Vol. 14, No. 2 (2025): 515 - 526 http://dx.doi.org/10.23960/jtep-1.v14i2.515-526

! Q TEKNIK PERTANIAN
o>

m JURNAL TEKNIK PERTANIAN LAMPUNG

Engineering

ISSN 2302-559X (print) / 2545-0818 (online)
Journal homepage : https://jurnal.fp.unila.ac.id/index.php/JTP

Portable Near-Infrared Spectroscopy and Support Vector Regression for Fast
Quality Evaluation of Vanilla (Vanilla planifolia)

Widyaningrum'?, Y. Aris Purwanto>*, Slamet Widodo?, Supijatno®, Evi Savitri Iriani*

! Agricultural Engineering Science Study Program, Department of Mechanical and Biosystems Engineering, IPB University, Bogor, INDONESIA.
% Department of Mechanical and Biosystems Engineering, IPB University, Bogor, INDONESIA.

* Department of Agronomy and Horticulture, IPB University, Bogor, INDONESIA.

4 Standardization Agency for Agricultural Instruments — Refreshing and Industrial Crops, Ministry of Agriculture, Sukabumi, INDONESIA.

* Agricultural Development Polytechnic of Manokwari, Ministry of Agriculture, Manokwari, INDONESIA.

Article History: ABSTRACT

Received : 29 November 2024
Revised : 18 December 2024
Accepted : 02 January 2025

Vanilla (Vanilla planifolia) is a high-value agricultural product, with its quality influenced
by essential factors such as moisture and vanillin content. Conventional techniques for
evaluating these characteristics are inefficient, require sample destruction, and are
impractical for swift assessments. This research explores the feasibility of using portable

Keywords: Near-Infrared (NIR) spectroscopy combined with Support Vector Regression (SVR) to enable
Moisture content, quick and noninvasive property prediction. Spectral information was obtained from vanilla
Portable NIR spectroscopy, samples using two portable NIR instruments, SCiO (740-1070 nm) and Neospectra (1350—
Support vector regression, 2550 nm). Preprocessing techniques such as normalization, SNV, MSC, first derivative, first
Va”’:ll‘_’pl“”ifOIia' derivative-SNV, and first derivative-MSC were applied. For moisture content prediction,
Vanillin content. SCiO achieved an R’ of 0.768, an RMSE of 4.720%, an RPD of 2.075 and an RER 10.197
using Min-Max normalization, while Neospectra yielded an R’ of 0.758, an RMSE of
5.161%, an RPD of 2.033 and an RER 9.325 with MSC preprocessing. In contrast,
predicting vanillin concentration proved more challenging, with SCiO achieving moderate
accuracy with an R? 0.406, an RMSE 0.379%, an RPD 1.297, an RER 5.039, and Neospectra
demonstrating limited performance with an R? 0.172, an RMSE 0.576%, an RPD 1.098 and
Corresponding Author: an RER 3.315. These findings highlight the potential of portable NIR spectroscopy as a
>4 arispurwanto@apps.ipb.ac.id practical tool for assessing vanilla quality, particularly for moisture content, in industrial
(Y. Aris Purwanto) and field applications.

1. INTRODUCTION

Vanilla (Vanilla planifolia) is one of the high-value agricultural products due to its complex and lengthy production
process. Additionally, vanilla is renowned for its distinct flavor and aroma, which come from the primary aromatic
component, vanillin (Ranadive, 2019). The global demand for high-quality vanilla continues to rise, driven by its
widespread use in various industries, including food, beverages, cosmetics, and pharmaceuticals (Baqueiro-Pena &
Guerrero-Beltran, 2017). Several important factors, including vanillin and moisture content, influence the quality of
vanilla. Moisture content significantly impacts the texture, aroma release, and shelf life of vanilla beans. At the same
time, vanillin concentration is a key factor in flavor intensity and consumer acceptance, which ultimately affects the
grade and price of the vanilla (Ranadive, 2019).

Traditionally, the assessment of moisture content and vanillin concentration has relied on conventional laboratory
methods, such as oven-drying (Havkin-Frenkel & Frenkel, 2008), UV spectrophotometry, and high-performance liquid
chromatography (HPLC) (Ranadive, 2019). Although these techniques yield accurate results, they are typically time-
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consuming, costly, and involve destructive sampling. Moreover, the use of chemicals in these analyses makes them
environmentally unfriendly. Additionally, the need for specialized equipment and skilled personnel makes these
methods impractical for field applications (Cozzolino, 2016; Bittner et al., 2013). This underscores the demand for
fast, affordable, and noninvasive analytical tools that can be used directly in the field or industrial environments.

NIR spectroscopy has emerged as a powerful method for assessing the quality characteristics of agricultural
commodities (Pandiselvam et al., 2022). This method operates by analyzing how near-infrared light interacts with
molecular structures in organic compounds, generating spectral data that can be correlated with specific chemical and
physical properties (Schwanninger et al., 2011; Workman & Weyer, 2007; Zhang et al., 2022). However, despite its
advantages, NIR has the drawback of having relatively large instruments, making it difficult to perform direct field
analysis, as samples still need to be taken to the laboratory for analysis. To address this challenge, scientists have
developed portable versions of NIR. Portable NIR devices offer the advantage of on-site measurements, enabling
analysis without damaging the sample due to their compact and small size (Be¢ ef al., 2021; Huck, 2020; Pu ef al.,
2021). Recently, there has been significant research into the use of portable NIR spectroscopy for effectively assessing
the moisture content in apples (Malvandi ez al., 2022) and mango (Wokadala ef al., 2020), protein content in cereals
(Chadalavada er al., 2022), and other key attributes in crops such as cocoa bean (Anyidoho et al., 2021) coffee
(Correia et al., 2018), and other agricultural materials.

A key factor in utilizing NIR spectroscopy is the development of robust predictive models that can convert spectral
data into accurate quality predictions (Zareef et al., 2020). Machine learning algorithms have shown great potential,
particularly Support Vector Regression (SVR). SVR is a machine learning technique designed for regression tasks,
particularly effective in handling complex and high-dimensional datasets (Zhang & O’Donnell, 2020), such as those
generated by NIR spectroscopy. Unlike traditional regression methods, SVR uses a kernel-based approach to capture
nonlinear relationships, making it well-suited to handle complex variability (Wani et al., 2024).

This study aims to create a quick and noninvasive method for estimating the moisture and vanillin content of
vanilla beans by combining the capabilities of portable NIR spectroscopy with SVR. By integrating spectral
preprocessing techniques such as min-max normalization, multiplicative scatter correction (MSC), Standard Normal
Variate (SNV), first derivative, and combinations of the first derivative with SNV or MSC, it is expected to improve
the quality of the spectral data and enhance model performance. The methodology includes using the Kennard-Stone
algorithm for data splitting, ensuring that spectral variability is well-represented in both training and testing datasets
while optimizing the SVR parameters through grid search for better prediction accuracy.

2. MATERIALS AND METHODS
2.1. Materials and Instruments

Forty-nine dried vanilla beans (Vanilla planifolia) samples were collected from various Indonesian vanilla processing
industries. The samples represented a range of quality grades, with vanillin content varying between 2.09% and 0.18%
and moisture content ranging from 56.04% to 7.91%. The sample set was categorized into nine samples of Grade II,
16 samples of Grade III, and 24 samples of Grade IV (cuts). The grading system was based on vanilla’s Indonesian
National Standard (SNI) 01-0010-2002.

This study utilized two portable NIR spectrometers with distinct wavelength ranges. The first, the SCiO
spectrometer (Consumer Physics, SF, CA, USA), operates within the 740-1070 nm range and is equipped with an LED
lamp, bandpass filters, and a 12-element silicon photodiode array. It provides a spectral resolution of 1 nm and
produces 331 data points. The second instrument, the Neospectra spectrometer (Si-Ware, Menlo Park, CA, USA),
functions in the 1350-2550 nm range, featuring a tungsten halogen lamp, a MEMS Michelson interferometer, and a
single-element InGaAs detector. This device offers a spectral resolution of 9 nm and generates 257 data points.

2.2. Spectra Acquisition

To guarantee consistency, 60 g of vanilla samples were weighed and knotted at both ends. Before measurements, the
SCiO and Neospectra instruments were calibrated. Calibration and measurements were conducted through
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applications connected via Bluetooth between the instruments and a smartphone. While the Neospectra device was
managed by the "Neospectra Collect" application, which is compatible with iOS, the SCiO instrument was controlled
by the "The Lab" application, which is compatible with Android and iOS. SCiO calibration was performed by placing
the device inside its cover with the optical sensor facing the cover. The SCiO function button was pressed, or
'Calibrate' was selected in The Lab App to initiate the calibration process. Meanwhile, Neospectra calibration was
performed by placing the lid on top of the optical window. Then, the "BG/Calibrate” button was pressed in the
Neospectra Collect app to begin the calibration process. The instrument could be used after the calibration process is
completed. The time required for spectral acquisition with the SCiO ranged from 2 to 5 seconds, while Neospectra
requires 4 to 5 seconds. Measurements were conducted at multiple points along each sample to maintain consistency
and account for spatial variability. Each sample was measured in three distinct points: the stem end, the center, and the
blossom end. A total of 147 spectral data points were collected from each spectrometer. The spectral data from the
three points were averaged to enhance accuracy. Measurements were performed at an ambient temperature of
approximately 25°C. The spectral data were stored in the cloud and downloaded in .csv format. After obtaining the
data in reflectance form, the log (1/R) was applied to convert it to absorbance.

L\

Figure 1. Spectral data acquisition

2.3. Determination of Moisture Content and Vanillin Content

Vanillin and moisture content are measured in compliance with ISO 948:1980. The distillation method determined
moisture content, while vanillin content was assessed using UV spectrophotometry. The moisture content of vanilla
was calculated using Equation 1, and vanillin content was determined using Equation 2.

WC (%) = =x100% (1)
Cx5x100
Ve (0= oo 2)

where WC refers to moisture content (%), w represents the weight of the sample (g), v denotes the water volume
(mL), VC indicates vanillin content (%), and C signifies the sample solution concentration (expressed in pg/mL or
ppm). Using solution C as the blank, the concentration (C) was calculated from the standard curve based on
absorbance measurements at a wavelength of 348 nm.

2.4. Data Preprocessing

Improving and enhancing the quality of spectral data is essential before developing predictive models (Hayati et al.,
2020). Although many studies have investigated different data preprocessing approaches, the most effective method is
typically determined through experimentation (Torniainen et al., 2020). This study employed several preprocessing
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approaches, including min-max normalization, SNV, MSC, first derivative transformation, and combinations of first
derivative with SNV or MSC. Each preprocessing method, along with its equation, is explained in Table 1.

Table 1. The preprocessing method and its equation

Pre-processing method Definition Equation

Min-Max Normalisation A data standardization method that scales '_ _ Xemin(X) 3)
the lowest and maximum values of each max(X)-min(X)
feature to 0 and adjusts other values within ~ where; X is original value; max(X) is the
the range of 0 to 1 (Raju ez al., 2020) maximum value in the dataset; min(X) is the

minimum value in the dataset

Standard Normal Variate A method used to reduce scattering 7Z=(X-pw)/c 4)

(SNV) variability, particularly in backscatter
measurements, by centering and scaling
each spectrum to correct for light scatter
and particle size.

where; X is the original data point; p is the mean of
the spectrum; o is the SD of the spectrum

Multiplicative Scatter Corrects for scattering effects by adjusting Ximsc=M )
Correction (MSC) spectra to the same scatter level as the ideal i
sample, improving consistency and quality. ~ where; X; is the original value, a; is the estimates

mean spectrum, b; is the SD of the spectrum.

Derivative A technique used to address peak overlap X=dA/d\ (6)
and correct baseline drifts in spectral data,

. . . . . where; A is the absorbance and A is the wavelength.
improving analytical precision and clarity.

2.5. Support Vector Regression

The Support Vector Machine (SVM) technique was modified for regression tasks and is known as Support Vector
Regression (SVR), which makes it possible to predict numerical responses (Rodriguez-Pérez & Bajorath, 2022). SVR
is a form of supervised learning frequently applied in regression analysis (Drucker et al., 1996). This method is useful
for analyzing the connection between a target variable and one or more independent variables. For regression
problems, Support Vector Regression (SVR) works well because it maximizes the trade-off between prediction
accuracy and model complexity while demonstrating strong performance in handling high-dimensional data (Zhang &
O’Donnell, 2020). In contrast to SVM classification, which generates binary outputs (i.e., class labels), Support Vector
Regression (SVR) is tailored for regression tasks, facilitating the estimation of real-valued functions (Zhang &
O’Donnell, 2020).

Several studies have successfully applied the SVR model for prediction using NIR instruments. Among them is the
use of NIR combined with SVR to predict caMP content in red jujube. The results showed that SVR outperformed
conventional chemometric models such as PLS, achieving an R?p of 0.93 and RMSEP of 13.07, while PLS yielded an
R?p of 0.83 and RMSEP of 29.04 (Chen ef al., 2019). Another research, which assessed the moisture level of black tea
during processing, proved the advantage of SVR in predictive model development. The results showed that the SVR
model achieved an R*p of 0.98 and RMSEP of 0.03, while the model built with PLS yielded an R*p of 0.94 and
RMSEP of 0.07 (Zou et al., 2022).

2.6. Data Analysis

The data were imported and processed using Python on a Google Colab notebook. The Kennard-Stone approach was
used to divide the dataset into 30% testing and 70% training subsets. Table 2 shows the descriptive statistics of the
actual measured vanilla data, including vanillin and moisture content. Several preprocessing techniques were applied,
including no preprocessing, min-max normalization, SNV, MSC, first derivative, and combinations of first derivative
with SNV or MSC. Grid search optimization was then applied to identify the best parameters for the Support Vector
Regression (SVR) model. In this study, the hyperparameter settings and their tuning results are shown in Table 3.
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Table 2. Reference measurement of vanillin and water content of vanilla samples in datasets

Dataset Number of samples Range (%) Mean(%o) Std Dev(%0)
Summary of vanillin content
Data training 34 0.22 - 2.07 1.04 0.49
Data testing 15 0.18 -2.09 0.99 0.56
Summary of water content
Data training 34 7.91-48.59 24.11 9.47
Data testing 15 9.65 — 56.04 24.45 14.34

Table 3 Grid search optimization for SVR

Parameter setting Parameter optimum

'C" {0.1, 1, 10, 100}, 'epsilon’: {0.01, 0.1, 0.5}, 'kernel": (C: 100, “epsilon’: 0.5, “kernel: “lincar’}
{'linear’, 'rbf'’} 100, 105, :

Furthermore, ten-fold cross-validation (CV) was used to assess the robustness of the model and minimize
overfitting. Model performance was evaluated using R? (coefficient of determination), RMSEP (root mean square
error of prediction), RPD (ratio of prediction to deviation) and RER (range error ratio) metrics. In general, the lower
the RMSE and the closer the R? is to 1, the more accurate the model predictions will be (Pereira et al., 2019).
Furthermore, RPD values below 1.0 are considered very poor, while values ranging from 1.0 to 1.4 imply poor
predictions. An RPD range of 1.4 to 1.8 indicates reasonable performance, whereas values between 1.8 to 2.0 imply
accurate predictions. RPD values between 2.0 to 2.5 indicate very accurate predictions, with RPD values above 2.5
considered excellent. RER values greater than 20 indicate an excellent prediction model. RER values between 15 to 20
mean the model is considered successful. RER values between 10 to 15 classify the model as moderately successful.
Meanwhile, RER values between 8 to 10 indicate that the model is still moderately useful (Williams & Norris, 1987).
Additionally, for a model to be considered effective, it should ideally exhibit high R? and RPD values, alongside a
small RMSEP, which together reflect a model's accuracy and reliability in making predictions (Douglas et al., 2018).
Equations 7, 8, 9 and 10 compute and express the values of R, RMSE, RPD and RER.

@y)
R?=1-=220 7
595 2
o v
RMSE = /M (8)
_ SD
RPD =—— )

_ Range of the reference data

RER e (10)

where J; is sample i’s real value; y, is sample i’s predicted value; y is mean of the real values; n is quantity of
samples; SD is standard deviation.

3. RESULTS AND DISCUSSION
3.1. Spectral Analysis

Vanillin is the major aromatic compound found in vanilla, with the chemical formula CgHsO3 (Anand et al., 2019).
Figure 2 presents the absorbance spectra of vanilla beans obtained through a portable NIR spectrometer. Figure 3(a)
illustrates the absorption peaks in the average vanilla spectrum within the wavelength range of 740-1070 nm, obtained
using the SCiO instrument. The image illustrates how the vanilla spectra in this range display almost no peaks. On the
other hand, Figure 3 (b) shows the average vanilla spectrum produced in the 1350-2550 nm wavelength region using
the portable NIR Neospectra devices. It is evident from the graphic that there are many absorption peaks in this range.
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Compared to the reference in Practical Near-Infrared Spectroscopy (Osborne et al., 1993), the spectral analysis
results show an absorption peak at 970 nm due to O—H stretching bond vibration at the second overtone, indicating the
presence of H,O. At 1450 nm, an absorption peak is seen related to the O—H stretching bond vibration at the first
overtone, indicating the presence of starch and water. Absorption peaks at 1725 and 1780 nm show C-H stretching
bond vibrations in the first overtone region, suggesting the presence of CH, compounds and cellulose. The absorption
peak at 1940 nm was induced by O-H stretching and deformation bond vibrations, signifying the presence of H,O.
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Figure 2. Absorbance spectra of vanilla at wavelengths of 740-1070 nm (a) and 1350-2050 nm (b).
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Figure 3. Average spectral of vanilla with identified absorption peaks wavelengths of 740-1070 nm (a) and 1350-2050 nm (b).
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3.2. Moisture Content of Vanilla

The moisture content of a product is an important quality indicator in various commodities, including spices, teas,
fruits, vegetables, and herbal remedies. It plays a vital role in maintaining product stability over time and directly
impacts shelf life by influencing how long the product remains safe and functional (Bec¢ et al., 2022). Due to its impact
on both product stability and longevity, moisture content requires careful and consistent monitoring to maintain
quality standards and prevent spoilage or degradation.

Vanilla is an essential primary ingredient in the extraction industry, with market requirements varying by region. In
the United States, the demand focuses on vanilla with low moisture content (20-25%), tailored for industrial
processing. In contrast, the European market, which mainly serves household consumption, focuses on whole vanilla
beans that are visually attractive, have a high vanillin concentration, a strong fragrance, and a moisture content
ranging from 30-35% (Wahyuningsih et al., 2022). Meanwhile, in Indonesia, the maximum moisture content for
Grade 1 vanilla, according to the Indonesian National Standard (SNI), ranges between 30-38% (Badan Standardisasi
Nasional). To address the critical role of moisture content in vanilla quality, this research used Support Vector
Regression (SVR) and preprocessing approaches to estimate the moisture content of vanilla beans. The moisture
content prediction results for vanilla beans using the SVR algorithm are shown in Table 4. According to the SVR
algorithm investigation on vanilla moisture content prediction (Table 4), the SCiO instrument, which operates in the
740-1070 nm wavelength region, produces somewhat better predictions than the Neospectra instrument, which
operates in the 1350-2550 nm wavelength range.

The SCiO instrument achieved an R? value of 0.768 with Min-Max Normalization preprocessing, while the
Neospectra instrument achieved an R? value of 0.758 with MSC preprocessing. This indicates that both models exhibit
good performance in explaining data variation. The RMSE values obtained were 4.720 and 5.161, respectively. Better
model performance is indicated by a lower RMSE value that is nearer 0 (Chicco ef al., 2021). Meanwhile, the RPD
values produced by both instruments were also comparable, with the SCiO-based model achieving an RPD of 2.075
and the Neospectra-based model achieving an RPD of 2.033. The RER value of 10.197 indicates that the RF model
with min-max normalization preprocessing is moderately successful and can be used for quality screening or initial
screening purposes. These outcomes are comparable to the PLS model, where PLS combined with first derivative-
SNV preprocessing yielded an R? of 0.78, an RPD of 3.05, and an RMSE of 3.61 (Widyaningrum et a/., 2024). Figure
4 shows the results of the plot between actual moisture content and predicted moisture content from each instrument.

This performance indicates that both instruments are suitable for practical applications in rapid moisture content
analysis of vanilla. However, further validation with a more extensive and more diverse dataset is recommended to
ensure the robustness of the models across different conditions. The robustness of a model largely depends on the
quality and quantity of data utilized during its training and testing stages. Employing extensive and diverse datasets
enables models to generalize more effectively, enhancing their resilience to data variability and noise (Zhou et al.,
2021). The slight difference in performance between the SCiO and Neospectra instruments could be attributed to their
respective spectral sensitivity ranges and interaction with moisture-related features.

Table 4. Prediction results of vanilla bean moisture content using the SVR algorithm.

Wavelength Preprocessing R? RMSE RPD RER

740-1070 nm No preprocessing 0.412 7.504 1.304 6.413
Min-max normalization 0.768 4,720 2.075 10.197

SNV 0.753 4.862 2.013 9.899

MSC 0.434 7.370 1.328 6.530

First Derivative 0.698 5.382 1.819 8.942

First Derivative-SNV 0.731 5.074 1.930 9.485

First Derivative-MSC 0.740 4,990 1.962 9.645

1350-2550 nm No preprocessing 0.709 5.660 1.854 8.503
Min-max normalization 0.746 5.280 1.987 9.115

SNV 0.717 5.583 1.879 8.620

MSC 0.758 5.161 2.033 9.325

First Derivative 0.687 5.867 1.788 8.203

First Derivative-SNV 0.738 5.364 1.956 8.972

First Derivative-MSC 0.718 5.571 1.883 8.639

521



Jurnal Teknik Pertanian Lampung Vol. 14, No. 2 (2025): 515 - 526

60 60

o
o
=

50 4 50 4

40 A -~

40

30 A

30 A

20 20 A

Predicted

R? =0.768
o RPD =2.075

Predicted

R? =0.758
RPD =1.788

Predicted Moisture Content (%)
Predicted Moisture Content (%)

10 o RMSEP =4.720 10 A RMSEP =5.161
RER=10.197 RER=9.325
0 T T T T T o] T T T T r
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Actual Moisture Content (%) Actual Moisture Content (%)

Figure 4. Plot comparing the actual and predicted moisture content of vanilla: (a) wavelength 740-1070 nm; and (b) wavelength
1350-2550 nm.

3.3. The Vanillin Concentration in Vanilla

The distinctive flavor and aromatic strength of vanilla are primarily attributed to vanillin, its most significant
component. Approximately one-third of a vanilla product's flavor intensity is derived from its vanillin concentration.
Consequently, vanillin content serves as a key factor in determining the market value of vanilla beans, with higher
vanillin levels commanding premium prices (Ranadive, 2019). The vanillin content varies significantly across
different vanilla species. Under optimal conditions, Vanilla planifolia beans can produce between 2% — 2.5% vanillin
(Ranadive, 2019).

To predict the vanillin content in vanilla beans, this study applied the SVR algorithm, utilizing various
preprocessing methods. The prediction results, presented in Table 5, illustrate how different preprocessing techniques
influence the accuracy of vanillin content estimation. The prediction results obtained using the SCiO instrument with
the SVR algorithm and MSC preprocessing showed moderate performance, with an R? value of 0.406, RMSE of
0.379, and RPD of 1.297. These values suggest that the model could explain a portion of the variability in the data, but
there is still significant room for improvement. In contrast, the Neospectra instrument with the SVR algorithm without
any preprocessing achieved lower performance, with an R? value of 0.172, RMSE of 0.576, and RPD of 1.098. This
indicates a weaker predictive capability, with the model explaining only a small portion of the variance in the data.
Overall, the results highlight the varying performance of different instruments and underscore the need for further
optimization of both the modeling approach and the spectral data quality for more accurate predictions of vanilla
quality parameters.

Several factors, such as the model employed, the quality of the spectral data, and the inherent characteristics of the
instruments, may contribute to the observed difference in R? values between the Neospectra and SCiO instruments
when employing the SVR method. The lower R? value (0.172) with Neospectra at wavelengths 1350-2550 nm
suggests that the spectral data might be less representative or noisier, making it more challenging for the SVR model
to capture meaningful patterns. In contrast, SCiO's moderate R? value (0.406) at wavelengths 740-1070 nm with the
SVR algorithm could indicate that the instrument provides more consistent and relevant spectral information, enabling
the SVR model to better capture the underlying trends in the data. However, the moderate performance also highlights
to the complexity of predicting vanilla parameters, where spectral features alone may not fully explain variations in
moisture or vanillin content, requiring further optimization of the model or data. The efficacy of machine learning
models depends on the specific task and dataset (Sachindra & Kanae, 2019).
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Table 5 Prediction results of vanillin content of vanilla bean using the SVR algorithm.

Wavelength Preprocessing R? RMSE RPD RER

740-1070 nm No preprocessing 0.346 0.398 1.237 4.798
Min-max normalization 0.118 0.462 1.065 4.134

SNV 0.265 0.422 1.166 4.526

MSC 0.406 0.379 1.297 5.039

First Derivative 0.334 0.402 1.225 4,751

First Derivative-SNV 0.326 0.404 1.218 4,727

First Derivative-MSC 0.374 0.389 1.264 4,910

1350-2550 nm No preprocessing 0.172 0.576 1.098 3.315
Min-max normalization 0.170 0.577 1.097 3.310

SNV 0.055 0.615 1.029 3.105

MSC 0.141 0.587 1.788 3.253

First Derivative 0.051 0.617 1.026 3.095

First Derivative-SNV 0.012 0.629 1.006 3.036

First Derivative-MSC 0.074 0.609 1.039 3.136

In comparison to the SVR results, the PLS model with SCiO showed a higher R* value (0.72) using the first
derivative-SNV preprocessing method (Widyaningrum et al., 2024), suggesting that the PLS algorithm might better
handle the spectral data in this context. This highlights the significant role that the choice of machine learning model
plays in determining predictive accuracy (Wu et al., 2020). While preprocessing can enhance the data (Alasadi &
Bhaya, 2017; Fan et al., 2021), the model's ability to effectively interpret and predict the target variables is critical
(Murdoch et al., 2019), with PLS demonstrating better performance than SVR in this case.

4. CONCLUSION

This study underscores the critical importance of moisture and vanillin concentration in affecting the quality of vanilla
beans. The study demonstrated the efficacy of Support Vector Regression (SVR) in predicting moisture content and
vanillin concentration using spectral data from two instruments, SCiO and Neospectra, with different preprocessing
methods. Both SCiO and Neospectra exhibited strong predictive capabilities for moisture content, suggesting
suitability for practical applications. Notably, the SCiO instrument, operating in the 740-1070 nm wavelength range,
showed slightly better performance than the Neospectra instrument, which operates in the 1350-2550 nm range. This
difference is likely due to the SCiO's shorter wavelength range being more sensitive to moisture-related features in
vanilla beans. The spectral sensitivity of the instruments directly influenced their ability to capture relevant patterns,
emphasizing the importance of wavelength selection in optimizing predictive performance. However, further
validation with more diverse datasets is recommended to enhance model robustness. In contrast, the prediction of
vanillin content proved more challenging, with SCiO achieving moderate performance and Neospectra demonstrating
limited predictive accuracy. The lower predictive performance of the Neospectra instrument may stem from its
wavelength range being less effective at capturing vanillin-related spectral features, leading to noisier data and less
representative models. These results highlight the inherent complexity of predicting vanillin concentration and suggest
that additional optimization in spectral data quality, preprocessing methods, and modeling techniques is necessary.
Future research should focus on expanding the dataset to include a more diverse range of vanilla samples, ensuring the
robustness of models across varying conditions. Additionally, efforts should be directed toward improving spectral
preprocessing techniques and exploring alternative machine learning models, such as hybrid or ensemble approaches,
to enhance predictive accuracy for complex parameters like vanillin concentration. Investigating novel spectral
regions or combining complementary instruments may provide deeper insights and improve prediction performance
for vanilla quality attributes. Ultimately, these innovations will pave the way for dependable, efficient, and
noninvasive tools for assessing vanilla quality.
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