Vegetable leather pada berbagai perbandingan rumput laut (Eucheuma cottonii) dan daun beluntas (Pluche indica L.) : evaluasi sifat sensori dan fisik

[Vegetable leather in various comparisons of seaweed (eucheuma cottonii) and beluntas leaf (Pluche indica L.) : evaluation of sensory and physical properties]

Chintia Agrefina Brilian¹, Sussi Astuti², Sri Hidayati³ dan Fibra Nurainy⁴

¹Magister Teknologi Industri Pertanian, Fakultas Pertanian, Universitas Lampung, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung
²Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Lampung, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung
⁴Email korespondensi : sussi.astuti@fp.unila.ac.id

Diterima : 13 Juni 2022, Disetujui : 21 Agustus 2022, DOI: 10.23960/jithp.v281i.9-17

ABSTRACT

Vegetable leather can be produced from beluntas leaves which have a high crude fiber content mixed with hydrocolloid compounds such as seaweed (Eucheuma cottonii) as a binder. The purpose of the study was to obtain a comparison of beluntas leaves and seaweed E. cottonii which produced the best sensory and physical properties of vegetable leather. The study was arranged in a Completely Randomized Block Design (CRBD) with 6 levels of treatment with a comparison of beluntas leaves and seaweed (Eucheuma cottonii) i.e. 30%:70%; 40%:60%; 50%:50%; 60%:40%; 70%:30% and 80%:20% and 4 repetitions. The data homogeneity and additivity were tested using Bartlett and Tukey tests, then analyzed for variance and further tested with Least Significant Difference (LSD) at 5% level. The results showed the comparison of 30% beluntas leaves : 70% seaweed was found to be the best treatment, which resulted in a texture score of 4.55 (compact), aroma score of 4.30 (not scented with beluntas leaves), taste score of 4.83 (like), color score 4.55 (blackish green) and overall acceptance score 4.42 (like), physical test tensile strength of 9.43 MPa, percent elongation of 1.34% and thickness of 0.13 mm. The moisture content of the best vegetable leather was 13.34%, ash content was 19.74%, fat content was 1.29%, protein content was 13.14%, and antioxidant activity was 1576.14 ppm.

Keywords: beluntas, hydrocolloid, seaweed, vegetable leather

ABSTRAK

Vegetable leather dapat dibuat dari daun beluntas yang mengandung serat kasar tinggi yang dicampur dengan senyawa hidrokolloid seperti rumput laut (Eucheuma cottonii) untuk bahan pengikat. Tujuan penelitian untuk menghasilkan perbandingan daun beluntas dan E. cottonii yang menghasilkan sifat sensori dan fisik vegetable leather terbaik. Penelitian disusun dalam Rancangan Acak Kelompok Lengkap (RAKL) dengan 6 taraf perlakuan perbandingan daun beluntas dan E. cottonii yaitu 30%:70%; 40%:60%; 50%:50%; 60%:40%; 70%:30%, dan 80%:20% dan 4 kali ulangan. Homogenitas data diuji menggunakan uji Bartlett dan kenenambahan data diuji dengan uji Tukey, selanjutnya diolah sidik ragam dan uji lanjut Beda Nyata Terkecil (BNT) pada taraf 5%. Hasil penelitian menunjukkan perbandingan 30% daun beluntas : 70% rumput laut sebagai perlakuan terbaik, yang menghasilkan tekstur skor 4,55 (kompak), aroma skor 4,30 (tidak beraroma daun beluntas), rasa skor 4,83 (suka), warna skor 4,55 (hijau kehitaman) dan penerimaan keseluruhan skor 4,42 (suka), uji fisik kuat t arik sebesar 9,43 MPa, persen pemanjangan sebesar 1,34% dan ketebalan sebesar 0,13 mm. Kadar air vegetable leather perlakuan terbaik sebesar 13,34%, kadar abu sebesar 19,74%, kadar lemak sebesar 1,29%, kadar protein sebesar 13,14%, dan aktivitas antioksidan sebesar 1576,14 ppm.

Kata kunci: beluntas, hidrokolloid, rumput laut, vegetable leather

Pendahuluan

Vegetable leather adalah kudapan sayuran berupa lembaran yang terbuat dari sayuran yang dihancurkan dan dikeringkan (Wahyuni et al., 2019). Kudapan ini merupakan salah satu jenis produk olahan sayur-sayuran kering selain manisan, dapat langsung dikonsumsi menjadi makanan ringan atau penghias makanan (topping). Produk ini memiliki konsistensi dan juga rasa spesial bergantungan pada jenis
sayuran yang digunakan (Rodiyanti et al., 2017). Beluntas (Pluchea indica L) dapat diolah sebagai vegetable leather sebab memiliki kandungan serat tinggi dan mengandung senyawa aktif yang berguna bagi tubuh. Rukmiasih (2011) menyebutkan bahwa, daun beluntas mengandung alkaloid sebesar 0,316%, flavonoid sebesar 4,18%, tanin sebesar 2,351%, minyak atsiri sebesar 4,47%, serta mengandung fenolik, asam klorogenik, natrium, kalsium, magnesium dan fosfor. Beluntas mengandung 17,78-19,02% protein, 98,25 mg/100g vitamin C, 14,77-15,80% serat kasar dan 2,55 mg/100g karoten. Kelemahan daun beluntas ialah rasanya agak getir dan berbau langu jika diremas. Beluntas mengandung flavonoid yang berpotensi sebagai antioksidan pelindung sel dari kerusakan akibat pembentukan radikal bebas (Dewatisari et al., 2018).

Menurut Amludin et al. (2018), kriteria yang dibutuhkan dari vegetable leather ialah mempunyai tekstur yang sedikit liat serta kompak, sehingga memiliki plastisitas supaya dapat digulung serta tidak mudah patah. Untuk menghasilkan vegetable leathersesuai kriteria tersebut, maka ditambahan bahan pengikat yang mengandung senyawa hidrokoloid sehingga dapat memperbaiki ciri vegetable leather. Prinsip pembuatan vegetable leather sama dengan nori. Bito et al. (2017) menyatakan bahwa nori berasal dari Jepang, diolah dari rumput laut Porphyra dan melalui proses pengeringan. Di perairan Indonesia, sangat sulit ditemukan rumput laut Porphyra sebab lebih cocok hidup di klimat subtropis. Jenis Eucheuma cottonii adalah rumput laut yang banyak dibudidayakan di Indonesia, yang mengandung kadar air sebesar 13,90%, protein sebesar 2,60%, lemak sebesar 0,40%, karbohidrat sebesar 5,70%, serat kasar sebesar 0,90%, mineral sebesar 22,39 mg/100g, dan kadar karagenan sebesar 54-73%. Karagenan di rumput laut Eucheuma cottonii berperan menjadi bahan pembentuk tekstur serta memperbaiki sifat fisik vegetable leather(Anggadjireja et al., 2011).

Kandungan serat kasar yang rendah pada rumput laut Eucheuma cottonii mengakibatkan sulit terbentuknya lembaran vegetable leather, sehingga perlu penambahan bahan dengan kandungan serat kasar relatif tinggi yaitu daun beluntas. Berdasarkan Rukmiasih (2011), Kandungan serat kasar daun beluntas sebesar 14,77-15,80%. Suplai serat kasar berasal dari daun beluntas diharapkan mampu membentuk lembaran yang kompak dan tidak mudah sobek. Agar didapatkan vegetable leather sesuai harapan, diperlukan perbandingan yang tepat antara daun beluntas dan rumput laut. Tujuan penelitian ini adalah untuk memperoleh perbandingan daun beluntas dan rumput laut E. cottonii yang menghasilkan sifat sensori serta fisik vegetable leather terbaik.

Bahan dan metode

Bahan dan alat

Sebagai bahan utama dalam penelitian ini adalah daun beluntas (Pluchea indica L.) yang relatif muda yaitu dari ruas ke 1-10 yang diperoleh dari Kotabumi, Lampung Utara dan rumput laut kering E. cottonii yang berasal dari produsen rumput laut di Way Urang, Lampung Selatan. Bahan tambahan untuk pembuatan vegetable leather adalah garam dan perisa rumput laut, serta reagen kimia. Alat-alat pembuatan vegetable leather antara lain cetaknori (saringan) berdiameter 20 cm, blender, kertas saring Whatmann no. 42, neraca analitik, hot plate, vortex, inkubator, oven, desikator, labu lemak, cawan porselin, labu Kjeldahl, tanur, Soxhlet, alat-alat gelas, Universal Testing Machine (Orientec Co. Ltd model UCT-5T), dan perlengkapan sensori testing seperti nampam, piring kecil, gelas dan alat tulis.

Metode penelitian

Penelitian ini dilaksanakan di Laboratorium Pengolahan dan Laboratorium Analisis Hasil Pertanian, Fakultas Pertanian Universitas Lampung, serta Laboratorium Kimia Fisik Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung. Perlakuan faktor tunggal yaitu perbandingan daun beluntas dan rumput laut (Eucheuma cottonii) dengan 6 taraf 30%:70%; 40%:60%; 50%:50%; 60%:40%; 70%:30%; 80%:20%.
70%:30%, dan 80%:20% yang diperoleh dari hasil trial dan error dan 4 kali ulangan. Data diolah dengan ANOVA dilanjutkan uji Beda Nyata Terkecil pada taraf 5%.

Pelaksanaan penelitian

Vegetable leather dibuat dari perbandingan daun beluntas dan rumput laut mengacu pada metode Rianse et al. (2017) dan Subeki et al. (2018) dengan sedikit perubahan. Daun beluntas dibersihkan kemudian diblansir selama 5 menit. Rumput laut kering direndam selama 1,5 jam dan dicuci dengan air mengalir. Kemudian kedua bahan dicampur sesuai perlakuan dengan perbandingan daun beluntas : rumput laut sebesar 30%:70%(K1); 40%:60%(K2); 50%:50%(K3); 60%:40%(K4); 70%:30%(K5), dan 80%:20%(K6). Masing-masing perlakuan ditambah garam 1% dan air 1 L. Total jumlah daun beluntas dan *E. cottonii* yang digunakan sebesar 150 g. Bahan dicampur dibentuk bubur menggunakan blender selama 5 menit (kecepatan sedang), kemudian dicetak hingga membentuk lembaran menggunakan cetakan berukuran 20x20 cm dan ketebalan 0,3 mm. Selanjutnya lembaran vegetable leather yang sudah jadi dikeringkan pada suhu kamar selama 4 hari. Vegetable leather yang telah kering dilepaskan dari cetakan, lalu dikeringkan lebih lanjut di dalam oven bersuhu 60°C selama 15 menit.

Parameter penelitian

Hasil dan pembahasan

Visualisasi vegetable leather daun beluntas

Secara umum, vegetable leather memiliki tekstur kompak yang plastis dan tidak mudah patah. Vegetable leather memiliki aroma dan rasa khas, serta memiliki warna hijau hingga hijau kehitaman atau sesuai dengan warna bahan yang digunakan. Produk vegetable leather dari perbandingan daun beluntas (*Pluchea indica*) dan rumput laut *E. cottonii* dapat dilihat pada Gambar 1.

![Gambar 1. Vegetable leather daun beluntas](image)

Uji sensori

Karakteristik sensori vegetable leather yang diamati pada penelitian ini yaitu tekstur, aroma, rasa dan penerimaan keseluruhan. Hasil analisis sidik ragam menunjukkan bahwa perbandingan daun beluntas dan...
rumput laut E. cottonii berpengaruh sangat nyata terhadap tekstur, aroma, rasa dan penerimaan keseluruhan vegetable leather. Perbedaan perbandingan konsentrasi daun beluntas dan rumput laut E. cottonii memengaruhi tekstur, aroma, rasa dan penerimaan keseluruhan vegetable leather yang dihasilkan (Tabel 1).

Tabel 1. Karakteristik uji sensori vegetable leather pada berbagai perbandingan daun beluntas (DB) dan rumput laut Eucheuma cottonii (RL)

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Tekstur</th>
<th>Aroma</th>
<th>Rasa</th>
<th>Penerimaan keseluruhan</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1 DB:RL = 30%:70%</td>
<td>4.55 ± 0.14(^a)</td>
<td>4.30 ± 0.40(^a)</td>
<td>4.38 ± 0.11(^a)</td>
<td>4.42 ± 0.06(^a)</td>
</tr>
<tr>
<td>K2 DB:RL = 40%:60%</td>
<td>4.19 ± 0.12(^b)</td>
<td>3.84 ± 0.24(^b)</td>
<td>4.02 ± 0.16(^b)</td>
<td>3.96 ± 0.14(^b)</td>
</tr>
<tr>
<td>K3 DB:RL = 50%:50%</td>
<td>3.89 ± 0.08(^c)</td>
<td>3.22 ± 0.25(^c)</td>
<td>3.52 ± 0.12(^c)</td>
<td>3.63 ± 0.11(^c)</td>
</tr>
<tr>
<td>K4 DB:RL = 60%:40%</td>
<td>3.57 ± 0.12(^d)</td>
<td>3.10 ± 0.15(^d)</td>
<td>3.24 ± 0.10(^d)</td>
<td>3.33 ± 0.14(^d)</td>
</tr>
<tr>
<td>K5 DB:RL = 70%:30%</td>
<td>3.23 ± 0.15(^e)</td>
<td>2.77 ± 0.24(^e)</td>
<td>2.98 ± 0.19(^e)</td>
<td>3.05 ± 0.12(^e)</td>
</tr>
<tr>
<td>K6 DB:RL = 80%:20%</td>
<td>2.81 ± 0.15(^f)</td>
<td>2.42 ± 0.21(^f)</td>
<td>2.18 ± 0.19(^f)</td>
<td>2.46 ± 0.05(^f)</td>
</tr>
</tbody>
</table>

Keterangan: Huruf yang sama artinya tidak berbeda nyata pada uji BNT 5%
Uji skoring : Tekstur dan aroma
Uji hedonik : Rasa dan penerimaan keseluruhan

Perlakuan K1 (30% daun beluntas) memiliki skor aroma tertinggi yaitu 4.30 dengan kriteria tidak beraroma daun beluntas. Perlakuan yang memiliki skor aroma terendah yaitu perlakuan K5 (70% daun beluntas) dan K6 (80% daun beluntas), masing-masing dengan skor 2.77 dan 2.42 (beraroma daun beluntas). Aroma nori komersil adalah khas rumput laut. E. cottonii mempunyai aroma khas, namun bau langsung beluntas yang dominan cenderung menutupi aroma rumput laut. Selain itu, aroma khas rumput laut E. cottonii diduga juga berkurang karena telah mengalami proses pemutihan. Subeki et al. (2018) menyatakan bahwa berkurangnya aroma E. cottonii pada nori karena rumput laut sudah melewati proses pemutihan. Senyawa penyebab bau khas daun beluntas yaitu senyawa tiopenes yang merupakan senyawa aromatik (Silalaih, 2019). Senyawa yang dominan pada ekstrak daun beluntas adalah minyak atsiri sebesar 0,38%, flavonoid sebesar 1,09%, fenol sebesar 2,02%, saponins sebesar 3,06% dan alkaloïd sebesar 3,18% (Muchtaromah et al., 2018), yang keseluruhannya dapat memengaruhi aroma vegetable leather. Perlakuan blansir mengurangi bau langsung tetap tidak dapat menghilangkan bau langsung daun beluntas, sehingga pada konsentrasi yang tinggi aroma khas daun beluntas tetap tercius.

Perlakuan K1 (30% daun beluntas) memiliki skor rasa tertinggi yaitu 4,38 (suka). Perlakuan yang memiliki skor rasa terendah 2,12 adalah perlakuan K6 (80% daun beluntas). Kesuakan panelis terhadap rasa vegetable leather menurun seiring dengan peningkatan konsentrasi daun beluntas yang menyebabkan rasa rumput laut berkurang. Senyawa tanin dan triterpen daun beluntas merupakan senyawa polifenol yang memiliki rasa pahit atau getir (Endarini, 2017) dan daun beluntas memiliki senyawa aromatik penyebab bau langsung. Perlakuan blansir menyebabkan rasa langsung daun beluntas berkurang tetapi rasa langsung tidak hilang, sehingga pada konsentrasi daun beluntas yang tinggi, tingkat kesukaan terhadap rasa
vegetable leather menurun. Penggunaan konsentrasi rumput laut yang tinggi meningkatkan skor kesuksesan panelis karena rasa daun beluntas tidak terlalu tajam.

Perlakuan K1 (30% daun beluntas) memiliki skor penerimaan keseluruhan tertinggi yaitu 4.42 (suka), sedangkan perlakuan K6 (80% daun beluntas) menghasilkan skor penerimaan keseluruhan terendah sebesar 2.46 (tidak suka). Penggunaan daun beluntas sebanyak 30% merupakan produk vegetable leather yang paling disukai panelis karena menghasilkan tekstur kompak dan tidak beraroma daun beluntas, dengan karakteristik paling mendekati nori komersil, yaitu memiliki tekstur yang fleksibel sehingga dapat digulung dan memiliki aroma khas rumput laut.

Uji fisik

Karakteristik uji fisik vegetable leather yang diamati dalam penelitian ini adalah kuat tarik, persen pemanjangan dan ketebalan (Tabel 2).

Tabel 2. Karakteristik uji fisik vegetable leather pada berbagai perbandingan daun beluntas (DB) dan rumput laut *Eucheuma cottonii*(RL)

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Kuat tarik</th>
<th>Persen pemanjangan</th>
<th>Ketebalan</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1: DB:RL = 30%;70%</td>
<td>9,43 ± 0,03a</td>
<td>1,34 ± 0,01b</td>
<td>0,13 ± 0,01b</td>
</tr>
<tr>
<td>K2: DB:RL = 40%;60%</td>
<td>8,73 ± 0,08b</td>
<td>1,38 ± 0,02c</td>
<td>0,13 ± 0,01b</td>
</tr>
<tr>
<td>K3: DB:RL = 50%;50%</td>
<td>8,20 ± 0,03c</td>
<td>1,43 ± 0,02c</td>
<td>0,14 ± 0,00c</td>
</tr>
<tr>
<td>K4: DB:RL = 60%;40%</td>
<td>7,79 ± 0,03d</td>
<td>1,46 ± 0,01d</td>
<td>0,14 ± 0,01d</td>
</tr>
<tr>
<td>K5: DB:RL = 70%;30%</td>
<td>7,25 ± 0,03e</td>
<td>1,42 ± 0,01e</td>
<td>0,15 ± 0,01c</td>
</tr>
<tr>
<td>K6: DB:RL = 80%;20%</td>
<td>6,93 ± 0,02f</td>
<td>1,50 ± 0,02f</td>
<td>0,15 ± 0,00c</td>
</tr>
</tbody>
</table>

Keterangan: Huruf yang sama artinya tidak berbeda nyata pada uji BNT 5%

Persen pemanjangan menentukan kemampuan film untuk meregang. Menurut Nuansa et al. (2017), persentase elongasi menentukan elastisitas edible film. Sama halnya dengan vegetable leather, tingginya nilai persen pemanjangan menunjukkan bahwa vegetable leather lebih elastis dan tidak mudah sobek. Perlakuan K6 (20% rumput laut) memiliki nilai persen pemanjangan tertinggi yaitu 1,49%, sedangkan perlakuan K1 (70% rumput laut) memiliki nilai persen pemanjangan terendah yaitu 1,34%. Apabila konsentrasi rumput laut yang digunakan kecil maka persen pemanjangan akan meningkat dan begitu pula sebaliknya. Febianti et al. (2020) berpendapat bahwa jika konsentrasi karagenan semakin tinggi, molekul karagenan akan membentuk matriks film yang semakin kuat, sehingga edible film semakin bersifat tidak elastis atau mudah putus (getas) dan persentase pemanjangan semakin

Penentuan perlakuan terbaik
Penentuan perlakuan terbaik ditentukan berdasarkan uji sensori tekstur, aroma, rasa, dan penerimaan keseluruhan, sedangkan uji fisik meliputi kuat tarik, persen pemanjangan dan ketebalan. Penentuan perlakuan terbaik dilakukan dengan cara pemberian ranking 1 sampai 6 pada tiap perlakuan berdasarkan nilai tertinggi sampai terendah pada uji lanjut BNT 5%. Pemberian rangking 1 ditetapkan berdasarkan skor tertinggi diantara perlakuan lainnya. Selanjutnya, pemberian rangking 2 ditetapkan berdasarkan skor yang lebih kecil dari rangking 1 dan seterusnya sampai diperoleh rangking ke 6 pada satu parameter yang dinilai. Perlakuan yang memiliki notasi yang sama dengan perlakuan lain, nilai rangkingnya dijumlah, kemudian dirata-rata. Hasil rata-rata rangking dituliskan pada masing-masing perlakuan. Setelah itu, nilai rata-rata rangking setiap perlakuan dijumlahkan, sehingga diperoleh 6 hasil penjumlahan untuk setiap perlakuan. Rekapitulasi penentuan perlakuan terbaik dengan cara ranking disajikan pada Tabel 3.

Berdasarkan Tabel 3, perlakuan K1 (30% daun beluntas dan 70% rumput laut) merupakan perlakuan terbaik dari hasil rangking. Vegetable leather dengan perlakuan 30% daun beluntas dan 70% rumput laut memiliki tekstur yang kompak (tidak mudak sobek atau patah), aroma tidak khas daun beluntas, rasa disukai panelis, penerimaan keseluruhan disukai panelis, serta mendekati karakteristik nori komersil yaitu memiliki tekstur yang fleksibel sehingga dapat digulung dan memiliki aroma khas rumput laut.
Tabel 3. Rekapitulasi penentuan perlaku terbaik dengan cara ranking

<table>
<thead>
<tr>
<th>Parameter</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tekstur</td>
<td>1^a</td>
<td>2^b</td>
<td>3^c</td>
<td>4^d</td>
<td>5^e</td>
<td>6^f</td>
</tr>
<tr>
<td>Aroma</td>
<td>1^a</td>
<td>2^b</td>
<td>3^c</td>
<td>4^d</td>
<td>5^e</td>
<td>6^e</td>
</tr>
<tr>
<td>Rasa</td>
<td>1^a</td>
<td>2^b</td>
<td>3^c</td>
<td>4^e</td>
<td>5^e</td>
<td>6^f</td>
</tr>
<tr>
<td>Penerimaan Keselarahan</td>
<td>1^a</td>
<td>2^b</td>
<td>3^c</td>
<td>4^d</td>
<td>5^e</td>
<td>6^f</td>
</tr>
<tr>
<td>Kuat Tarik (MPa)</td>
<td>1^a</td>
<td>2^b</td>
<td>3^c</td>
<td>4^d</td>
<td>5^e</td>
<td>6^f</td>
</tr>
<tr>
<td>Persen Pemanjangan (%)</td>
<td>6^e</td>
<td>4^d</td>
<td>3^c</td>
<td>2^b</td>
<td>3^c</td>
<td>1^a</td>
</tr>
<tr>
<td>Ketebalan (mm)</td>
<td>1^b</td>
<td>1^b</td>
<td>1.5^ab</td>
<td>1.5^ab</td>
<td>2^a</td>
<td>2^a</td>
</tr>
<tr>
<td>Σ</td>
<td>12</td>
<td>15</td>
<td>19.5</td>
<td>23.5</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

Keterangan:
- K1 : Perbandingan daun beluntas dan rumput laut 30%:70%
- K2 : Perbandingan daun beluntas dan rumput laut 40%:60%
- K3 : Perbandingan daun beluntas dan rumput laut 50%:50%
- K4 : Perbandingan daun beluntas dan rumput laut 60%:40%
- K5 : Perbandingan daun beluntas dan rumput laut 70%:30%
- K6 : Perbandingan daun beluntas dan rumput laut 80%:20%

Analisis kimia dan aktivitas antioksidan perlaku terbaik

Hasil analisis kimia dan aktivitas antioksidan vegetable leather perlaku terbaik K1 (30% daun beluntas: 70% rumput laut) disajikan pada Tabel 4.

Tabel 4. Hasil analisis kimia dan aktivitas antioksidan vegetable leather

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hasil Analisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar Air (%)</td>
<td>13,34</td>
</tr>
<tr>
<td>Kadar Abu (%)</td>
<td>19,74</td>
</tr>
<tr>
<td>Kadar Lemak (%)</td>
<td>1,29</td>
</tr>
<tr>
<td>Kadar Protein (%)</td>
<td>13,14</td>
</tr>
<tr>
<td>Aktivitas Antioksidan (ppm)</td>
<td>1576,14</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 4, vegetable leather terbaik memiliki kadar air sebesar 13,34%, kadar abu sebesar 19,74%, kadar lemak sebesar 1,29%, dan kadar protein sebesar 13,14%. Aktivitas antioksidan vegetable leather daun beluntas sebesar 1576,14 ppm. Nilai aktivitas antioksidan tersebut jauh lebih tinggi dibanding vegetable leather daun tawa’oloho hasil penelitian Amiludin et al. (2018) yaitu sebesar 85,69 ppm. Molyneux (2004) menyebutkan jika nilai IC₅₀ kurang dari 50 ppm, senyawa tersebut dikatakan mempunyai aktivitas antioksidan sangat tinggi, kuat jika nilai IC₅₀ 51-100 ppm, sedang jika nilai IC₅₀ 101-150 ppm, dan lemah jika nilai IC₅₀ 151-200 ppm. Penelitian ini menunjukkan bahwa sifatnya aktivitas antioksidan vegetable leather mempunyai nilai IC₅₀ lebih dari 200 ppm, artinya aktivitas antioksidan vegetable leather beluntas adalah lemah.

Kesimpulan

Perbandingan daun beluntas dan rumput laut berpengaruh terhadap sifat sensori dan sifat fisik vegetable leather. Konsentrasi rumput laut yang tinggi akan menghasilkan vegetable leather dengan sifat sensori sesuai harapan (menyerupai nori komersil) dan dengan sifat fisik yang lebih baik. Vegetable leather terbaik dengan perbandingan daun beluntas dan rumput laut adalah perlaku K1 (30% daun beluntas : 70% rumput laut) yang menghasilkan tekstur dengan skor 4,55 (kompak), aroma dengan skor 4,30 (tidak beraroma daun beluntas), rasa dengan skor 4,83 (suka), warna dengan skor 4,55 (hijau kehitaman) dan penerimaan keselarahan dengan skor 4,42 (suka) serta uji fisik kuat tarik sebesar 9,43 MPa, persen pemanjangan sebesar 1,34% dan ketebalan sebesar 0,13 mm. Vegetable leather dengan perlaku K1
(30% daun beluntas : 70% rumput laut) mengandung air 13,34%, abu 19,74%, lemak 1,29% dan protein 13,34%, serta aktivitas antioksidan dengan nilai IC₅₀ sebesar 1576,14 ppm.

Daftar pustaka

