KAJIAN KONSENTRASI ETANOL, METODE EKSTRAKSI PROPOLIS DAN KARAKTERISTIK EKSTRAK PROPOLIS LEBAH *TRIGONA SP.* TERHADAP AKTIVITAS ANTIMIKROBA *ESCHERICHIA COLI*

[Study of Ethanol Concentration, Propolis Extraction Method and Characteristics of Propolis extract of Trigona sp. bees to Antimicrobial Activity of Escherichia coli]

Vira Putri Yarlina*, Debby Moody Sumanti, Betty Sofiah, Mahani.

Departemen Teknologi Industri Pangan, Jurusan Teknologi Pangan, Fakultas Teknologi Industri Pertanian, Universitas Padjadjaran *Email korespondensi: vira.putri.yarlina@unpad.ac.id

Diterima: 28 Juni 2019 Disetujui : 21 Maret 2020 DOI: http://dx.doi.org/10.23960/jtihp.v25i1.27-34

ABSTRACT

Propolis is one of the natural products from Trigona sp. containing flavonoid compounds which have antimicrobial, antifungal, and antioxidant activity. The purpose of this research was to determine the ethanol concentration, extraction methods, and characteristics of propolis extract that can inhibit the growth of Escherichia coli bacteria. The method used was a randomized block design with 6 treatments in 3 replications. The treatments consisted of extraction methods and ethanol concentrations of 50%, 70%, and 90%. The best results of this study were extraction of propolis by maceration method at 70% ethanol concentration. This propolis extract had a value of antimicrobial activity against Escherichia coli of 4.65 mm, brownish-black color, typical aroma of strong propolis, bitter taste, and had a minimum effective value of growing bacteria of 0.20% extract.

Keywords: antimicrobial, Escherichia coli, extraction, propolis

ABSTRAK

Propolis adalah salah satu produk alami dari lebah *Trigona* sp., yang mengandung senyawa flavonoid yang berperan sebagai antimikroba, antifungal, dan antioksidan. Tujuan dari penelitian ini adalah untuk menentukan konsentrasi etanol, metode ekstraksi serta karakteristik ekstrak propolis yang dapat menghambat pertumbuhan *Escherichia coli*. Metode rancangan acak kelompok dilakukan dengan 6 perlakuan dalam 3 kali ulangan. Perlakuan terdiri dari metode ekstraksi dan konsentrasi etanol 50%, 70% dan 90%. Hasil terbaik penelitian ini adalah ekstraksi propolis dengan metode maserasi pada konsentrasi etanol sebesar 70%, yang menghasilkan propolis dengan nilai aktivitas antimikroba terhadap *Escherichia coli* sebesar 4.65 mm, berwarna hitam kecoklatan, aroma khas propolis kuat, rasa pahit, dan memiliki nilai efektifitas minimum tumbuh bakteri pada 0.20% ekstrak.

Kata kunci : antimikroba, ekstraksi, Escherichia coli, propolis

PENDAHULUAN

Lebah tidak hanya dikenal sebagai penghasil madu, melainkan mampu menghasilkan produk lebah lainnya seperti propolis, royal jelly, dan beepollen. Jenis Lebah di Indonesia antara lain *Apis mallifera*, *A.andreniformis*, *A. dorsata*, *Trigona* sp. (Mahani *et al.*, 2011). Lebah *Trigona* sp. dikenal sebagai lebah asli Asia dan

lebah klenceng pada beberapa daerah di Indonesia. Ciri dari lebah ini tidak memiliki sengat namun memiliki senjata berupa perekat untuk melindungi dirinya.

Lebah *Trigona sp* umumnya terdapat di Pulau Jawa, Sumatera, Kalimantan dan Maluku. Pada wilayah Jawa, sebagian besar terdapat di wilayah Jawa Barat yaitu Kuningan, Majalengka, Sumedang, Tasik, Garut, dan Ciamis (Departemen Kehutanan, 2007).

Lebah Trigona sp. disebut sebagai lebah propolis. Lebah ini mampu propolis memproduksi banyak lebih dibandingkan dengan produksi madu. Potensi lebah Trigona sp. sebagai produksi propolis sebesar 500 gram/ koloni selama waktu produksi 3 bulan, sedangkan produksi madu hanya sebesar 250 gram/ koloni (Riendriasari dan Krisnawati, 2017).

Propolis merupakan produk yang dihasilkan oleh lebah pekerja dari sumber tumbuh-tumbuhan. Komponen resin dan lilin mendominasi komponen pada propolis yaitu 50% untuk resin dan 30% untuk komponen lilin dan asam lemak. Sisa pada komponen propolis diantaranya minyak esensial, pollen, dan senyawa organik mineral (Pasupuleti *et al.*, 2017).

Komponen resin pada propolis mengandung flavonoid, fenol dan berbagai asam. Jenis flavonoid pada propolis antara lain pinocembrin, akasetin, krisin, rutin, katekin sebagai senyawa antimikroba, antijamur, dan antioksidan. Senyawa fenol dan asam berperan sebagai antibiotik pada propolis(Anjum *et al.*, 2018).

Komponen suatu bahan dapat diekstrak dengan menggunakan pelarut dan metode ekstraksi yang sesuai. Ekstraksi komponen propolis terdapat dalam tiga tahap yaitu pencampuran pelarut, maserasi, dan pemekatan ekstrak propolis (Mahani *et al.*, 2011).

Menurut Sutton *et al.* (2000), ekstrak komponen bioaktif bergantung pada pelarut yang digunakan. Pelarut ekstraksi propolis yang umum digunakan antara lain etanol, propilen glikol, dan air.

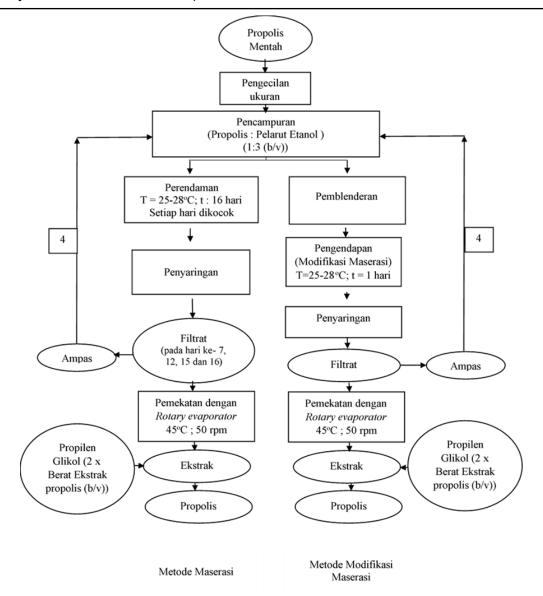
Ekstraksi dengan menggunakan konsentrasi etanol yang berbeda akan menghasilkan jumlah komponen aktif yang berbeda. Pelarut etanol dibedakan tingkat polaritasnya berdasarkan nilai konstanta dielektrik yaitu semakin tinggi konstanta dielektrik, maka pelarut akan semakin polar (Anjum *et al.*, 2018).

Metode ekstraksi umumnya dengan maserasi, refluks, dan perkolasi. Masingmasing metode ekstraksi memiliki perbedaan suhu, pelarut, dan lama ekstraksi. Komponen yang teresktrak pada sampel dipengaruhi oleh lama ekstraksi (Wijaya *et al.*, 2018).

Berdasarkan uraian diatas, maka penelitian mengenai kajian konsentrasi etanol, metode ekstraksi propolis serta pengaruh ekstrak propolis terhadap daya hambat pertumbuhan bakteri *E.coli* perlu dilakukan.

BAHAN DAN METODE

Bahan dan Alat


Bahan yang digunakan antara lain propolis mentah lebah *Trigona* sp. (Bogor, Indonesia), bakteri uji *Escherichia coli* 0157 (LIPI, Indonesia), etanol 50%, etanol 70%, etanol 90%, propilen glikol, media agar Mueller-Hinton (Oxoid, UK), media agar EMB (Merck, USA).

Peralatan yang digunakan antara lain *rotary evaporator* (R-300, Buchi, China), inkubator, dan autoklaf.

Metode Penelitian

Penelitian dilakukan dengan Rancangan Acak Kelompok (*Randomized Blok Design*) yang terdiri dari enam perlakuan dalam tiga kali ulangan. Data hasil penelitian dianalisis dengan *one way ANOVA* dan diuji lanjut *Duncan Multiple Range Test* dengan taraf nyata 5% menggunakan IBM SPSS (*Statistical Package for The Sosial Science*) 23.

Data pengujian antimikroba, rendemen, dan pengujian konsentrasi daya

Gambar 1. Diagram proses ekstraksi propolis

hambat minimum dianalisis secara deskriptif.

Perlakuan pada penelitian ini terdiri dari:

- A = Ekstraksi Propolis dengan etanol 50% Metode Maserasi
- B = Ekstraksi Propolis dengan etanol 70% Metode Maserasi
- C = Ekstraksi Propolis dengan etanol 90% Metode Maserasi
- D = Ekstraksi Propolis dengan etanol 50% Metode Modifikasi maserasi
- E = Ekstraksi Propolis dengan etanol 70% Metode Modifikasi maserasi
- F = Ekstraksi Propolis dengan etanol 90% Metode Modifikasi maserasi

Pengujian meliputi rendemen propolis, karakteristik inderawi, aktivitas antimikroba terhadap *Escherichia coli*, dan konsentrasi hambat tumbuh minimum (KHTM) ekstrak propolis terhadap *Escherichia coli*.

Ekstraksi propolis

Ekstraksi propolis dilakukan dengan metode maserasi dan modifikasi maserasi, dengan berbagai konsentrasi etanol sesuai perlakuan (Gambar 1).

Rendemen Ekstrak Propolis

Propolis mentah yang telah dipotong-potong ditimbang dan direndam

dalam pelarut sesuai perlakuan. Perbandingan propolis mentah:pelarut = 1:3 (b/v).

Ekstrak propolis yang dihasilkan kemudian ditimbang, dicatat, dan dihitung dengan membandingkan antara berat esktrak propolis (g) terhadap berat propolis mentah (g).

Karakteristik Inderawi Ekstrak Propolis

Pelaksanaan penilaian karakteristik inderawi dilakukan oleh panelis ahli pada ekstrak propolis. Deskripsi karakteristik inderawi meliputi warna, aroma, dan rasa. Pendeskripsian dilakukan dengan pengujian skoring terhadap kesan yang didapat. Penilaian yang diberikan yaitu skor 0 hingga 10 dengan analisis semakin tinggi skor maka makin baik mutu dari ekstrak propolis.

Karakteristik ekstrak propolis pada inderawi warna. skor tertinggi vaitu bewarna coklat kehitaman dan skor terendah cokelat muda-bening. Karakteristik rasa dengan skor tertinggi yaitu pahit yang kuat dan skor terendah etanol kuat. Karakteristik aroma dengan skor tertinggi adalah khas propolis yang sangat kuat dan skor terendah yaitu aroma propolis kurang kuat dan tercium aroma etanol.

Pengujian Aktivitas Antimikroba

Aktivitas antimikroba dilakukan pengujian dengan metode *difusion paper disc* (Modifikasi Cappucino dan Sherman, 2001).

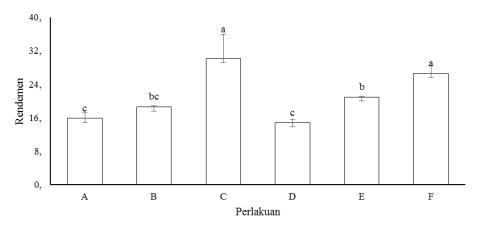
Kultur murni bakteri *Escherichia coli* diinokulasi pada media agar miring NA selama 2-3 hari pada suhu 37°C. Bakteri *Escherichia coli* diusapkan pada permukaan agar Muller-Hinton. *Paper disk* direndam pada ekstrak propolis selama ± 7 menit dan diletakkan di atas permukaan media agar Muller-Hinton. Media diinkubasi pada suhu 37°C selama 2-3 hari. Aktivitas antimikroba ditandai dengan terbentuknya area bening pada media agar

di sekeliling paper disk.

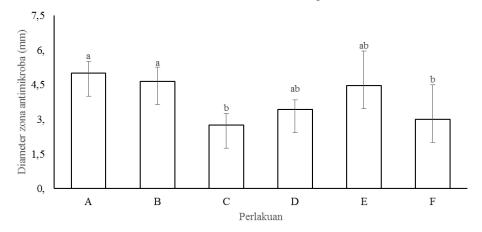
Pembuatan Ekstrak Propolis untuk Pengujian KHTM

Ekstrak propolis kental (konsentrasi 100%) diencerkan dengan propilen glikol dengan perbandingan 1:2 yaitu 1 ekstrak propolis dengan 2x propilen glikol. Ekstrak propolis konsentrasi 50% dengan perbandingan 1:4. Seterusnya dilakukan pengenceran ekstrak propolis pada konsentrasi yang diinginakan (50%; 25%; 12,5%; 6,25%; 3,13%; 1,56%; 0,98%; 0,39%, dan 0,20%. Ekstrak propolis kemudian dihomogenkan dengan vortex.

HASIL DAN PEMBAHASAN


Rendemen Ekstrak Propolis

Perlakuan konsentrasi etanol dan metode ekstraksi berpengaruh nyata terhadap rendemen ekstrak propolis. Hasil uji lanjut terhadap rendemen ekstrak propolis perlakuan C dan F menghasilkan rendemen ekstrak tertinggi, sedangkan perlakuan A dan D menghasilkan ekstrak terendah (Gambar 2).


Hasil rendemen dipengaruhi oleh kepolaran pada konsentrasi etanol yang digunakan (Hasan et al., 2011). Kepolaran suatu pelarut dapat dinilai dengan angka konstanta elektrik pelarut tersebut. Konsentrasi etanol 90% memiliki nilai konstanta dielektrik 35, menunjukkan nilai kepolaran yang rendah. Menurut Bankova et al. (2014), komponen fenolik, flavonoid, dan asam venolik merupakan komponen bioaktif bersifat polar. Pada ekstraksi propolis menggunakan pelarut polar yang rendah mengakibatkan senyawa-senyawa selain komponen bioaktif ikut terekstrak. Hal ini ditunjukkan dengan hasil rendemen ekstrak propolis yang cukup tinggi.

Karakteristik Inderawi Ekstrak Propolis (Warna, Aroma, dan Rasa)

Perlakuan konsentrasi etanol dan metode ekstraksi propolis berpengaruh

Gambar 2. Rendemen Ekstrak Propolis

Gambar 3. Aktivitas Antimikroba Ekstrak Propolis Terhadap Echerichia coli

nyata terhadap warna, aroma, dan rasa.

Tabel 1 menunjukkan bahwa untuk karakteristik warna, perlakuan yang memiliki skor tertinggi (coklat kehitaman) adalah A dan B. Demikian pula perlakuan terbaik untuk karakteristik rasa (pahit yang kuat) dan aroma (khas propolis yang kuat).

Menurut Krell (1996), warna propolis ditentukan dengan asal resin, umumnya berwarna kuning hingga coklat tua. Selain itu, warna yang dihasilkan dari ekstrak propolis pada penelitian ini dipengaruhi oleh proses ekstraksi yang digunakan. Warna propolis yang semakin gelap menunjukkan adanya kandungan flavonoid pada propolis (Bankova *et al.*, 2014).

Propolis memiliki rasa khas yang pahit. Rasa pahit ditimbulkan oleh adanya senyawa flavonoid, triterpenoid dan tanin (Saricoban and Yerlikaya, 2016).

Propolis mengandung zat aromatik

dan mineral. Aroma propolis timbul karena adanya resin dari getah pohon yang diambil oleh lebah. Resin pada propolis mengandung minyak esensial kurang lebih sebesar 10% senyawa flavonoid, asam fenolat, dan ester (Krell, 1996). Metode ekstraksi mempengaruhi banyaknya senyawa yang terekstrak, sedangkan konsentrasi etanol mempengaruhi jenis senyawa yang terekstrak (Cottica *et al.*, 2011).

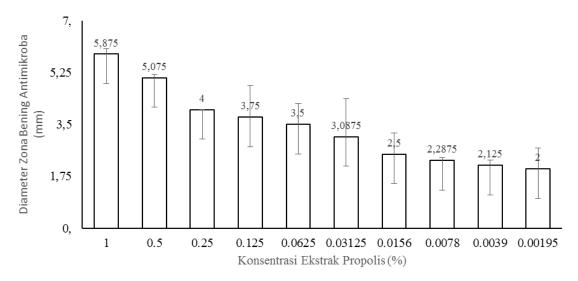
Aktivitas Antimikroba Ekstrak Propolis Terhadap *Escherichia coli*

Perlakuan berbagai konsentrasi etanol dan metode ekstraksi berpengaruh nyata terhadap aktivitas antimikroba. Aktivitas antimikroba ekstrak propolis dari berbagai konsentrasi etanol dan metode ekstraksi terhadap *E.coli* dapat dilihat pada Gambar 3.

Perlakuan A, B, D, dan E menghasilkan ekstrak propolis yang tidak

F

 3.20^{d}


 3.40^{c}

Perlakuan Warna Rasa Aroma 9.00 ab 8.20 ab A Maserasi Etanol 50% 9.20 a В Maserasi Etanol 70% 9.20 a 9.20 a 9.00 a \mathbf{C} 6.60^{b} 6.60 b 5.80 bc Maserasi Etanol 90% 3.20^{d} 4.80^{cd} 5.40 bc D Modifikasi maserasi Etanol 50 % 6.40 bc 6.00 c 5.60 bc Е Modifikasi maserasi Etanol 70%

4.40 cd

Tabel 1. Hasil Uji Karakteristik inderawi Warna, Rasa dan Aroma

Modifikasi maserasi Etanol 90%

Gambar 4. Konsentrasi Hambat Tumbuh Minimum (KHTM) Berbagai Konsentrasi Ekstrak Propolis Terhadap *Escherichia coli*

berbeda nyata terhadap aktivitas antimikroba terhadap bakteri *E.coli*, dan lebih tinggi dibandingkan dengan perlakuan C dan F. Hal ini menunjukkan bahwa perlakuan maserasi lebih baik dibandingkan perlakuan modifikasi maserasi. Pada perlakuan maserasi, waktu kontak pelarut etanol dan propolis lebih lama (16 hari) sehingga komponen antimikroba yang terekstrak lebih banyak.

Konsentrasi etanol yang berbeda memberikan pengaruh terhadap kandungan ekstrak propolis. Hal ini disebabkan karena masing-masing konsentrasi etanol memiliki nilai kepolaran yang berbeda. Nilai kepolaran merupakan kemampuan pelarut polar yang digunakan untuk mengekstrak senyawa bioaktif yang juga bersifat polar (Kubiliene *et al.*, 2015). Konsentrasi etanol 50 dan 70% menghasilkan aktivitas antimikrobia yang lebih tinggi daripada konsentrasi 90%. Senyawa flavonoid, polifenol dan tanin merupakan senyawa bioaktif pada propolis yang berperan sebagai senyawa antimikroba dan bersifat polar (Bankova *et al.*, 2014).

Mekanisme flavonoid yaitu dapat menghambat pertumbuhan bakteri dengan merusak permeabilitas membran sel, mikrosom dan lisosom. Penghambatan pertumbuhan bakteri ditunjukkan dengan adanya area zona bening (Kubiliene *et al.*, 2015).

Propolis mampu menghambat pertumbuhan *Echerichia coli* dengan beberapa cara yaitu mengganggu pembelahan pada

bakteri, merusak dinding sel dan membran sitoplasma sehingga bakteri tidak dapat berkembang (Naher *et al.*, 2011).

Konsentrasi Hambat Tumbuh Minimum (KHTM) Ekstrak Propolis Terhadap Escherichia coli

Konsentrasi hambat tumbuh minimum merupakan metode yang digunakan untuk mengetahui konsentrasi ekstrak propolis terkecil yang mampu menghambat tumbuh bakteri *Escherichia coli*. Konsentrasi etanol 70% dengan metode maserasi (perlakuan B) dipilih dalam pengujian konsentrasi hambat minimum, karena menghasilkan antimikroba dan rendemen tertinggi serta karakteristik inderawi terbaik.

Gambar 4 menunjukkan bahwa adalah KHTM pada E.coli0,20%. Penelitian Hasan et al. (2011) menunjukkan bahwa KHTM terhadap E.coli adalah dipengaruhi 0.7812%. Hal ini perbedaan keadaan dan asal sumber propolis menentukan komponen pada propolis (Alencar et al., 2007; Anjum et al., 2018).

KESIMPULAN

Metode maserasi dengan etanol 70% menghasilkan ekstrak propolis terbaik dengan aktivitas antimikroba terhadap *Escherichia coli* dan rendemen tertinggi. Karakteristik inderawi ekstrak propolis tersebut yaitu warna coklat kehitaman, rasa pahit kuat, dan aroma khas propolis sangat kuat, serta mempunyai konsentrasi hambat tumbuh minimum sebesar 0,20%.

DAFTAR PUSTAKA

Andrade, J. K. S., M. Denadai, C. S. de Oliveira, M. L. Nunes, and N. Narain. 2017. Evaluation of bioactive compounds potential and antioxi-

- dant activity of brown, green and red propolis from Brazilian northeast region. Food Research International. 101:129–138.
- Alencar, S.M., T.L.C. Odini, M.L. Castro, I.S.R. Cabral, C.M. Costa-Neto, J.A. Cury, P.L. Rosalen, and M. Ikegaki. 2007. Chemical Composition and Biological Activity of a New Type of Brazilian Propolis: Red Propolis. J. Ethnopharmacology. 113(2):278-283.
- Anjum, S. I., A. Ullah, K. A. Khan, M. Attaullah, H. Khan, H. Ali, and C. K. Dash. 2018. Composition and functional properties of propolis (bee glue): A review. Saudi J. of Biological Sciences. 26(7):1695-1703.
- Bankova, V., M. Popova., and B. Trusheva. 2014. Propolis volatile compounds: chemical diversity and biological activity: a review. Chemistry Central J. 8:28-35.
- Capuccino., J.G. dan N. Sherman. 2001. Microbiology: A Laboratory Manual, Sixth Edition, Benjamin Cummings, San Fransisco. pp 477.
- Cottica, S. M., A. C. H. F. Sawaya, M. N. Eberlin, S. L. Franco, L. M. Zeoula, and J. V. Visentainer. 2011. Antioxidant activity and composition of propolis obtained by different methods of extraction. Journal of the Brazilian Chemical Society. 22 (5):929–935.
- Departemen Kehutanan. 2007. Statistik Kehutanan. Pemerintah Provinsi Jawa Barat. Bandung.
- Hasan, A.E.Z., I.M. Artika., A. Fatoni., Kuswandi, dan B. Haryanto . 2011. Antibacterial activity of Propolis *Trigona* spp. From Bukittinggi West Sumatera against *Salmonella* sp. Chem. Prog. 4(2):55-59.
- Krell, R. 1996. Value-Added Products From Bee keeping. Available at Food and Agriculture Organization

- of the United Nations Roma, USA. pp 395.
- Kubiliene, L., V. Laugaliene, A. Pavilonis, A. Maruska, D. Majiene, K. Barcauskaite, R Kubilius, G. Kasparavicien, and Savickas, A. 2015. Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complementary and Alternative Medicine. 15:156-162.
- Lamerkabel, J.S.A. 2011. Mengenal Jenisjenis Lebah Madu, Produk-produkdan cara budidayanya. Jurnal Ilmu Pengetahuan dan Teknologi. 9 (1):70-79.
- Mahani, R.A.K. dan N. Nurjanah. 2011. Keajaiban Propolis Trigona. Pustaka Bunda. Jakarta. 84 hlm.
- Naher, H. S., A. H. Al-Charrakh, and N.K.K. Hendi. 2011. Antimicrobial Activity of Ethanol Extracts of Propolis- Antibiotics Antimicrobial Activity of Ethanol Extracts of Propolis. Medical J. of Babylon. 8 (3):364–380.

- Pasupuleti, V. R., L. Sammugam., N. Ramesh., and S.H. Gan. 2017. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Medicine and Cellular Longevity. Hindawi. 2017:1-22.
- Riendriasari, S.D. dan Krisnawati. 2017. Produksi Propolis MentahLebah Madu *Trigona* spp. di Pulau Lombok. J. Hutan Tropis. 1(1): 71-75.
- Saricoban, C., and S. Yerlikaya. 2016. As a Protective Material: Propolis. J. of Agroalimentary Processes and Tech. 22(2):56–63.
- Sutton, R., B. Rockett, and P. Swindells. 2000. Chemistry for the Life Science Taylor & Francis. London. pp 280.
- Wijaya, H., Novitasari, dan S. Jubaidah. 2018. Perbandingan Metode Ekstraksi Terhadap Rendemen Ekstrak Daun Rambat Laut (Sonneratia caseolaris L. Engl). J. Ilmiah Manuntung. 4(1):79-83.