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ABSTRACT 
 

Vanilla (Vanilla planifolia) is a high-value agricultural product, with its quality influenced 

by essential factors such as moisture and vanillin content. Conventional techniques for 

evaluating these characteristics are inefficient, require sample destruction, and are 

impractical for swift assessments. This research explores the feasibility of using portable 

Near-Infrared (NIR) spectroscopy combined with Support Vector Regression (SVR) to enable 

quick and noninvasive property prediction. Spectral information was obtained from vanilla 

samples using two portable NIR instruments, SCiO (740–1070 nm) and Neospectra (1350–

2550 nm). Preprocessing techniques such as normalization, SNV, MSC, first derivative, first 

derivative-SNV, and first derivative-MSC were applied. For moisture content prediction, 

SCiO achieved an R² of 0.768, an RMSE of 4.720%, an RPD of 2.075 and an RER 10.197 

using Min-Max normalization, while Neospectra yielded an R² of 0.758, an RMSE of 

5.161%, an RPD of 2.033 and an RER 9.325 with MSC preprocessing. In contrast, 

predicting vanillin concentration proved more challenging, with SCiO achieving moderate 

accuracy with an R² 0.406, an RMSE 0.379%, an RPD 1.297, an RER 5.039, and Neospectra 

demonstrating limited performance with an R² 0.172, an RMSE 0.576%, an RPD 1.098 and 

an RER 3.315. These findings highlight the potential of portable NIR spectroscopy as a 

practical tool for assessing vanilla quality, particularly for moisture content, in industrial 

and field applications. 

1. INTRODUCTION 

Vanilla (Vanilla planifolia) is one of the high-value agricultural products due to its complex and lengthy production 

process. Additionally, vanilla is renowned for its distinct flavor and aroma, which come from the primary aromatic 

component, vanillin (Ranadive, 2019). The global demand for high-quality vanilla continues to rise, driven by its 

widespread use in various industries, including food, beverages, cosmetics, and pharmaceuticals (Baqueiro-Peña & 

Guerrero-Beltrán, 2017). Several important factors, including vanillin and moisture content, influence the quality of 

vanilla. Moisture content significantly impacts the texture, aroma release, and shelf life of vanilla beans. At the same 

time, vanillin concentration is a key factor in flavor intensity and consumer acceptance, which ultimately affects the 

grade and price of the vanilla (Ranadive, 2019). 

Traditionally, the assessment of moisture content and vanillin concentration has relied on conventional laboratory 

methods, such as oven-drying (Havkin-Frenkel & Frenkel, 2008), UV spectrophotometry, and high-performance liquid 

chromatography (HPLC) (Ranadive, 2019). Although these techniques yield accurate results, they are typically time-
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consuming, costly, and involve destructive sampling. Moreover, the use of chemicals in these analyses makes them 

environmentally unfriendly. Additionally, the need for specialized equipment and skilled personnel makes these 

methods impractical for field applications (Cozzolino, 2016; Bittner et al., 2013). This underscores the demand for 

fast, affordable, and noninvasive analytical tools that can be used directly in the field or industrial environments. 

NIR spectroscopy has emerged as a powerful method for assessing the quality characteristics of agricultural 

commodities (Pandiselvam et al., 2022). This method operates by analyzing how near-infrared light interacts with 

molecular structures in organic compounds, generating spectral data that can be correlated with specific chemical and 

physical properties (Schwanninger et al., 2011; Workman & Weyer, 2007; Zhang et al., 2022). However, despite its 

advantages, NIR has the drawback of having relatively large instruments, making it difficult to perform direct field 

analysis, as samples still need to be taken to the laboratory for analysis. To address this challenge, scientists have 

developed portable versions of NIR. Portable NIR devices offer the advantage of on-site measurements, enabling 

analysis without damaging the sample due to their compact and small size (Beć et al., 2021; Huck, 2020; Pu et al., 

2021). Recently, there has been significant research into the use of portable NIR spectroscopy for effectively assessing 

the moisture content in apples (Malvandi et al., 2022) and mango (Wokadala et al., 2020), protein content in cereals 

(Chadalavada et al., 2022), and other key attributes in crops such as cocoa bean (Anyidoho et al., 2021) coffee 

(Correia et al., 2018), and other agricultural materials.  

A key factor in utilizing NIR spectroscopy is the development of robust predictive models that can convert spectral 

data into accurate quality predictions (Zareef et al., 2020). Machine learning algorithms have shown great potential, 

particularly Support Vector Regression (SVR). SVR is a machine learning technique designed for regression tasks, 

particularly effective in handling complex and high-dimensional datasets (Zhang & O’Donnell, 2020), such as those 

generated by NIR spectroscopy. Unlike traditional regression methods, SVR uses a kernel-based approach to capture 

nonlinear relationships, making it well-suited to handle complex variability (Wani et al., 2024). 

This study aims to create a quick and noninvasive method for estimating the moisture and vanillin content of 

vanilla beans by combining the capabilities of portable NIR spectroscopy with SVR. By integrating spectral 

preprocessing techniques such as min-max normalization, multiplicative scatter correction (MSC), Standard Normal 

Variate (SNV), first derivative, and combinations of the first derivative with SNV or MSC, it is expected to improve 

the quality of the spectral data and enhance model performance. The methodology includes using the Kennard-Stone 

algorithm for data splitting, ensuring that spectral variability is well-represented in both training and testing datasets 

while optimizing the SVR parameters through grid search for better prediction accuracy. 

2. MATERIALS AND METHODS 

2.1. Materials and Instruments 

Forty-nine dried vanilla beans (Vanilla planifolia) samples were collected from various Indonesian vanilla processing 

industries. The samples represented a range of quality grades, with vanillin content varying between 2.09% and 0.18% 

and moisture content ranging from 56.04% to 7.91%. The sample set was categorized into nine samples of Grade II, 

16 samples of Grade III, and 24 samples of Grade IV (cuts). The grading system was based on vanilla’s Indonesian 

National Standard (SNI) 01-0010-2002. 

This study utilized two portable NIR spectrometers with distinct wavelength ranges. The first, the SCiO 

spectrometer (Consumer Physics, SF, CA, USA), operates within the 740-1070 nm range and is equipped with an LED 

lamp, bandpass filters, and a 12-element silicon photodiode array. It provides a spectral resolution of 1 nm and 

produces 331 data points. The second instrument, the Neospectra spectrometer (Si-Ware, Menlo Park, CA, USA), 

functions in the 1350-2550 nm range, featuring a tungsten halogen lamp, a MEMS Michelson interferometer, and a 

single-element InGaAs detector. This device offers a spectral resolution of 9 nm and generates 257 data points. 

2.2. Spectra Acquisition 

To guarantee consistency, 60 g of vanilla samples were weighed and knotted at both ends. Before measurements, the 

SCiO and Neospectra instruments were calibrated. Calibration and measurements were conducted through 
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applications connected via Bluetooth between the instruments and a smartphone. While the Neospectra device was 

managed by the "Neospectra Collect" application, which is compatible with iOS, the SCiO instrument was controlled 

by the "The Lab" application, which is compatible with Android and iOS. SCiO calibration was performed by placing 

the device inside its cover with the optical sensor facing the cover. The SCiO function button was pressed, or 

'Calibrate' was selected in The Lab App to initiate the calibration process. Meanwhile, Neospectra calibration was 

performed by placing the lid on top of the optical window. Then, the "BG/Calibrate" button was pressed in the 

Neospectra Collect app to begin the calibration process. The instrument could be used after the calibration process is 

completed. The time required for spectral acquisition with the SCiO ranged from 2 to 5 seconds, while Neospectra 

requires 4 to 5 seconds. Measurements were conducted at multiple points along each sample to maintain consistency 

and account for spatial variability. Each sample was measured in three distinct points: the stem end, the center, and the 

blossom end. A total of 147 spectral data points were collected from each spectrometer. The spectral data from the 

three points were averaged to enhance accuracy. Measurements were performed at an ambient temperature of 

approximately 25°C. The spectral data were stored in the cloud and downloaded in .csv format. After obtaining the 

data in reflectance form, the log (1/R) was applied to convert it to absorbance. 

 

 
Figure 1. Spectral data acquisition 

2.3. Determination of Moisture Content and Vanillin Content 

Vanillin and moisture content are measured in compliance with ISO 948:1980. The distillation method determined 

moisture content, while vanillin content was assessed using UV spectrophotometry. The moisture content of vanilla 

was calculated using Equation 1, and vanillin content was determined using Equation 2.  

WC (%) = 
w

v
×100%   (1) 

VC (%)=
C×5×100

M ×100H 
   (2) 

where WC refers to moisture content (%), w represents the weight of the sample (g), v denotes the water volume 

(mL), VC indicates vanillin content (%), and C signifies the sample solution concentration (expressed in μg/mL or 

ppm). Using solution C as the blank, the concentration (C) was calculated from the standard curve based on 

absorbance measurements at a wavelength of 348 nm. 

2.4. Data Preprocessing  

Improving and enhancing the quality of spectral data is essential before developing predictive models (Hayati et al., 

2020). Although many studies have investigated different data preprocessing approaches, the most effective method is 

typically determined through experimentation (Torniainen et al., 2020). This study employed several preprocessing 
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approaches, including min-max normalization, SNV, MSC, first derivative transformation, and combinations of first 

derivative with SNV or MSC. Each preprocessing method, along with its equation, is explained in Table 1.  

Table 1. The preprocessing method and its equation 

Pre-processing method Definition Equation 

Min-Max Normalisation A data standardization method that scales 

the lowest and maximum values of each 

feature to 0 and adjusts other values within 

the range of 0 to 1 (Raju et al., 2020) 

X'=
X- min(X)

max(X)- min(X)
                           (3) 

where; X is original value; max(X) is the 

maximum value in the dataset; min(X) is the 

minimum value in the dataset 

Standard Normal Variate 

(SNV) 

A method used to reduce scattering 

variability, particularly in backscatter 

measurements, by centering and scaling 

each spectrum to correct for light scatter 

and particle size. 

Z=(X-μ)/σ                               (4) 

where; X is the original data point;  is the mean of 

the spectrum;  is the SD of the spectrum 

Multiplicative Scatter 

Correction (MSC) 

Corrects for scattering effects by adjusting 

spectra to the same scatter level as the ideal 

sample, improving consistency and quality. 

Ximsc=
Xi-ai

bi

                            (5) 

where; 𝑋𝑖 is the original value, 𝑎𝑖 is the estimates 

mean spectrum, 𝑏𝑖 is the SD of the spectrum. 

Derivative A technique used to address peak overlap 

and correct baseline drifts in spectral data, 

improving analytical precision and clarity. 

X=dA/d                              (6) 

where; A is the absorbance and  is the wavelength. 

2.5. Support Vector Regression 

The Support Vector Machine (SVM) technique was modified for regression tasks and is known as Support Vector 

Regression (SVR), which makes it possible to predict numerical responses (Rodríguez-Pérez & Bajorath, 2022). SVR 

is a form of supervised learning frequently applied in regression analysis (Drucker et al., 1996). This method is useful 

for analyzing the connection between a target variable and one or more independent variables. For regression 

problems, Support Vector Regression (SVR) works well because it maximizes the trade-off between prediction 

accuracy and model complexity while demonstrating strong performance in handling high-dimensional data (Zhang & 

O’Donnell, 2020). In contrast to SVM classification, which generates binary outputs (i.e., class labels), Support Vector 

Regression (SVR) is tailored for regression tasks, facilitating the estimation of real-valued functions (Zhang & 

O’Donnell, 2020). 

Several studies have successfully applied the SVR model for prediction using NIR instruments. Among them is the 

use of NIR combined with SVR to predict caMP content in red jujube. The results showed that SVR outperformed 

conventional chemometric models such as PLS, achieving an R²p of 0.93 and RMSEP of 13.07, while PLS yielded an 

R²p of 0.83 and RMSEP of 29.04 (Chen et al., 2019). Another research, which assessed the moisture level of black tea 

during processing, proved the advantage of SVR in predictive model development. The results showed that the SVR 

model achieved an R²p of 0.98 and RMSEP of 0.03, while the model built with PLS yielded an R²p of 0.94 and 

RMSEP of 0.07 (Zou et al., 2022). 

2.6. Data Analysis 

The data were imported and processed using Python on a Google Colab notebook. The Kennard-Stone approach was 

used to divide the dataset into 30% testing and 70% training subsets. Table 2 shows the descriptive statistics of the 

actual measured vanilla data, including vanillin and moisture content. Several preprocessing techniques were applied, 

including no preprocessing, min-max normalization, SNV, MSC, first derivative, and combinations of first derivative 

with SNV or MSC. Grid search optimization was then applied to identify the best parameters for the Support Vector 

Regression (SVR) model. In this study, the hyperparameter settings and their tuning results are shown in Table 3. 
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Table 2. Reference measurement of vanillin and water content of vanilla samples in datasets 

Dataset Number of samples Range (%) Mean(%) Std Dev(%) 

Summary of vanillin content 

Data training 34 0.22 – 2.07  1.04 0.49 

Data testing 15 0.18 – 2.09  0.99 0.56 

Summary of water content 

Data training 34 7.91 – 48.59  24.11 9.47 

Data testing 15 9.65 – 56.04  24.45 14.34 

Table 3 Grid search optimization for SVR 

Parameter setting Parameter optimum 

'C': {0.1, 1, 10, 100}, 'epsilon': {0.01, 0.1, 0.5}, 'kernel': 

{'linear', 'rbf'}  
{‘C’: 100, ‘epsilon’: 0.5, ‘kernel’: ‘linear’} 

 

Furthermore, ten-fold cross-validation (CV) was used to assess the robustness of the model and minimize 

overfitting. Model performance was evaluated using R² (coefficient of determination), RMSEP (root mean square 

error of prediction), RPD (ratio of prediction to deviation) and RER (range error ratio) metrics. In general, the lower 

the RMSE and the closer the R² is to 1, the more accurate the model predictions will be (Pereira et al., 2019). 

Furthermore, RPD values below 1.0 are considered very poor, while values ranging from 1.0 to 1.4 imply poor 

predictions. An RPD range of 1.4 to 1.8 indicates reasonable performance, whereas values between 1.8 to 2.0 imply 

accurate predictions. RPD values between 2.0 to 2.5 indicate very accurate predictions, with RPD values above 2.5 

considered excellent. RER values greater than 20 indicate an excellent prediction model. RER values between 15 to 20 

mean the model is considered successful. RER values between 10 to 15 classify the model as moderately successful. 

Meanwhile, RER values between 8 to 10 indicate that the model is still moderately useful (Williams & Norris, 1987). 

Additionally, for a model to be considered effective, it should ideally exhibit high R² and RPD values, alongside a 

small RMSEP, which together reflect a model's accuracy and reliability in making predictions (Douglas et al., 2018). 

Equations 7, 8, 9 and 10 compute and express the values of R2, RMSE, RPD and RER. 

R2 =1-
Σ(ŷi-yi)

2

Σ(ŷi-y̅i)
2        (7) 

RMSE = √
Σ(ŷi-yi)

2

n
                                (8) 

RPD =
SD

RMSE
        (9) 

RER = 
Range of the reference data

RMSE
      (10) 

where 𝑦̂𝑖 is sample i’s real value; y
i
 is sample i’s predicted value; y is mean of the real values; n is quantity of 

samples; SD is standard deviation. 

3. RESULTS AND DISCUSSION 

3.1. Spectral Analysis 

Vanillin is the major aromatic compound found in vanilla, with the chemical formula C8H8O3 (Anand et al., 2019). 

Figure 2 presents the absorbance spectra of vanilla beans obtained through a portable NIR spectrometer. Figure 3(a) 

illustrates the absorption peaks in the average vanilla spectrum within the wavelength range of 740-1070 nm, obtained 

using the SCiO instrument. The image illustrates how the vanilla spectra in this range display almost no peaks. On the 

other hand, Figure 3 (b) shows the average vanilla spectrum produced in the 1350–2550 nm wavelength region using 

the portable NIR Neospectra devices. It is evident from the graphic that there are many absorption peaks in this range. 
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Compared to the reference in Practical Near-Infrared Spectroscopy (Osborne et al., 1993), the spectral analysis 

results show an absorption peak at 970 nm due to O–H stretching bond vibration at the second overtone, indicating the 

presence of H2O. At 1450 nm, an absorption peak is seen related to the O–H stretching bond vibration at the first 

overtone, indicating the presence of starch and water. Absorption peaks at 1725 and 1780 nm show C–H stretching 

bond vibrations in the first overtone region, suggesting the presence of CH2 compounds and cellulose. The absorption 

peak at 1940 nm was induced by O–H stretching and deformation bond vibrations, signifying the presence of H2O.  

 

 

 
Figure 2. Absorbance spectra of vanilla at wavelengths of 740-1070 nm (a) and 1350-2050 nm (b). 

  
Figure 3. Average spectral of vanilla with identified absorption peaks wavelengths of 740-1070 nm (a) and 1350-2050 nm (b). 



Widyaningrum et al.: Portable Near-Infrared Spectroscopy and Support Vector Regression … 

521 
 

3.2. Moisture Content of Vanilla 

The moisture content of a product is an important quality indicator in various commodities, including spices, teas, 

fruits, vegetables, and herbal remedies. It plays a vital role in maintaining product stability over time and directly 

impacts shelf life by influencing how long the product remains safe and functional (Beć et al., 2022). Due to its impact 

on both product stability and longevity, moisture content requires careful and consistent monitoring to maintain 

quality standards and prevent spoilage or degradation. 

Vanilla is an essential primary ingredient in the extraction industry, with market requirements varying by region. In 

the United States, the demand focuses on vanilla with low moisture content (20–25%), tailored for industrial 

processing. In contrast, the European market, which mainly serves household consumption, focuses on whole vanilla 

beans that are visually attractive, have a high vanillin concentration, a strong fragrance, and a moisture content 

ranging from 30–35% (Wahyuningsih et al., 2022). Meanwhile, in Indonesia, the maximum moisture content for 

Grade 1 vanilla, according to the Indonesian National Standard (SNI), ranges between 30–38% (Badan Standardisasi 

Nasional). To address the critical role of moisture content in vanilla quality, this research used Support Vector 

Regression (SVR) and preprocessing approaches to estimate the moisture content of vanilla beans. The moisture 

content prediction results for vanilla beans using the SVR algorithm are shown in Table 4. According to the SVR 

algorithm investigation on vanilla moisture content prediction (Table 4), the SCiO instrument, which operates in the 

740–1070 nm wavelength region, produces somewhat better predictions than the Neospectra instrument, which 

operates in the 1350–2550 nm wavelength range. 

The SCiO instrument achieved an R2 value of 0.768 with Min-Max Normalization preprocessing, while the 

Neospectra instrument achieved an R2 value of 0.758 with MSC preprocessing. This indicates that both models exhibit 

good performance in explaining data variation. The RMSE values obtained were 4.720 and 5.161, respectively. Better 

model performance is indicated by a lower RMSE value that is nearer 0 (Chicco et al., 2021). Meanwhile, the RPD 

values produced by both instruments were also comparable, with the SCiO-based model achieving an RPD of 2.075 

and the Neospectra-based model achieving an RPD of 2.033. The RER value of 10.197 indicates that the RF model 

with min-max normalization preprocessing is moderately successful and can be used for quality screening or initial 

screening purposes. These outcomes are comparable to the PLS model, where PLS combined with first derivative-

SNV preprocessing yielded an R2 of 0.78, an RPD of 3.05, and an RMSE of 3.61 (Widyaningrum et al., 2024). Figure 

4 shows the results of the plot between actual moisture content and predicted moisture content from each instrument. 

This performance indicates that both instruments are suitable for practical applications in rapid moisture content 

analysis of vanilla. However, further validation with a more extensive and more diverse dataset is recommended to 

ensure the robustness of the models across different conditions. The robustness of a model largely depends on the 

quality and quantity of data utilized during its training and testing stages. Employing extensive and diverse datasets 

enables models to generalize more effectively, enhancing their resilience to data variability and noise (Zhou et al., 

2021). The slight difference in performance between the SCiO and Neospectra instruments could be attributed to their 

respective spectral sensitivity ranges and interaction with moisture-related features. 

Table 4. Prediction results of vanilla bean moisture content using the SVR algorithm. 

Wavelength Preprocessing R2 RMSE RPD RER 

740-1070 nm No preprocessing 0.412 7.504 1.304 6.413 

 Min-max normalization 0.768 4.720 2.075 10.197 

 SNV 0.753 4.862 2.013 9.899 

 MSC 0.434 7.370 1.328 6.530 

 First Derivative 0.698 5.382 1.819 8.942 

 First Derivative-SNV 0.731 5.074 1.930 9.485 

 First Derivative-MSC 0.740 4.990 1.962 9.645 

1350-2550 nm No preprocessing 0.709 5.660 1.854 8.503 

 Min-max normalization 0.746 5.280 1.987 9.115 

 SNV 0.717 5.583 1.879 8.620 

 MSC 0.758 5.161 2.033 9.325 

 First Derivative 0.687 5.867 1.788 8.203 

 First Derivative-SNV 0.738 5.364 1.956 8.972 

 First Derivative-MSC 0.718 5.571 1.883 8.639 
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Figure 4. Plot comparing the actual and predicted moisture content of vanilla: (a) wavelength 740-1070 nm; and (b) wavelength 

1350-2550 nm. 

3.3. The Vanillin Concentration in Vanilla 

The distinctive flavor and aromatic strength of vanilla are primarily attributed to vanillin, its most significant 

component. Approximately one-third of a vanilla product's flavor intensity is derived from its vanillin concentration. 

Consequently, vanillin content serves as a key factor in determining the market value of vanilla beans, with higher 

vanillin levels commanding premium prices (Ranadive, 2019). The vanillin content varies significantly across 

different vanilla species. Under optimal conditions, Vanilla planifolia beans can produce between 2% – 2.5% vanillin 

(Ranadive, 2019). 

To predict the vanillin content in vanilla beans, this study applied the SVR algorithm, utilizing various 

preprocessing methods. The prediction results, presented in Table 5, illustrate how different preprocessing techniques 

influence the accuracy of vanillin content estimation. The prediction results obtained using the SCiO instrument with 

the SVR algorithm and MSC preprocessing showed moderate performance, with an R² value of 0.406, RMSE of 

0.379, and RPD of 1.297. These values suggest that the model could explain a portion of the variability in the data, but 

there is still significant room for improvement. In contrast, the Neospectra instrument with the SVR algorithm without 

any preprocessing achieved lower performance, with an R² value of 0.172, RMSE of 0.576, and RPD of 1.098. This 

indicates a weaker predictive capability, with the model explaining only a small portion of the variance in the data. 

Overall, the results highlight the varying performance of different instruments and underscore the need for further 

optimization of both the modeling approach and the spectral data quality for more accurate predictions of vanilla 

quality parameters. 

Several factors, such as the model employed, the quality of the spectral data, and the inherent characteristics of the 

instruments, may contribute to the observed difference in R2 values between the Neospectra and SCiO instruments 

when employing the SVR method. The lower R² value (0.172) with Neospectra at wavelengths 1350-2550 nm 

suggests that the spectral data might be less representative or noisier, making it more challenging for the SVR model 

to capture meaningful patterns. In contrast, SCiO's moderate R² value (0.406) at wavelengths 740-1070 nm with the 

SVR algorithm could indicate that the instrument provides more consistent and relevant spectral information, enabling 

the SVR model to better capture the underlying trends in the data. However, the moderate performance also highlights 

to the complexity of predicting vanilla parameters, where spectral features alone may not fully explain variations in 

moisture or vanillin content, requiring further optimization of the model or data. The efficacy of machine learning 

models depends on the specific task and dataset (Sachindra & Kanae, 2019). 

 

(a) 
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Table 5 Prediction results of vanillin content of vanilla bean using the SVR algorithm. 

Wavelength Preprocessing R2 RMSE RPD RER 

740-1070 nm No preprocessing 0.346 0.398 1.237 4.798 

 Min-max normalization 0.118 0.462 1.065 4.134 

 SNV 0.265 0.422 1.166 4.526 

 MSC 0.406 0.379 1.297 5.039 

 First Derivative 0.334 0.402 1.225 4.751 

 First Derivative-SNV 0.326 0.404 1.218 4.727 

 First Derivative-MSC 0.374 0.389 1.264 4.910 

1350-2550 nm No preprocessing 0.172 0.576 1.098 3.315 

 Min-max normalization 0.170 0.577 1.097 3.310 

 SNV 0.055 0.615 1.029 3.105 

 MSC 0.141 0.587 1.788 3.253 

 First Derivative 0.051 0.617 1.026 3.095 

 First Derivative-SNV 0.012 0.629 1.006 3.036 

 First Derivative-MSC 0.074 0.609 1.039 3.136 

 

In comparison to the SVR results, the PLS model with SCiO showed a higher R² value (0.72) using the first 

derivative-SNV preprocessing method (Widyaningrum et al., 2024), suggesting that the PLS algorithm might better 

handle the spectral data in this context. This highlights the significant role that the choice of machine learning model 

plays in determining predictive accuracy (Wu et al., 2020). While preprocessing can enhance the data (Alasadi & 

Bhaya, 2017; Fan et al., 2021), the model's ability to effectively interpret and predict the target variables is critical 

(Murdoch et al., 2019), with PLS demonstrating better performance than SVR in this case. 

4. CONCLUSION  

This study underscores the critical importance of moisture and vanillin concentration in affecting the quality of vanilla 

beans. The study demonstrated the efficacy of Support Vector Regression (SVR) in predicting moisture content and 

vanillin concentration using spectral data from two instruments, SCiO and Neospectra, with different preprocessing 

methods. Both SCiO and Neospectra exhibited strong predictive capabilities for moisture content, suggesting 

suitability for practical applications. Notably, the SCiO instrument, operating in the 740–1070 nm wavelength range, 

showed slightly better performance than the Neospectra instrument, which operates in the 1350–2550 nm range. This 

difference is likely due to the SCiO's shorter wavelength range being more sensitive to moisture-related features in 

vanilla beans. The spectral sensitivity of the instruments directly influenced their ability to capture relevant patterns, 

emphasizing the importance of wavelength selection in optimizing predictive performance. However, further 

validation with more diverse datasets is recommended to enhance model robustness. In contrast, the prediction of 

vanillin content proved more challenging, with SCiO achieving moderate performance and Neospectra demonstrating 

limited predictive accuracy. The lower predictive performance of the Neospectra instrument may stem from its 

wavelength range being less effective at capturing vanillin-related spectral features, leading to noisier data and less 

representative models. These results highlight the inherent complexity of predicting vanillin concentration and suggest 

that additional optimization in spectral data quality, preprocessing methods, and modeling techniques is necessary. 

Future research should focus on expanding the dataset to include a more diverse range of vanilla samples, ensuring the 

robustness of models across varying conditions. Additionally, efforts should be directed toward improving spectral 

preprocessing techniques and exploring alternative machine learning models, such as hybrid or ensemble approaches, 

to enhance predictive accuracy for complex parameters like vanillin concentration. Investigating novel spectral 

regions or combining complementary instruments may provide deeper insights and improve prediction performance 

for vanilla quality attributes. Ultimately, these innovations will pave the way for dependable, efficient, and 

noninvasive tools for assessing vanilla quality. 
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