan kelompok telur *S. frugiperda*. Monitoring dilakukan dengan mangambil sampel tanaman. teknik pengambilan sampel dapat berupa sampel acak maupun secara sistematis. Pengambilan sampel dilakukan sebisa mungkin mewakili kondisi populasi. Setelah melakukan pengambilan sampel, tim pelaksana memberi arahan kepada

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

petani cara menghitung populasi hama dan penyakit serta menentukan waktu yang tepat untuk pengendalian hama dilakukan.

Pada bagian sosialisasi penggunaan pestisida merupakan bagian yang sangat penting, karena menyangkut penggunaan pestisida dan agensia hayati. Tentunya tim pelaksana mengedukasi petani bahwa pestisida adalah bahan racun yang sebisa mungkin penggunaannya harus diminimalisir. Dengan demikian residu pestisida pada produk dan pencemaran lingkungan dapat dikurangi. Tahap pertama tim pelaksana mengedukasi petani bagaimana menentukan pestisida. Pestisida yang digunakan harus sesuai dengan target dan sasaran. Untuk itu petani harus tau bahan aktif pestisida dan targetnya dengan membaca label pestisida. Aplikasi pestisida yang dilakukan juga harus tepat dosis, sehingga tim pelaksana bersama mitra menghitung dosis pestisida yang tepat.

Untuk menentukan jenis teknik pengendalian hama, terlebih dahulu harus diketahui hama yang menyerang, sehingga pengendalian tepat, efektif dan efisien. Tim pelaksana menjelaskan hama dan penyakit yang sering ditemukan pada ekosistem padi dengan menunjukkan contoh yang ditemukan dilapang, sehingga mitra benar-benar dapat memahami. Setelah itu, tim memaparkan teknik pengendalian secara alami sesuai dengan hama dan penyakit yang ditemukan.

Tahapan kedua dari kegiatan pengabdian yaitu sosialisasi mengenai pemanfaatan Agensia Havati dalam Menekan Hama dan Penyakit. Musuh alami adalah komponen penting dalam ekosistem. Keberaadan musuh alami dapat menekan populasi organisme pengganggu sampai ambang batas keseimbangan. Dalam hal ini tim bersama dengan mitra mengamati kebedaraan musuh alami dan mengidentifikasi jenis-jenis musuh alami, sehingga petani mengenal dan tidak menganggap semua serangga adalah hama yang harus dibunuh. Musuh alami dapat berupa predator, parasitoid dan juga patogen. Selain mengenalkan predator dan parasitoid, tim juga mengenalkan entomopatogen yang dapat membunuh serangga hama. Beberapa contoh entomopatogen yaitu Metarhizium sp. dan Beauveria bassiana. Entomopatogen yang paling baik adalah entomopatogen yang diperoleh dari ekosistem itu sendiri. Selanjutnya tim juga mengenalkan jamur antagonis untuk menekan patogen tumbuhan dan mengajarkan bagaimana aplikasi jamur antagonis tersebut. Salah satu jamur antagonis yang dapat digunakan adalah *Trichoderma* sp. Pada tahap lebih lanjut tim bersama mitra melakukan perbanyakan jamur antagonis, sehingga petani dapat secara mandiri memperbanyak dan menggunakan agensia hayati sebagai pengendali hama dan penyakit yang ramah lingkungan.

Pembangunan masyarakat petani harus menerapkan prinsip agribisnis. Prinsipnya adalah adanya peningkatan produksi yang diikuti dengan peningkatan pendapatan dan

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

kesejahteraan masyarakat petani. Dalam konsep agribisnis, masyarakat petani diajak tidak melulu untuk berbudidaya secara besar-besaran, namun demikian diajak pula untuk memikirkan pemasaran, pengolahan untuk memberi nilai tambah produk, dan membangun tindakan bersama dalam wadah organisasi kelompok guna melakukan kemitraan atau kontrak pemasaran dengan pihak perusahaan industri pengolahan hasil pertanian.

Hasil dan Pembahasan

Berdasarkan laporan dari kelompok tani, beberapa masalah yang dihadapi petani adalah adanya serangan hama berupa *Spodoptera frugiperda*, serangan patogen yang menyebabkan tanaman jagung menjadi layu dan mati. Dari hasil pengamatan yang dilakukan, diketahui terdapat serangan hama *S. frugiperda* yang dapat menyerang tanaman jagung dari awal tanam (10 HST) hingga tanaman membentuk bunga jantan (45 HST) bahkan setelah terbentuk tongkol. Selain itu, terdapat juga patogen yang menyerang tanaman jagung yaitu *Fusarium* sp. Dengan kondisi demikian tim melakukan penyuluhan dengan tujuan petani mendapatkan solusi dalam pengendalian hama dan penyakit tanaman jagung yang ramah lingkungan. Penyuluhan yang dilakukan menggunakan metode presentasi dan diskusi (Gambar 1) serta praktik perbanyakan agensia hayati pengendali patogen tanaman dan perbanyakan entomopatogen.

Gambar 1. Presentasi materi dan diskusi antara tim pengabdi dengan petani.

Masalah utama dalam budidaya jagung adalah serangan hama dan penyebab penyakit. Hama tanaman merupakan organisme atau hewan yang dalam populasi tertentu dapat mengganggu budidaya tanaman dan menimbulkan kerugian secara ekonomis (Untung,

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

1993). Penyakit tanaman didefisnisikan sebagai kegagalan tanaman melaksanakan satu atau lebih fungsi fisiologisnya karena adanya gangguan terus-menerus dari patogen atau penyebab penyakit dan menimbulkan gejala (Agrios, 2005). Sebagian besar patogen merupakan golongan jamur, bakteri, dan virus yang mengganggu tanaman sehingga menurunkan produksi tanaman. Pengelolaan agroekosistem merupakan prinsip penting dalam pengendalian hama dan penyakit tanaman.

Hama utama yang ditemukan pada pertanaman jagung adalah *S. frugiperda*. Hama *S. frugiperda* menyerang pangkal batang, daun, dan titik tumbuh tanaman jagung, bahkan mampu menyerang tongkol jagung. Kerusakan yang disebabkan oleh hama ini lebih besar disbanding ulat lain. Selain hama, terdapat patogen yang ditemukan dan menjadi masalah pada pertanaman jagung yaitu *Fusarium* sp. keberadaan patogen ini mengakibatkan tanaman jagung menjadi layu dan akhirnya mati.

Hingga saat ini upaya pengendalian yang dilakukan oleh petani adalah dengan menggunakan pestisida sebagai solusi utama masalah hama dan penyakit. Oleh karena itu Tim melakukan edukasi mengenai tata cara penggunaan pestisida yang tepat dan menjelaskan alternatif pengendalian selain menggunakan pestisida yaitu dengan agensia hayati. Terdapat beberapa kelompok agensia hayati yang dapat digunakan dalam pengendalian hama yaitu predator, parasitoid, dan entomopategen. Sedangkan agensia hayati yang banyak dikembangkan untuk pengendalian penyakit tanaman umumnya adalah mikroorganisme saprofit maupun endofit yang bersifat menghambat pertumbuhan dan berkompetisi untuk mendapatkan ruang dan nutrisi patogen sasaran (Supriadi, 2006).

Entomopatogen adalah salah satu agensia hayati yang sering digunakan. Hal ini karena entomopatogen relatif mudah dikembangkan, memiliki daya infeksi yang tinggi dan juga tidak bersifat toksik pada manusia. Beberapa contoh entomopatogen yaitu: *Beauveria bassiana, Metarhizium* sp. *Trichoderma asperellum* dan lain sebagainya. Isolat entomopatogen yang baik adalah isolat yang diperoleh dari lingkungan itu sendiri. Sehingga pada kegiatan pengabdian ini Tim mengajak kelompok tani untuk mecari hama yang terinfeksi oleh entomopatogen. Hasil pencarian di lokasi ditemukan entomopatogen berupa jamur *Metarhizium* sp. (Gambar 2). Jamur pada larva yang terinfeksi digunakan sebagai sumber inokulum untuk perbanyakan jamur entomopatogen.

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

Gambar 2. Larva Spodoptera frugiperda yang terinfeksi Metarhizium sp.

Selain entomopatogen, pada pengabdian kali ini tim pengabdi juga mengedukasi petani cara untuk mendapatkan jamur *Trichoderma* sp. dari alam. Sebelum memerangkap *Trichoderma* dari alam, terlebih dahulu Tim mengajarkan cara untuk memperbanyak *Trichoderma* dengan isolat yang dibawa dari Laboratoium Bioteknologi Fakultas Pertanian. Perbanyakan dilakukan pada media menir beras setangah matang. Dengan demikian nantinya petani diharapkan dapat melakukan perbanyakan sendiri jamur *Trichoderma* yang diperoleh dari alam. Untuk memperoleh Jamur *Trichoderma* sp., terlebih dahulu perlu disiapkan satu ruas bambu yang dibelah dan sedikit nasi yang sudah dingin. Pada ruas bambu diberi lubang dengan diameter lubang kurang lebih 1 cm. Pada bambu tersebut kemudian diberi nasi kemudian kedua bagian bambu disatukan kembali dan diikat. Bambu berisi nasi nasi tersebut dikubur di dalam tanam perakaran bambu dengan kedalaman kurang lebih 30 cm dan dapat diambil setalah 7 hari. Setelah 7 hari diperoleh jamur *Trichoderma* sp. (Gambar 3). yang kemudian diperbanyak dan digunakan sebagai jamur antagonis patogen *Fusarium* sp.

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

Gambar 3. Jamur *Trichoderma* yang diperoleh dari alam.

Hasil perbanyakan jamur *Metarhizium* dan juga *Trichoderma* nantinya dapat digunakan sebagai agensia pengendali hayati hama dan penyakit pada tanaman jagung. *Metarhizium* dapat disuspensikan dalam air dan disemprotkan pada pertanaman jagung yang terserang ulat. Sedangkan jamur *Trichoderma* dapat ditambahkan pada pupuk kompos.

Keberhasilan pengendalian dengan menggunakan agensia hayati juga tidak terlepas dari pengelolaan agroekosistem dengan baik. Oleh karena itu tim pengabdi juga mengedukasi petani untuk melakukan cara budidaya yang baik dan sehat.

Evaluasi kegiatan dilakukan diawal dan akhir kegiatan pengabdian, sedangkan evaluasi proses dilakukan selama kegiatan penyuluhan dan pelatihan berlangsung. Evaluasi pada awal kegiatan bertujuan mengetahui pengetahuan atau pemahaman awal peserta sebelum mengikuti kegiatan. Evaluasi pada akhir kegiatan bertujuan mengetahui pengetahuan atau pemahaman peserta setelah mengikuti kegiatan. Evaluasi proses bertujuan mengukur respon/ketertarikan peserta terhadap materi yang diberikan. Evaluasi proses dilakukan melalui diskusi interaktif selama kegiatan pengabdian berlangsung, baik pada sesi ceramah maupun pada sesi praktek. Evaluasi awal dan akhir dilakukan dengan memberikan kuisioner. Hasil evaluasi awal dan evaluasi akhir ditampilkan pada Tabel 1 dan Tabel 2.

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

Tabel 2. Hasil evaluasi awal kegiatan pengabdian

No.	Keterangan	Persentase	Kategori
1	Penggunaan pestisida untuk pengendalian hama dan penyakit	90	Tinggi
2	Tanaman refugia	35	Rendah
3	Pengendalian hayati hama dan penyakit tanaman	25	Rendah
4	Fungsi tanaman refugia	35	Sedang
5	Keunggulan pengendalian hayati	35	Rendah
6	Contoh agens pengendali hayati hama tanaman	40	Sedang
7	Contoh angens pengendali hayati penyakit tanaman	40	Sedang
8	Jamur entomopatogen	25	Rendah
9	Jamur Trichoderma	30	Rendah
10	Cara mendapatkan jamur entomopatogen/Trichoderma	20	Rendah
11	Media perbanyakan jamur entomopatogen/Trichoderma	25	Rendah
12	Cara perbanyakan jamur entomopatogen/Trichoderma	25	Rendah

Tabel 2. Hasil evaluasi akhir kegiatan penyuluhan

No.	Keterangan	Persentase	Kategori
1	Penggunaan pestisida untuk pengendalian hama dan penyakit	90	Tinggi
2	Tanaman refugia	85	Tinggi
3	Pengendalian hayati hama dan penyakit tanaman	85	Tinggi
4	Fungsi tanaman refugia	90	Tinggi
5	Keunggulan pengendalian hayati	80	Tinggi
6	Contoh agens pengendali hayati hama tanaman	85	Tinggi

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

No.	Keterangan	Persentase	Kategori
7	Contoh angens pengendali hayati penyakit tanaman	85	Tinggi
8	Jamur entomopatogen	95	Tinggi
9	Jamur Trichoderma	90	Tinggi
10	Cara mendapatkan jamur entomopatogen/Trichoderma	85	Tinggi
11	Media perbanyakan jamur entomopatogen/Trichoderma	95	Tinggi
12	Cara perbanyakan jamur entomopatogen/Trichoderma	80	Tinggi
13	Metode perbanyakan Trichoderma	75	Tinggi
14	Kesediaan mempraktekan hasil pengabdian	75	Tinggi

Berdasar hasil evaluasi, diketahui bahwa petani masih mengandalkan pestisida sintetik untuk mengendalikan serangan hama dan penyakit pada tanaman yang mereka budidayakan yaitu sebesar 90%. Berdasar evaluasi proses diketahui alasan petani masih banyak menggunakan pestisida sintetik yaitu (1) ketidaktahuan alternatif pengendalian lain, (2) faktor kebiasaan selama ini, (3) aplikasi pestisida sintetik praktis, dan (4) pestisida sintetis mudah didapat. Kondisi ini perlu edukasi yang terus-menerus karena sesungguhnya pestisida sintetik selain berbahaya terhadapat lingkungan juga berbahaya bagi kesehatan operator dan konsumen karena adanya residu pestisida pada produk pertanian yang dikonsumsi.

Secara keseluruhan hasil evaluasi awal menunjukkan bahwa pengetahuan dan pemahaman petani mengenai topik kegiatan pengabdian tergolong rendah. Pengetahuan dan pemahaman yang rendah ini terjadi baik pada aspek hama maupun penyakit tumbuhan dan juga cara pengendaliannya. Hal ini karena minimnya akses informasi yang didapatkan petani baik dari penyuluh, akademisi, maupun sumber lain. Kondisi ini bisa dimaklumi karena memang letak desa tempat kegiatan pengabdian dilaksanakan cukup jauh dari jalan utama (jalan Kabupaten).

Setelah dilakukan kegiatan penyuluhan dan pelatihan, pengetahuan dan pemahaman petani meningkat. Hal ini terlihat dari hasil evaluasi akhir Peningkatan pengetahuan ini

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

terjadi baik pada pengetahuan tentang hama dan penyakit, pengendalian hayati, rekayasa habitat, dan car perbanyakan agens pengendali hayati hama dan penyakit tumbuhan. Adanya praktik perbanyakan agens pengendali hayati penyakit tanaman berupa jamur *Trichoderma*. Praktek ini memberikan pengalaman yang berbeda pada petani dan mereka antusias karena ternyata memperbanyak jamur *Trichoderma* cukup mudah. Selain itu, praktik memerangkap jamur *Trichoderma* dari tanah menggunakan nasi sisa juga memberikan pengalaman yang berbeda juga ke petani. Adanya pengalaman dan mempraktekan sendiri cara memerangkap dan memperbanyak jamur *Trichoderma* diharapkan membuat petani merasa percaya diri untuk mempraktekan semua pengetahuan yang didapatnya di lahan pertanian miliknya...

Namun demikian, adanya peningkatan pengetahuan dan juga keterampilan dalam memperbanyak *Trichoderma* dari petani peserta kegiatan belum menjamin petani akan mempraktekkan. Hal ini terlihat dari hasil evaluasi akhir, dimana petani cenderung ingin melihat hasil dari teman yang sudah mempraktekkan sebelum melakukan sendiri. Untuk itu perlu kiranya pendampingan secara berkelanjutan dan demplot supaya petani tidak sekedar meningkat pengetahuannya, tetapi juga mau mempraktekannya.

Kesimpulan

Pengabdian yang dilakukan oleh tim pengabdi sangat bermafaat bagi kelompok tani dan meningkatkan pengetahuan serta keterampilan anggota kelompok tani dalam mengelola hama dan penyakit pada tanaman jagung dengan ramah lingkungan.

Pengakuan/Acknowledgements

Ucapan terima kasih disampaikan kepada LPPM Universitas Lampung atas dukungan pendanaan Kegiatan pengabdian kepada masyarakat ini melalui skim Pengabdian Kepada Masyarakat DIPA Fakultas Pertanian tahun 2022. Terima kasih juga disampaikan kepada mitra pengabdian yaitu Gapoktan Jaya Makmur atas kesediannya terlibat dalam pengabdian.

Daftar Pustaka

Badan Pusat Statistik, 2018. Tanaman Jagung (Luas Panen, Produksi, dan Produktivitas) 2015-2017. https://lampung.bps.go.id/indicator/53/298/1/tanaman-jagung-luas-panen-produksi-dan-produktivitas-.html.

Vol. 02, No. 01, Maret, 2023, pp. 068 - 079

- Hermanto dan D.K.S. Swastika. 2011. Penguatan Kelompok Tani: langkah awal peningkatan kesejahteraan petani. *Analisis Kebijakan Pertanian*. 9(4): 371-390.
- Mulya, Y.M. 2017. Refugia sebagai alternatif alami pengendalian organisme pengganggu tumbuhan. BBPP Ketindan. http://bbppketindan.bppsdmp.pertanian.go.id.
- Nurzannah, S.E, Lisnawita, dan D. Bakti. 2014. Potensi jamur endofit asal cabai sebagai agens hayati untuk mengendalikan layu Fusarium (*Fusarium oxysforum*) pada cabai dan interaksinya. *Jurnal Online Agroekoteknologi*. 2(3): 1230-1238.
- Oka, I.N. 1995. *Pengendalian Hama Terpadu dan Implementasinya di Indonesia*. Gadjah Mada University Press, Yogyakarta. 255 p.
- Ratna, Y., Y.A. Trisyono, K. Untung, dan D. Indradewa. 2009. Resurjensi serangga hama karena perubahan fisiologi tanaman dan serangga sasaran setelah aplikasi insektisida. *Jurnal Perlindungan Tanaman Indonesia*. 15(2): 55-64.
- Supriadi. 2006. Analisis resiko agen hayati untuk pengendalian patogen tanaman. *J. Litbang Pertanian*. 25(3):75-80.
- Untung, K., E. Mahrub, dan S. Rasdiman. 1986. *Pengujian Resurjensi Wereng Coklat Setelah Perlakuan Beberapa Pestisida Organofosfat*. Laporan Penelitian Fakultas Pertanian UGM, Yogyakarta. 28 p.
- Untung, K. 1993. Pengantar Pengelolaan Hama Terpadu. Gadjah Mada Univesity Press. Yogyakarta. 273 hlm.

ISSN: 2829-2243 (PRINT), ISSN: 2829-2235 (ONLINE)