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ABSTRACT 
 

Fluorescence imaging has developed as a promising non-invasive method for identifying 

aflatoxin contamination in agricultural commodities, especially corn kernels. This paper 

examines current improvements in fluorescence imaging technologies, highlighting its 

potential to improve food safety through swift and precise detection of mycotoxins. The 

paper examines the basics of fluorescence, the necessary setup for optimal imaging, and the 

issues related to background fluorescence interference, sensitivity, and the construction of 

calibration models. Although there are some limitations, fluorescence imaging presents 

considerable advantages, such as cost-efficiency and the capacity to obtain concurrent 

spectral and spatial data. Proposed future research objectives include the validation of 

imaging systems using naturally contaminated samples, the optimization of imaging 

parameters, and the integration of machine learning techniques to enhance data processing. 

By overcoming existing constraints and utilizing technical progress, fluorescence imaging 

can serve as an essential instrument in the detection of aflatoxin contamination, hence 

enhancing food safety. 

1. INTRODUCTION 

Corn (Zea mays) is a staple crop globally, serving as a primary source of food, animal feed, and industrial products. Its 

productivity is significantly affected by various organisms, particularly fungi such as Aspergillus flavus, which is 

producing aflatoxins-highly toxic and carcinogenic compounds that pose serious health risks to humans and livestock 

(Benkerroum, 2020; Kerry et al., 2017; Yan & Wu, 2010; Yu et al., 2022). The prevalence of Aspergillus flavus is 

influenced by environmental conditions, including temperature and humidity, which can create favorable conditions 

for its growth and subsequent aflatoxin production (Budianto et al., 2022; Fountain et al., 2014; Medina et al., 2014). 

In tropical regions like Indonesia, characterized by high humidity, the risk of aflatoxin contamination in corn kernels is 

particularly pronounced (Budianto et al., 2022; Jallow et al., 2021; Udomkun et al., 2017). 

Aflatoxins, especially aflatoxin B1, are regulated by food safety authorities due to their potential health hazards. 

The U.S. Food and Drug Administration has established a limit of 20 parts per billion (ppb) for total aflatoxins in food 

and feed products (Kerry et al., 2017). Similarly, the Food and Agriculture Organization (FAO) has set guidelines to 

mitigate aflatoxin risks in agricultural commodities, emphasizing the need for stringent monitoring and control 

measures (Udomkun et al., 2017). These regulations are crucial, as aflatoxins can cause acute and chronic health 

issues, including liver cancer, making their management essential for food safety (Kerry et al., 2017; Yu et al., 2022).  
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The spread of aflatoxins is exacerbated by climatic conditions, particularly in Indonesia, where high temperatures 

and humidity create an ideal environment for Aspergillus flavus proliferation (Budianto et al., 2022; Temba et al., 

2021). The combination of these weather patterns can lead to increased aflatoxin levels in maize, particularly during 

the post-harvest phase when moisture level is often unregulated (Smith et al., 2016). Studies have shown that periods 

of drought followed by high humidity can significantly elevate aflatoxin contamination levels in crops (Hao et al., 

2023; Umesha et al., 2016). This situation is particularly concerning for smallholder farmers in Indonesia, who lack 

the resources for effective grain drying and storage, further increasing the risk of contamination (Smith et al., 2016).  

To detect aflatoxins, various analytical methods have been developed, including High-Performance Liquid 

Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Enzyme-Linked 

Immunosorbent Assay (ELISA) (Yao et al., 2022). While these methods are effective, they often require complex 

sample preparation and can be time-consuming, which may limit their applicability in rapid screening scenarios 

(Mitchell et al., 2016; Udomkun et al., 2017). Additionally, they typically involve destructive sampling, which can be 

a disadvantage in certain contexts where preserving the sample is essential (Chu et al., 2018a; Udomkun et al., 2017; 

Wang et al., 2010). 

Emerging technologies, particularly advanced visual methods like fluorescence imaging, are revolutionizing 

aflatoxin detection. Fluorescence imaging, in particular, has gained significant attention due to its ability to non-

invasively detect aflatoxin-contaminated crops with remarkable sensitivity and speed. This technique exploits the 

unique fluorescence properties of aflatoxins, which emit specific wavelengths of light when exposed to certain 

excitation wavelengths. By utilizing sophisticated fluorescence-transmission imaging systems, this technology 

significantly enhances the spectroscopic sensitivity, allowing for rapid and precise detection of aflatoxins even in 

highly contaminated kernels (Chavez et al., 2020; Ehrlich, 2014; Endre et al., 2023). Fluorescence imaging systems 

stand out by offering numerous advantages over traditional detection methods. They are non-destructive, allowing for 

real-time monitoring without the need to sacrifice or alter the sample. This is especially advantageous for large-scale 

screenings, where preserving the integrity of the agricultural products is critical. Additionally, fluorescence imaging 

provides faster results compared to conventional laboratory techniques, enabling on-site, real-time detection that can 

help farmers, traders, and food safety regulators make informed decisions to mitigate aflatoxin contamination (Chavez 

et al., 2020; Divakara et al., 2015).  

Given these considerations, this review critically examines recent advancements in fluorescence imaging as a non-

destructive technique for aflatoxin detection in corn kernels. The discussion encompasses the fundamental principles 

of fluorescence imaging, its comparative advantages over conventional analytical methods, existing challenges that 

hinder its broader implementation, and the potential integration of deep learning to enhance detection accuracy and 

efficiency. By synthesizing current research findings, this review aims to provide a comprehensive analysis of the 

feasibility, limitations, and future directions of fluorescence imaging in ensuring food safety and mitigating mycotoxin 

contamination in agricultural commodities. 

2. METHODS 

This research employs a systematic review methodology to analyze the advancements in fluorescence imaging 

technologies for detecting aflatoxins in agricultural products. The methodology consists of several key stages, 

including literature search, study selection, data collection, and analysis of research findings, which are detailed as the 

followsing. 

2.1. Literature Search Strategy 

2.1.1. Databases and Search Keywords 

The literature search was conducted across multiple academic databases, including Scopus, PubMed, Web of Science, 

and Google Scholar. A combination of keywords was utilized to maximize the relevance of the search results, 

including "fluorescence imaging," "aflatoxins," "non-destructive detection," and "agricultural products". 
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2.1.2. Search Limitations 

Publications were restricted to those published within the last 15 years to ensure the inclusion of the most recent 

technological advancements. Only articles published in English were considered. Studies focusing specifically on non-

destructive methods and applications of fluorescence imaging for aflatoxin detection were prioritized.  

2.2. Inclusion and Exclusion Criteria 

2.2.1. Inclusion Criteria 

This study includes research that investigates the application of fluorescence imaging for the detection of aflatoxins. 

Additionally, articles presenting quantitative experimental results related to aflatoxin detection are considered within 

the scope of this review. 

2.2.2. Exclusion Criteria  

Studies that are purely theoretical and lack direct experimental data, as well as those with incomplete or non-

extractable data, are excluded from this review.  

2.3. Data Extraction 

2.3.1. Parameter Collected 

Parameter that collected were optimal wavelength for aflatoxin detection, imaging techniques employed (fluorescence 

imaging), classification accuracy of the detection methods, and types of agricultural products tested for aflatoxin 

contamination.  

2.3.2. Data Organization 

Data were systematically collected and organized using a standardized table format, which included the following 

columns: - Author(s) - Year of Publication - Analysis Method - Experimental Results. 

2.4. Analysis of Research Findings 

The collected data were analyzed to identify trends in the effectiveness of fluorescence imaging technologies for 

aflatoxin detection. This included evaluating the sensitivity, specificity, and overall performance of different imaging 

techniques. Furthermore, the findings were synthesized to provide a comprehensive overview of the current state of 

fluorescence imaging technologies in the context of aflatoxin detection, highlighting both the advancements and the 

challenges faced in this field. 

3. RESULTS AND DISCUSSION 

In recent years, numerous studies have explored non-destructive image processing methods for detecting aflatoxin, an 

analytical tool developed since 2001 for early detection across various agricultural products. Digital image processing 

allows for the observation and analysis of objects without causing any damage. This technique involves capturing 

digital images that form a matrix representing light intensity at specific points, enabling the extraction of quality-

related information from agricultural products. However, conventional image processing methods struggle to 

effectively detect aflatoxins due to their unique chemical properties, which are not efficiently captured under standard 

lighting conditions. 

To address these limitations, fluorescence imaging technologies have been advanced to specifically target aflatoxin 

detection (Figure 1). Fluorescence imaging is particularly advantageous in identifying the unique fluorescence 

signature of aflatoxins, allowing for more accurate, non-destructive, and efficient detection compared to traditional 

imaging methods. This approach has proven effective in overcoming the challenges posed by conventional techniques, 

providing reliable results in real-time monitoring of agricultural products. 
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Figure 1. Annual publications on image processing techniques in agricultural products (blue bars), with a specific focus on 

fluorescence imaging for aflatoxin detection (orange line, inset graph) (based on articles indexed in Scopus) 

The figure presented the number of annual publications related to image processing techniques in agricultural 

products, with a specific focus on fluorescence imaging for aflatoxin detection. The blue bars show the general trend 

in image processing publications, which have steadily increased over time. The inset graph (orange line) zooms in on 

the subset of publications specifically related to fluorescence imaging for aflatoxin detection. The data highlights a 

sharp rise in research output, particularly in recent years, signaling the growing importance of fluorescence imaging in 

detecting aflatoxins in agricultural commodities. This trend reflects an increasing recognition of the value of 

fluorescence imaging as a key tool for ensuring food safety and minimizing health risks associated with aflatoxin 

contamination. 

3.1. Characteristics of Secondary Metabolites 

There are six major aflatoxins: B1, B2, G1, G2, M1, and M2. These are highly oxygenated, naturally occurring 

heterocyclic compounds share a benzene ring structure, with variations in double bonds, ketonic groups, and 

hydroxylation positions that influence their solubility, epoxidation, and toxicity. Aflatoxin B1 (AFB1), produced by 

Aspergillus flavus and Aspergillus parasiticus under favorable conditions, is the most potent and toxic due to its 

double bond at carbons 8 and 9, a feature also present in G1 and M1 (Lien et al., 2019; Nazhand et al., 2020). AFB1 is 

an odorless, tasteless, and colorless compound that poses challenges for detection. It appears as pale yellow or white 

crystalline powder and exhibits blue fluorescence with a maximum emission at 425 nm and UV absorbance peaks at 

223, 265, and 362 nm (Al-Jaal et al., 2019; Nazhand et al., 2020). Similarly, Aflatoxin B2 (AFB2), like AFB1, is 

produced by Aspergillus species. It is structurally similar to B1 but lacks the specific double bond at carbons 8 and 9. 

Although it is less toxic than B1, AFB2 also exhibits significant carcinogenic properties. AFB2 emits blue 

fluorescence under UV light, similar to AFB1, though with slight variations in intensity and peak emission (Balina et 

al., 2018; Yang, 2020). 

In contrast, Aflatoxin G1 (AFG1) is a derivative of AFB1 and shares many structural similarities, with the key 

difference being a shift in the position of the double bond, resulting in a greenish-yellow fluorescence under UV light. 

AFG1 is also highly toxic and carcinogenic, and it poses significant risks to both humans and animals. It typically 

exhibits maximum excitation wavelengths between 360–370 nm (Balina et al., 2018; Yang, 2020). Unlike AFB1, 

Aflatoxin G2 (AFG2) is a derivative of AFB2. It also fluoresces greenish-yellow under UV light, though it is less 

potent and less commonly encountered in nature. The fluorescence properties and toxicological concerns related to 

AFG2 are comparable to those of AFG1, but its occurrence is generally less frequent (Balina et al., 2018; Yang, 2020). 
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In the case of Aflatoxin M1 (AFM1), this is a hydroxylated metabolite of AFB1 and is commonly found in the 

milk of animals that have consumed contaminated feed. AFM1 is considered a carcinogen, and while it is less potent 

than AFB1, it still poses significant health risks to consumers of dairy products. AFM1 also exhibits blue fluorescence 

under UV light, with similar emission characteristics to AFB1 but with subtle differences in intensity and peak 

wavelengths (Barikbin et al., 2015; Daşbaşı, 2022). Similarly, Aflatoxin M2 (AFM2) is a hydroxylated derivative of 

AFB2 and, like AFM1, can be found in the milk of animals exposed to contaminated feed. While it is less toxic than 

AFM1, it remains a significant concern in terms of food safety. AFM2 also fluoresces blue under UV light, although it 

tends to exhibit slightly different fluorescence intensity and wavelength characteristics compared to its parent 

compound, AFB2. 

All six aflatoxins exhibit unique fluorescence properties under UV light, which aids in their identification and 

classification. B1 and B2 emit blue fluorescence, while G1 and G2 emit greenish-yellow fluorescence. These 

variations in fluorescence intensities allow for the differentiation of aflatoxins, though overlap can occur with natural 

compounds in agricultural products. Additionally, as aflatoxin content increases, the fluorescence intensity decreases, 

and peaks shift between 437 and 537 nm (Teena et al., 2013). These fluorescence characteristics, along with other 

physico-chemical properties, are essential for distinguishing different types of aflatoxins in contaminated products, as 

shown in Table 1. 

Table 1. Physical and chemical properties of aflatoxins 

Type Physico-chemical Properties Ref. 

AFB1 IUPAC Name (2,3,6aR,9aS)-2,3,6a,9a-Tetrahydro-4-

methoxycyclopenta[c]furo[2,3-h]chromen-1,11-dione 

IARC (2012);  

Molecular weight 312.277 g/mol 

Melting point 268-269°C 

Physical condition Colorless pale-yellow crystals to solid or white powder; odorless  

Solubility rate 16,14 mg / l pada 25°C; decreases at low temperatures; generally 

soluble in water and polar solvents 

Stability Stable to melting point; decomposed by UV irradiation in 

water/chloroform 

Fluorescence emission Concentrated fluorescent blue (λmax = 425 nm) 

UV Absorbance Absorbs at 223, 265 and 362 nm wavelengths 

Mass spectrum Identification by LC-MS; ESI ionization; precursor-type [M+H]+; 

m/z 313.071 

AFB2 IUPAC Name (2R,3R,6aR,9aR)-2,3,6a,9a-Tetrahydro-4-

methoxydifuro[3,2:2',3']chromen-1,11-dione 

IARC (2012);  

Molecular weight 314.278 

Melting point 269-270°C 

Physical condition Colorless pale-yellow crystals to solid or white powder; odorless 

Solubility rate Soluble in water and polar solvents 

Stability Stable to melting point 

Fluorescence emission Concentrated fluorescent blue (λmax = 425 nm) 

UV Absorbance Absorbs at 265 and 362 nm wavelengths 

Mass spectrum [M+H]+; m/z 314.073 

AFG1 IUPAC Name (2,3,6aR,9aS)-2,3,6a,9a-Tetrahydro-6a,9a-dihydroxy-4-

methoxyfuro[2,3-h]chromen-1,11-dione 

IARC (2012); 

CAST (2013) 

Molecular weight 328.289 

Melting point 267-268°C 

Physical condition Colorless pale-yellow crystals to solid or white powder; odorless 

Solubility rate Soluble in water and polar solvents 

Stability Stable to melting point 

Fluorescence emission Concentrated fluorescent blue (λmax = 450 nm) 

UV Absorbance Absorbs at 243 and 362 nm wavelengths 

Mass spectrum [M+H]+; m/z 328.076 

AFG2 IUPAC Name (2R,3R,6aR,9aR)-2,3,6a,9a-Tetrahydro-6a,9a-dihydroxy-4-

methoxydifuro[3,2:2',3']chromen-1,11-dione 

IARC (2012); 

CAST (2013) 
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Type Physico-chemical Properties Ref. 

Molecular weight 329.290 

Melting point 267-268°C 

Physical condition Colorless pale-yellow crystals to solid or white powder; odorless 

Solubility rate Soluble in water and polar solvents 

Stability Stable to melting point 

Fluorescence emission Concentrated fluorescent blue (λmax = 450 nm) 

UV Absorbance Absorbs at 265 and 362 nm wavelengths 

Mass spectrum [M+H]+; m/z 329.077 

AFM1 IUPAC Name (2,3,6aR,9aS)-2,3,6a,9a-Tetrahydro-6a-hydroxy-4-

methoxycyclopenta[c]furo[2,3-h]chromen-1,11-dione 

Luis et al. (2016), 

Chen et al. (2018) 

Molecular weight 328.289 

Melting point 254-256°C 

Physical condition Colorless to pale yellow crystalline powder 

Solubility rate Soluble in polar solvents 

Stability Stable in milk but decomposes upon UV exposure 

Fluorescence emission Concentrated fluorescent (λmax = 435 nm) 

UV Absorbance Absorbs at 223 and 333 nm wavelengths 

Mass spectrum [M+H]+; m/z 328.076 

AFM2 IUPAC Name (2R,3R,6aR,9aR)-2,3,6a,9a-Tetrahydro-6a-hydroxy-4-

methoxydifuro[3,2:2',3']chromen-1,11-dione 

Luis et al. (2016); 

Finglas et al. 

(2008) Molecular weight 329.290 

Melting point 254-255°C 

Physical condition Colorless to pale yellow crystalline powder 

Solubility rate Soluble in polar solvents 

Stability Stable in milk but decomposes upon UV exposure 

Fluorescence emission Concentrated fluorescent (λmax = 435 nm) 

UV Absorbance Absorbs at 223 and 333 nm wavelengths 

Mass spectrum [M+H]+; m/z 329.077 

3.2. Analytical Method  

Several methods of analysis have been established and can be classified into three categories: chromatographic 

(Cernoch et al., 2012), immunochemical (Anfossi et al., 2011), and spectroscopic (Szulc et al., 2021). Each offers 

distinct advantages and limitations depending on factors such as sensitivity, cost, and sample preparation. 

Chromatographic methods, including Thin Layer Chromatography (TLC), High-Performance Liquid 

Chromatography (HPLC), and Liquid Chromatography-Mass Spectrometry (LC-MS/MS), provide high sensitivity and 

specificity. While TLC is cost-effective, it is less sensitive compared to HPLC, which offers better resolution but 

requires complex sample preparation and is more expensive. LC-MS/MS allows for highly sensitive detection of 

multiple mycotoxins but requires specialized equipment and is costly. On the other hand, Immunochemical methods, 

such as Enzyme-Linked Immunosorbent Assay (ELISA) and Radioimmunoassay (RIA), are faster and less expensive. 

These methods are suitable for high-throughput screening but suffer from lower sensitivity and potential cross-

reactivity. Meanwhile, Spectroscopic methods, like fluorescence spectroscopy is rapid, non-destructive, and suitable 

for field testing with minimal sample preparation. However, their sensitivity can be impacted by background 

interference, limiting their use for detecting low levels of contamination. 

The selection of an appropriate method is contingent upon the required sensitivity, speed, cost, and complexity of 

the sample matrix. Table 2 provide comparison of these methods based on detection limits, sample preparation 

requirements, and their ability to analyze multiple mycotoxins. Additionally, Table 3 summarizes the advantages and 

disadvantages of the methods discussed. Chromatographic techniques offer high precision but are costly and require 

extensive sample preparation. Immunochemical methods are faster and more affordable but exhibit lower sensitivity 

and are more prone to cross-reactivity. Spectroscopic methods are non-destructive and fast, making them ideal for 

field applications; however, their sensitivity is susceptible to background interference. 
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Table 2. Comparison of different aflatoxin analysis methods 

Category Methods 
Sample 

price 
Portable AVM LOD 

Sample 

preparation 
Ref. 

Chromatographic TLC Medium No No 1-20 ng/kg SPE Marutoiu et al., 2004 

Chromatographic HPTLC Medium No No Pictogram Extraction Ramesh et al., 2013 

Chromatographic HPLC Medium No No 0.008-0.014 

µg/kg 

IAC or SPE Jaimez et al., 2000 

Chromatographic LC-MS/MS Medium No Yes 0.8 µg/kg Extraction Cappiello et al., 1995 

Chromatographic RIA Medium No No 1 µg/kg Extraction (Mahfuz et al., 2020) 

Chromatographic ELISA Medium No No 0.006 µg/kg Extraction (Zheng et al., 2006) 

Immunochemical Immunodipstick Medium Yes No 5 µg/kg Extraction (Mahfuz et al., 2020) 

Immunochemical Immunosensor Medium No No OWLS (0.5-

10 ng/mL) 

 (Mahfuz et al., 2020) 

Immunochemical Electrochemical Medium No No 1 fM Extraction (Ammida et al., 2004) 

Immunochemical VICAM Expensive No No - - (Mahfuz et al., 2020) 

Note: TLC = Thin Layer Chromatography; HPTLC = High-Performance Thin-Layer Chromatography; HPLC = High-Performance Liquid 

Chromatography; LC-MS/MS = Liquid Chromatography-Mass Spectrometry; RIA = Radioimmunoassay; ELISA = Enzyme-Linked Immunosorbent 

Assay; VICAM = VIsual Immunoassay for Mycotoxins; LOD = Limit of detection; AVM = Analysis of various mycotoxins; SPE = Solid Phase 

Extraction; OWLS = Optical Waveguide Lightmode Spectroscopy. 

Table 3. Advantages and disadvantages of various analytical methods in detecting aflatoxin 

Methods Pros Disadvantages 

Gas Chromato-

graphy (GC) 

Simultaneous analysis of 

mycotoxins, high sensitivity, can be automated, 

provides confirmation (MS detector). 

Expensive equipment, expertise required, derivation 

required, problems in matrix interference, non-linear 

calibration curves, response drifting, carry-over effects 

from previous samples, variations in repeatability 

TLC A reliable counting method when 

combined with densitometry, more 

accurate and precise, comparable to the HPLC 

(HPTLC; OPLC) method, official reference 

technique for aflatoxin 

Destructive to samples, largely replaced by HPLC for 

quantitative analysis of aflatoxins  

HPLC High sensitivity, high selectivity, 

high repeatability, short analysis 

time 

Expensive equipment, specialized operators required, 

sample preparation by destructive methods 

LC-MS Simultaneous analysis of 

mycotoxins, capable of low limit 

detection (LC/MS/MS), provides 

confirmation, no derivation required. 

Very expensive, special skills required, ionization-

dependent sensitivity, matrix-assisted calibration curves 

(for quantitative analysis), lack of internal standards. 

ELISA Specific, fast and relatively easy to use, simple 

sample preparation, cheap equipment, low limit 

of detection, simultaneous analysis few samples, 

suitable for screening, semiquantitative or 

quantitative analysis possible, limited use of 

organic solvents 

Possible cross-reactivity with related mycotoxins, 

possible false positives/negatives, matrix interference 

issues, narrow detection range, LC analysis to confirm 

required 

Biosensor Fast, no cleaning procedure, high selectivity, 

reproducibility, and sensitivity, ease of use, low 

cost and portability, self-contained, simple 

design. 

The requirement for sample destruction. 

Immunoaffinity 

assay 

IAC in combination with liquid fluorometry is 

comparable to LC for aflatoxin determination, the 

official method. 

Sample destruction; limited to analysis of total aflatoxin. 

Source: (Mahfuz et al., 2020) 
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3.3. Digital Image 

Digital imaging plays an essential role in the non-destructive inspection and monitoring of agricultural products, 

allowing for real-time analysis without damaging the products. The technology captures images based on the light that 

is reflected, emitted, or transmitted by the agricultural product. Light interacts with the product at different 

wavelengths, which is key to understanding how digital imaging applies to agricultural inspection. 

Agricultural products, such as fruits, grains, and vegetables, interact with light in a way that can reveal important 

information about their quality, safety, and potential contaminants. The electromagnetic spectrum, as shown in Figure 

2, includes a wide range of wavelengths, with visible light and infrared (IR) being particularly important in 

agricultural inspections. Visible light (VIS), ranging from 400 to 700 nm, is the range in which human eyes operate, 

but digital imaging systems can extend into other wavelengths, including UV light, infrared, and visible light are used 

to capture detailed images of the products (Adão et al., 2017; Oliveira et al., 2022).  

Each wavelength of light interacts with agricultural products in a distinct manner, providing unique information. 

For instance, colors in the visible spectrum correspond to specific wavelengths of light: blue light has a wavelength of 

approximately 475 nm, green light is around 520 nm, and red light is at 650 nm (Adão et al., 2017). Color images 

illustrate an integration of three primary wavelength bands: red, green, and blue (Neittaanmäki-Perttu et al., 

2015).While the human eye is responsive to the blue, green, and red parts of the spectrum, with each color exhibiting a 

distinct range that is stimulated significantly based on the wavelength of the emitted light. The colors visible by the 

human eye represent a limited segment of the electromagnetic spectrum, ranging from 400 to 700 nm (Figure 2). 

Visible light (400–700 nm) is commonly used to detect external features such as surface defects, color variations, 

and mold growth. UV light makes use of the fluorescence properties of certain contaminants like aflatoxins. When 

exposed to UV light, substances like aflatoxins emit fluorescence that can be captured by the camera, allowing for the 

identification of contamination (Fujita et al., 2013; Gao et al., 2018; Zhu et al., 2016). Infrared light, particularly in the 

the near-infrared (NIR) and short-wave infrared (SWIR) ranges, is used to examine internal characteristics like 

moisture content, ripeness, and internal damage that may not be visible with visible light. 

The infrared range (IR) (from 700 nm to several µm, including NIR and SWIR regions) is crucial for detecting 

internal properties of agricultural products. For example, NIR can be used to assess the moisture content or detect 

early signs of spoilage in fruits and vegetables (Güneş et al., 2013; Moreau et al., 2011). SWIR, however, provides a 

more detailed analysis, useful for detecting mold growth or other hidden defects beneath the surface, offering a non-

invasive means to assess internal damage that visible light alone cannot capture (Khalid et al., 2018; Zhu et al., 2016). 

 

Figure 2. Electromagnetic spectrum featuring visible and infrared light (Lowe et al., 2013) 

1000 nanometers (nm) = 1 micrometers (μm) 

1000 micrometers (μm) = 1 milimeter (mm) 
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Once the images are captured using these varied wavelengths, the next crucial step is pre-processing. This step 

improves the quality of the captured image by removing noise and enhancing contrast, making key features more 

apparent for further analysis. After pre-processing, the image is segmented into different regions of interest (ROI), 

such as areas exhibiting contamination or surface damage. Important features, including color, fluorescence intensity, 

shape, and texture, are then extracted from these regions (Magnus et al., 2021; Sadimantara et al., 2024). These 

features provide data that can be analyzed using machine learning algorithms, which help classify the product based 

on quality. For instance, in fluorescence imaging, thy of fluorescence emission can be measured and correlated with 

contamination levels, such as the presence of aflatoxins (Fujita et al., 2013; Magnus et al., 2021). Machine learning 

models, trained on this data, can then automatically classify the agricultural products as either safe or contaminated.  

This non-destructive method offers several benefitng the ability to inspect large batches of products quickly, 

without damaging them. Furthermore, digital imaging systems are capable of providing detailed insights into both the 

surface and internal quality of the products, improving the efficiency and reliability of quality control processes 

(Jallow et al., 2021; Kumar et al., 2017). 

3.4. Fluorescence Imaging 

Fluorescence imaging is a powerful optical technique that utilizes the phenomenon of fluorescence to visualize and 

quantify specific molecules within biological and agricultural samples. When a fluorescent compound absorbs light at 

a specific wavelength, it becomes excited and subsequently emits light at a longer wavelength. This property allows 

researchers to detect and analyze the presence of fluorescently labeled substances, making it a valuable tool in various 

fields, including biochemistry, molecular biology, and agricultural monitoring. The principle of fluorescence imaging 

is based on the excitation of fluorescent molecules by a light source, typically in the ultraviolet (UV) or visible 

spectrum. When these molecules absorb photons, their electrons are elevated to a higher energy state. The excited state 

is unstable, and the molecules quickly return to their ground state, releasing energy in the form of emitted light. This 

emitted light has a longer wavelength than the absorbed light due to energy loss during the excitation process. The 

fluorescence process typically occurs on a timescale of nanoseconds, allowing for rapid imaging and analysis (Göttfert 

et al., 2017). Aflatoxins exhibit specific fluorescence excitation peaks under UV light, aiding contamination detection 

in maize (Han et al., 2019). Higher contamination levels shift fluorescence peaks to longer wavelengths with reduced 

intensity (Zhu et al., 2016). High-speed dual-camera systems leveraging multispectral fluorescence imaging accurately 

identify contaminated maize samples. Effective aflatoxin detection depends on wavelengths strongly absorbed by 

aflatoxins, such as 200–250 nm and ~365 nm, resulting in high fluorescence intensity (Rasch et al., 2010; Smeesters et 

al., 2015) as shown in Figure 3. 

The microspectrometer has been installed in a 90-degree configuration with the illumination system, in an optical 

setup that ensures a distance of 5 cm from the sample surface to the spectrometer as shown in Figure 4. The sample 

level in the petri dish is set to reach the edge so that the sample surface is at a fixed distance from the detector range 

(Bertani et al., 2020).  

 

Figure 3. Absorbance and fluorescence spectra of aflatoxin B1 

(Smeesters et al., 2015) 

 

Figure 4. Schematic of fluorescence imaging setup. 

Adapted from Momin et al. (2023) 
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3.5. Classification of Aflatoxin Contaminated Food Products with Fluorescence Imaging 

Aflatoxins, toxic secondary metabolites from Aspergillus flavus and A. parasiticus, are a persistent issue in maize. 

Rapid, non-destructive techniques like Fluorescence imaging offer potential for early detection and sorting of 

contaminated kernels as shown at Table 4. Fluorescence in the VNIR range (400–900 nm) has shown promising 

results for aflatoxin detection. Yao et al. (2010), observed a negative correlation between aflatoxin levels and 

fluorescence in blue-green bands (r² = 0.72). Subsequent studies confirmed longer fluorescence peak wavelengths in 

contaminated kernels and achieved classification accuracies up to 88% using binary code analysis (Yao et al., 2013b). 

The application of spectral analysis in agricultural product inspection has become increasingly important, particularly 

for non-destructive methods aimed at detecting contaminants such as aflatoxins, assessing quality, and improving 

overall food safety. Several statistical methods have been utilized in conjunction with fluorescence imaging (FI) to 

interpret spectral data, classify agricultural products, and identify potential contaminants. Key techniques such as 

Multiple Linear Regression (MLR), Binary Encoding (BE), Principal Component Analysis (PCA), Factorial 

Discriminant Analysis (FDA), Partial Least Squares Discriminant Analysis (PLS-DA), Least Squares Support Vector 

Machines (LS-SVM), and Random Forest (RF) have shown promising results in enhancing the accuracy and 

efficiency of contamination detection, particularly when combined with fluorescence imaging for aflatoxin detection. 

Table 4. Fluorescence imaging for detecting aflatoxin in food 

Mode 

Optimal 

wavelength 

range (nm) 

Spectral 

range 

(nm) 

Type of 

Aflatoxin 

Aflatoxin 

Concentration 

(µg/kg) 

Data 

Analysis 

Model Performance 

Metrics 
Ref. 

Fluorescence N/A 400-600 Not Specified 

(AF 13 strain) 

0-14000 MLR R2
p= 0.72 (Yao et al., 

2010) 

Fluorescence N/A 400-700 Not 

Specified 

0-2000 DA The Classification accuracy 

is 94.4% 

(Yao et al., 

2013a) 

Fluorescence 437 and 

537 

400-900 Not Specified 

(AF 13 strain) 

0-11000 BE The classification accuracy 

is 87% for thresholds of 20 

mg/kg and 88% for 100 

mg/kg 

(Yao et al., 

2013b) 

Reflectance 501 and 

478 

400-900 Not Specified 

(AF 13 and 36 

strain) 

0-8000 - - 
(Hruska et 

al., 2013) 

Reflectance N/A 1000-2500 AFB1 10-500 PCA 

FDA 

The classification accuracy 

is >88% 

(Wang et al., 

2014) 

Reflectance N/A 1000-2500 AFB1 0-3800 PCA The classification 

accuracy is 92% 

(Wang et al., 

2015) 

Reflectance 

SWIR 

N/A 1100-1700 AFB1 0-1000 PLS-DA The classification 

accuracy is 97% 

(Kandpal et 

al., 2014) 

Fluorescence 501 399-701 Not 

specified 

0-2662 LS-SVM The classification 

accuracy is 90-95.3% 
(Zhu et al., 

2016) Reflectance 701 461-877 

Reflectance 

and 

fluorescence 

N/A 304-1086 Not 

Specified 

0-20000 Random 

forest 

The accuracy is 

approximately 95% with 

86% sensitivity and 97% 

specificity 

(Cheng et 

al., 2019) 

Fluorescence Ex: 365 400-2500 Not 

specified 

10-1000 SVM The classification 

accuracy is 89.1% 

(Kim et al., 

2023) 

Fluorescence Ex: 365 

Em: 420-480 

N/A AFB1 0 - 320.2 DNN The classification 

accuracy is between 

84.7% and 93.0% 

Bertani et 

al., 2023 

Fluorescence Ex: 365 N/A AFG1 83.1 CNN The classification 

accuracy is 96% 

(Sadimantara 

et al., 2024) 

Note: MLR: Multiple Linear Regression, PLS: Partial Least Squares, BE: Binary Encoding, PCA: Principal Component Analysis, R2p: 

Determination Coefficient for Prediction, FDA: Factorial Discriminant Analysis, LS-SVM: Least Squares Support Vector Machines, ANN: 

Convolutional Neural Network, DNN: Deep Neural Network 
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PCA is a widely used statistical technique for reducing the dimensionality of spectral data. By transforming the 

data into orthogonal principal components (PCs), PCA helps retain the most significant features while minimizing 

noise and irrelevant information. This technique is particularly useful when dealing with high-dimensional data, such 

as fluorescence spectra, which contain multiple variables and intricate patterns. Recent research by Hruska et al. 

(2013) demonstrated the effectiveness of PCA in identifying aflatoxin contamination in maize kernels based on spectral 

shifts observed in fluorescence imaging (Hruska et al., 2013). The study found that PCA significantly simplified the 

complex fluorescence spectra, making it easier to detect contamination. Similarly, Zhu et al. (2016), integrated 

fluorescence and reflectance data using PCA, achieving classification accuracies of 90–95% in maize contamination 

detection. They found that the germinal side of maize kernels exhibited superior performance, indicating that certain 

areas of the product provide more reliable spectral information for contamination detection (Zhu et al., 2016). 

PLS-DA, a combination of Partial Least Squares Regression (PLSR) and Discriminant Analysis, is widely used for 

classification tasks, particularly when the data is highly multicollinear. PLS-DA maximizes the variance between 

different classes, which is critical for distinguishing subtle differences in contamination levels. Wang et al. (2015) 

successfully used PLS-DA to identify key wavelengths, such as 1729 nm and 2344 nm, for the characterization of 

Aflatoxin B1 (AFB1) contamination in maize kernels (Wang et al., 2015). Their study achieved classification 

accuracies between 88% and 96.9%, showing that PLS-DA could effectively detect AFB1 contamination from 

fluorescence spectral data. This highlights the robustness of PLS-DA in detecting contaminants and its ability to 

handle complex fluorescence imaging data efficiently. 

LS-SVM is an enhanced version of traditional Support Vector Machines (SVM), using a least-squares cost function 

to solve the optimization problem. This method has been found to be particularly effective for non-linear 

classification, making it well-suited for the complex relationships present in fluorescence spectra. In a study by (Zhu 

et al., 2016), LS-SVM was used to classify aflatoxin-contaminated maize based on fluorescence imaging data from 

near-infrared (NIR) spectra. The study achieved an impressive 96% classification accuracy, demonstrating that LS-

SVM is highly effective for classifying agricultural products based on spectral data. The method's ability to handle 

complex, non-linear relationships between spectral features and contamination levels makes LS-SVM a valuable tool 

for contamination detection in fluorescence imaging applications. 

Random Forest (RF) is an ensemble learning method that creates multiple decision trees and combines their results 

to improve classification accuracy. This method is particularly useful when working with large, high-dimensional 

datasets, which are common in fluorescence imaging data. In Chu et al. (2018b), RF was used to classify wheat grain 

quality based on fluorescence imaging data, achieving 92% classification accuracy (Chu et al., 2018b). This study 

demonstrated the effectiveness of RF in handling the complexity of fluorescence spectra, where multiple features 

(such as color, fluorescence intensity, and texture) need to be processed simultaneously. RF is particularly 

advantageous because it is less prone to overfitting compared to individual decision trees and can effectively handle 

missing data, making it a robust choice for large-scale agricultural inspections. 

Binary Encoding (BE) is an optimization technique often used for feature selection. In the context of fluorescence 

imaging, BE helps identify the most relevant spectral features by converting categorical data into binary form, 

improving the performance of classification models. Yao et al. (2013b), demonstrated the application of BE for 

selecting relevant spectral features in the detection of aflatoxins in grains (Yao et al., 2013b). By optimizing the 

feature set, BE improved the classification accuracy of fluorescence imaging models, helping to identify the most 

significant wavelengths related to contamination. This study illustrates the importance of feature selection in 

improving the accuracy and efficiency of fluorescence-based contamination detection. 

Fluorescence imaging combined with statistical methods such as PCA, PLS-DA, FDA, LS-SVM, RF, and MLR 

provides a robust framework for aflatoxin detection in agricultural products. Each method offers distinct advantages, 

such as data reduction, classification accuracy, and the ability to handle multivariate and non-linear data. While PCA 

and PLS-DA excel in simplifying data and identifying key wavelengths for contamination detection, methods like LS-

SVM and RF offer high classification performance, especially with large datasets. The integration of these statistical 

techniques with fluorescence imaging has shown considerable promise for improving the speed and accuracy of 

agricultural inspections, ensuring food safety, and enhancing the overall quality control processes. Continued research 

is essential to optimize these methods and enable their large-scale application in agricultural industries. 
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3.6. Limitations 

Fluorescence imaging techniques demonstrate potential for classifying aflatoxin-contaminated food products and 

healthy grains, yet several challenges and limitations must be addressed. For instance, many studies rely on artificially 

inoculated samples with Aspergillus flavus conidia rather than naturally contaminated grains. This reliance raises the 

possibility that the fluorescence signals primarily reflect fungal presence rather than aflatoxin levels, especially since 

there is no direct linear relationship between fungal infection and the production of secondary metabolites like 

aflatoxins (Hruska et al., 2017). Consequently, results from these studies may not accurately represent contamination 

levels in real-world food products, where aflatoxin concentrations are typically within acceptable regulatory limits (2–

20 µg/kg) (Wacoo et al., 2014; Yao et al., 2015). 

Moreover, low fluorescence signal intensity can result in significant errors when recording maximum fluorescence 

intensity and emission peaks, particularly in samples with minimal contamination (Bartolić et al., 2022). In addition, 

Internal contamination of imaging instruments and cross-contamination during bulk sample analysis can also lead to 

false positives, further complicating the detection process (Bartolić et al., 2022). Furthermore, agricultural products 

often contain naturally fluorescent compounds whose emission spectra may overlap with those of aflatoxins, thereby 

obscuring the accurate identification and quantification of contamination. 

However, higher contamination levels do not always equate to better detection sensitivity. For example, internal 

contamination within corn kernels, such as deeply embedded aflatoxin deposits, may affect fluorescence signal 

detection, since signal strength often depends on the contamination's location (Hruska et al., 2017; Yao et al., 2012). 

While it is assumed that the system’s performance should remain unaffected by internal contamination, 

inconsistencies in signal response have been observed (Smeesters et al., 2016). 

Additionally, the color of the sample may also influence fluorescence imaging results. Variations in the sample's 

surface color or pigmentation can alter the absorption and emission properties of fluorescence, potentially causing 

inconsistent or inaccurate results (Bartolić et al., 2022; Bertani et al., 2020). Thus, this issue underscores the 

importance of developing robust calibration techniques to account for such variability (Yao et al., 2023). 

Another limitation is that fluorescence-based detection systems are sensitive to the operational conditions and 

design of the equipment. For instance, poorly maintained or contaminated systems can skew results, and cross-

contamination is especially problematic when screening bulk samples (Chavez et al., 2020; Wacoo et al., 2014). For 

example, fluorescence imaging systems designed for bulk corn kernels may inadvertently detect fluorescence signals 

from external contaminants or environmental factors, thereby leading to false positives (Bartolić et al., 2022; 

Smeesters et al., 2016). 

Despite these challenges, fluorescence imaging remains a promising tool for aflatoxin detection. To address these 

limitations, refinements in system design, such as advanced filtering to isolate aflatoxin-specific signals, improved 

calibration methods, and integration with complementary detection technologies, can enhance accuracy and reliability. 

Therefore, further studies are needed to optimize these systems for real-world applications, ensuring they can reliably 

detect contamination at regulatory limits and provide consistent results across diverse agricultural commodities. 

3.7. Opportunities and Challenges 

Overall, fluorescence imaging presents a promising non-invasive method for detecting mycotoxin contamination in 

agricultural commodities, offering a lower cost per sample compared to traditional analytical methods. This is due to 

the fluorescence imaging techniques can be implemented at a lower cost per sample than methods such as HPLC or 

mass spectrometry, making them accessible for widespread use in agricultural monitoring (Jacobson, 2024). 

Furthermore, fluorescence imaging allows for the simultaneous acquisition of spectral and spatial features, providing 

comprehensive data on the condition of agricultural products. As a result, this capability enhances the potential for 

early detection of aflatoxin contamination (Singh & Prasad, 2018). Fluorescence imaging has the potential to serve as 

an early detection tool for predicting the health of corn kernels and seeds, enabling timely interventions to mitigate 

contamination risks (Mateus et al., 2021).  
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A key advancement in fluorescence imaging is its integration with machine learning algorithms, particularly deep 

learning models, to enhance classification accuracy. Recent studies have demonstrated that combining fluorescence 

imaging with deep learning improves the discrimination of contaminated and uncontaminated samples by extracting 

subtle spectral features that may not be discernible using conventional analytical techniques (Li et al., 2020). Deep 

learning approaches, including convolutional neural networks (CNNs) and support vector machines (SVMs), have 

shown considerable success in classifying fluorescence spectral data with high accuracy. However, most of these 

studies have been conducted under controlled laboratory conditions, limiting their applicability to real-world 

agricultural environments. Future research should therefore focus on developing robust calibration models that 

account for environmental variability, including differences in lighting conditions, moisture content, and sample 

heterogeneity (Qin et al., 2020). 

Despite its potential, fluorescence imaging faces several challenges that must be addressed to enhance its reliability 

and applicability. One major limitation is the reliance on artificially inoculated samples in experimental studies, which 

may not accurately reflect real contamination scenarios (Levasseur-Garcia, 2018). Future studies should compare corn 

samples contaminated with aflatoxin derived from Aspergillus flavus with pure aflatoxin, which is typically used as an 

analytical standard. Such a comparison is crucial for validating detection methods (Otto et al., 2020). Additionally, the 

presence of secondary metabolites in agricultural products may interfere with fluorescence signals, leading to false-

positive or false-negative results. Therefore, optimizing the selection of excitation and emission wavelengths 

(particularly > 365 nm) can minimize spectral interference and improve detection specificity (Abdallah et al., 2018).  

Another critical challenge is the development of universal calibration models to accommodate variations in 

biological activity, crop variety, and environmental conditions. Fluorescence signal intensity can be influenced by 

factors such as grain composition, pigmentation, and storage conditions, which may lead to inconsistencies in 

detection accuracy (Omar et al., 2020). Addressing these challenges requires the expansion of training datasets and the 

incorporation of advanced statistical techniques, such as discriminant analysis and regression models, to improve 

predictive performance and adaptability across different agricultural settings (Zhang et al., 2018).  

Given these considerations, integrating fluorescence imaging with deep learning represents a promising direction 

for improving aflatoxin detection. Deep learning techniques can enhance fluorescence imaging by automating feature 

extraction, reducing background noise, and refining classification models for real-time application. Future research 

should explore hybrid approaches that combine fluorescence imaging with complementary detection technologies to 

further enhance sensitivity and specificity. By addressing these technical limitations and leveraging advancements in 

artificial intelligence, fluorescence imaging has the potential to become a highly reliable and scalable solution for 

ensuring food safety and mitigating mycotoxin contamination in agricultural commodities. 

4. CONCLUSION  

The effectiveness of fluorescence imaging for detecting aflatoxin contamination in corn relies on the careful selection 

of hardware tailored to the specific fluorescent characteristics of the kernels. Key factors include the use of a UV light 

source emitting wavelengths around 365 nm, optimal for exciting aflatoxin fluorescence, and a sensitive camera to 

capture emissions typically observed between 425 and 450 nm. Despite its potential, several challenges persist, such 

as background fluorescence interference and the need for robust calibration models to account for biological 

variability. Future advancements, including the integration of machine learning for data analysis and the development 

of portable imaging devices, promise to enhance detection capabilities. Continued research should focus on validating 

these systems with naturally contaminated corn samples and optimizing imaging parameters. By addressing these 

challenges, fluorescence imaging can become a vital tool for ensuring food safety and monitoring aflatoxin 

contamination in agricultural products. 
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