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1. INTRODUCTION

Corn (Zea mays) is a staple crop globally, serving as a primary source of food, animal feed, and industrial products. Its
productivity is significantly affected by various organisms, particularly fungi such as Aspergillus flavus, which is
producing aflatoxins-highly toxic and carcinogenic compounds that pose serious health risks to humans and livestock
(Benkerroum, 2020; Kerry ef al., 2017; Yan & Wu, 2010; Yu et al., 2022). The prevalence of Aspergillus flavus is
influenced by environmental conditions, including temperature and humidity, which can create favorable conditions
for its growth and subsequent aflatoxin production (Budianto ef al., 2022; Fountain et al., 2014; Medina et al., 2014).
In tropical regions like Indonesia, characterized by high humidity, the risk of aflatoxin contamination in corn kernels is
particularly pronounced (Budianto et al., 2022; Jallow et al., 2021; Udomkun et al., 2017).

Aflatoxins, especially aflatoxin B1, are regulated by food safety authorities due to their potential health hazards.
The U.S. Food and Drug Administration has established a limit of 20 parts per billion (ppb) for total aflatoxins in food
and feed products (Kerry ef al., 2017). Similarly, the Food and Agriculture Organization (FAO) has set guidelines to
mitigate aflatoxin risks in agricultural commodities, emphasizing the need for stringent monitoring and control
measures (Udomkun er al., 2017). These regulations are crucial, as aflatoxins can cause acute and chronic health
issues, including liver cancer, making their management essential for food safety (Kerry et al., 2017; Yu et al., 2022).
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The spread of aflatoxins is exacerbated by climatic conditions, particularly in Indonesia, where high temperatures
and humidity create an ideal environment for Aspergillus flavus proliferation (Budianto et al., 2022; Temba et al.,
2021). The combination of these weather patterns can lead to increased aflatoxin levels in maize, particularly during
the post-harvest phase when moisture level is often unregulated (Smith ez al., 2016). Studies have shown that periods
of drought followed by high humidity can significantly elevate aflatoxin contamination levels in crops (Hao et al.,
2023; Umesha et al., 2016). This situation is particularly concerning for smallholder farmers in Indonesia, who lack
the resources for effective grain drying and storage, further increasing the risk of contamination (Smith et a/., 2016).

To detect aflatoxins, various analytical methods have been developed, including High-Performance Liquid
Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Enzyme-Linked
Immunosorbent Assay (ELISA) (Yao e al., 2022). While these methods are effective, they often require complex
sample preparation and can be time-consuming, which may limit their applicability in rapid screening scenarios
(Mitchell et al., 2016; Udomkun et al., 2017). Additionally, they typically involve destructive sampling, which can be
a disadvantage in certain contexts where preserving the sample is essential (Chu ef a/., 2018a; Udomkun et al., 2017,
Wang et al., 2010).

Emerging technologies, particularly advanced visual methods like fluorescence imaging, are revolutionizing
aflatoxin detection. Fluorescence imaging, in particular, has gained significant attention due to its ability to non-
invasively detect aflatoxin-contaminated crops with remarkable sensitivity and speed. This technique exploits the
unique fluorescence properties of aflatoxins, which emit specific wavelengths of light when exposed to certain
excitation wavelengths. By utilizing sophisticated fluorescence-transmission imaging systems, this technology
significantly enhances the spectroscopic sensitivity, allowing for rapid and precise detection of aflatoxins even in
highly contaminated kernels (Chavez et al., 2020; Ehrlich, 2014; Endre et al., 2023). Fluorescence imaging systems
stand out by offering numerous advantages over traditional detection methods. They are non-destructive, allowing for
real-time monitoring without the need to sacrifice or alter the sample. This is especially advantageous for large-scale
screenings, where preserving the integrity of the agricultural products is critical. Additionally, fluorescence imaging
provides faster results compared to conventional laboratory techniques, enabling on-site, real-time detection that can
help farmers, traders, and food safety regulators make informed decisions to mitigate aflatoxin contamination (Chavez
et al., 2020; Divakara et al., 2015).

Given these considerations, this review critically examines recent advancements in fluorescence imaging as a non-
destructive technique for aflatoxin detection in corn kernels. The discussion encompasses the fundamental principles
of fluorescence imaging, its comparative advantages over conventional analytical methods, existing challenges that
hinder its broader implementation, and the potential integration of deep learning to enhance detection accuracy and
efficiency. By synthesizing current research findings, this review aims to provide a comprehensive analysis of the
feasibility, limitations, and future directions of fluorescence imaging in ensuring food safety and mitigating mycotoxin
contamination in agricultural commodities.

2. METHODS

This research employs a systematic review methodology to analyze the advancements in fluorescence imaging
technologies for detecting aflatoxins in agricultural products. The methodology consists of several key stages,
including literature search, study selection, data collection, and analysis of research findings, which are detailed as the
followsing.

2.1. Literature Search Strategy

2.1.1. Databases and Search Keywords

The literature search was conducted across multiple academic databases, including Scopus, PubMed, Web of Science,
and Google Scholar. A combination of keywords was utilized to maximize the relevance of the search results,
including "fluorescence imaging," "aflatoxins," "non-destructive detection," and "agricultural products".
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2.1.2. Search Limitations

Publications were restricted to those published within the last 15 years to ensure the inclusion of the most recent
technological advancements. Only articles published in English were considered. Studies focusing specifically on non-
destructive methods and applications of fluorescence imaging for aflatoxin detection were prioritized.

2.2. Inclusion and Exclusion Criteria

2.2.1. Inclusion Criteria

This study includes research that investigates the application of fluorescence imaging for the detection of aflatoxins.
Additionally, articles presenting quantitative experimental results related to aflatoxin detection are considered within
the scope of this review.

2.2.2. Exclusion Criteria

Studies that are purely theoretical and lack direct experimental data, as well as those with incomplete or non-
extractable data, are excluded from this review.

2.3. Data Extraction

2.3.1. Parameter Collected

Parameter that collected were optimal wavelength for aflatoxin detection, imaging techniques employed (fluorescence
imaging), classification accuracy of the detection methods, and types of agricultural products tested for aflatoxin
contamination.

2.3.2. Data Organization

Data were systematically collected and organized using a standardized table format, which included the following
columns: - Author(s) - Year of Publication - Analysis Method - Experimental Results.

2.4. Analysis of Research Findings

The collected data were analyzed to identify trends in the effectiveness of fluorescence imaging technologies for
aflatoxin detection. This included evaluating the sensitivity, specificity, and overall performance of different imaging
techniques. Furthermore, the findings were synthesized to provide a comprehensive overview of the current state of
fluorescence imaging technologies in the context of aflatoxin detection, highlighting both the advancements and the
challenges faced in this field.

3. RESULTS AND DISCUSSION

In recent years, numerous studies have explored non-destructive image processing methods for detecting aflatoxin, an
analytical tool developed since 2001 for early detection across various agricultural products. Digital image processing
allows for the observation and analysis of objects without causing any damage. This technique involves capturing
digital images that form a matrix representing light intensity at specific points, enabling the extraction of quality-
related information from agricultural products. However, conventional image processing methods struggle to
effectively detect aflatoxins due to their unique chemical properties, which are not efficiently captured under standard
lighting conditions.

To address these limitations, fluorescence imaging technologies have been advanced to specifically target aflatoxin
detection (Figure 1). Fluorescence imaging is particularly advantageous in identifying the unique fluorescence
signature of aflatoxins, allowing for more accurate, non-destructive, and efficient detection compared to traditional
imaging methods. This approach has proven effective in overcoming the challenges posed by conventional techniques,
providing reliable results in real-time monitoring of agricultural products.
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Figure 1. Annual publications on image processing techniques in agricultural products (blue bars), with a specific focus on
fluorescence imaging for aflatoxin detection (orange line, inset graph) (based on articles indexed in Scopus)

The figure presented the number of annual publications related to image processing techniques in agricultural
products, with a specific focus on fluorescence imaging for aflatoxin detection. The blue bars show the general trend
in image processing publications, which have steadily increased over time. The inset graph (orange line) zooms in on
the subset of publications specifically related to fluorescence imaging for aflatoxin detection. The data highlights a
sharp rise in research output, particularly in recent years, signaling the growing importance of fluorescence imaging in
detecting aflatoxins in agricultural commodities. This trend reflects an increasing recognition of the value of
fluorescence imaging as a key tool for ensuring food safety and minimizing health risks associated with aflatoxin
contamination.

3.1. Characteristics of Secondary Metabolites

There are six major aflatoxins: B1, B2, G1, G2, M1, and M2. These are highly oxygenated, naturally occurring
heterocyclic compounds share a benzene ring structure, with variations in double bonds, ketonic groups, and
hydroxylation positions that influence their solubility, epoxidation, and toxicity. Aflatoxin B1 (AFB1), produced by
Aspergillus flavus and Aspergillus parasiticus under favorable conditions, is the most potent and toxic due to its
double bond at carbons 8 and 9, a feature also present in G1 and M1 (Lien ef al., 2019; Nazhand et al., 2020). AFBI is
an odorless, tasteless, and colorless compound that poses challenges for detection. It appears as pale yellow or white
crystalline powder and exhibits blue fluorescence with a maximum emission at 425 nm and UV absorbance peaks at
223, 265, and 362 nm (Al-Jaal ef al., 2019; Nazhand et al., 2020). Similarly, Aflatoxin B2 (AFB2), like AFBI, is
produced by Aspergillus species. It is structurally similar to B1 but lacks the specific double bond at carbons 8 and 9.
Although it is less toxic than B1, AFB2 also exhibits significant carcinogenic properties. AFB2 emits blue
fluorescence under UV light, similar to AFB1, though with slight variations in intensity and peak emission (Balina et
al., 2018; Yang, 2020).

In contrast, Aflatoxin G1 (AFGI) is a derivative of AFB1 and shares many structural similarities, with the key
difference being a shift in the position of the double bond, resulting in a greenish-yellow fluorescence under UV light.
AFG]1 is also highly toxic and carcinogenic, and it poses significant risks to both humans and animals. It typically
exhibits maximum excitation wavelengths between 360-370 nm (Balina e al., 2018; Yang, 2020). Unlike AFBI,
Aflatoxin G2 (AFQG2) is a derivative of AFB2. It also fluoresces greenish-yellow under UV light, though it is less
potent and less commonly encountered in nature. The fluorescence properties and toxicological concerns related to
AFQG?2 are comparable to those of AFG1, but its occurrence is generally less frequent (Balina et a/., 2018; Yang, 2020).
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In the case of Aflatoxin M1 (AFM1), this is a hydroxylated metabolite of AFB1 and is commonly found in the
milk of animals that have consumed contaminated feed. AFM1 is considered a carcinogen, and while it is less potent
than AFBI, it still poses significant health risks to consumers of dairy products. AFMI1 also exhibits blue fluorescence
under UV light, with similar emission characteristics to AFB1 but with subtle differences in intensity and peak
wavelengths (Barikbin ef al., 2015; Dasbasi, 2022). Similarly, Aflatoxin M2 (AFM2) is a hydroxylated derivative of
AFB2 and, like AFM1, can be found in the milk of animals exposed to contaminated feed. While it is less toxic than
AFML1, it remains a significant concern in terms of food safety. AFM2 also fluoresces blue under UV light, although it
tends to exhibit slightly different fluorescence intensity and wavelength characteristics compared to its parent
compound, AFB2.

All six aflatoxins exhibit unique fluorescence properties under UV light, which aids in their identification and
classification. Bl and B2 emit blue fluorescence, while G1 and G2 emit greenish-yellow fluorescence. These
variations in fluorescence intensities allow for the differentiation of aflatoxins, though overlap can occur with natural
compounds in agricultural products. Additionally, as aflatoxin content increases, the fluorescence intensity decreases,
and peaks shift between 437 and 537 nm (Teena ef al., 2013). These fluorescence characteristics, along with other
physico-chemical properties, are essential for distinguishing different types of aflatoxins in contaminated products, as
shown in Table 1.

Table 1. Physical and chemical properties of aflatoxins

Type Physico-chemical Properties Ref.
AFBI1 IUPAC Name (2,3,6aR,9aS)-2,3,6a,9a-Tetrahydro-4- IARC (2012);
methoxycyclopenta[c]furo[2,3-h]chromen-1,11-dione
Molecular weight 312.277 g/mol
Melting point 268-269°C
Physical condition Colorless pale-yellow crystals to solid or white powder; odorless
Solubility rate 16,14 mg / 1 pada 25°C; decreases at low temperatures; generally
soluble in water and polar solvents
Stability Stable to melting point; decomposed by UV irradiation in
water/chloroform
Fluorescence emission Concentrated fluorescent blue (Amax = 425 nm)
UV Absorbance Absorbs at 223, 265 and 362 nm wavelengths
Mass spectrum Identification by LC-MS; ESI ionization; precursor-type [M+H]+;
m/z 313.071
AFB2 IUPAC Name (2R,3R,6aR,9aR)-2,3,6a,9a-Tetrahydro-4- IARC (2012);
methoxydifuro[3,2:2',3"|chromen-1,11-dione
Molecular weight 314.278
Melting point 269-270°C
Physical condition Colorless pale-yellow crystals to solid or white powder; odorless
Solubility rate Soluble in water and polar solvents
Stability Stable to melting point
Fluorescence emission Concentrated fluorescent blue (Amax = 425 nm)
UV Absorbance Absorbs at 265 and 362 nm wavelengths
Mass spectrum [M+H]+; m/z 314.073
AFG1 IUPAC Name (2,3,6aR,9aS)-2,3,6a,9a-Tetrahydro-6a,9a-dihydroxy-4- IARC (2012);
methoxyfuro[2,3-h]chromen-1,11-dione CAST (2013)
Molecular weight 328.289
Melting point 267-268°C
Physical condition Colorless pale-yellow crystals to solid or white powder; odorless
Solubility rate Soluble in water and polar solvents
Stability Stable to melting point
Fluorescence emission Concentrated fluorescent blue (Amax = 450 nm)
UV Absorbance Absorbs at 243 and 362 nm wavelengths
Mass spectrum [M+H]+; m/z 328.076
AFG2 TUPAC Name (2R,3R,6aR,9aR)-2,3,6a,9a-Tetrahydro-6a,9a-dihydroxy-4- IARC (2012);
methoxydifuro[3,2:2',3"|chromen-1,11-dione CAST (2013)
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Type Physico-chemical Properties Ref.
Molecular weight 329.290
Melting point 267-268°C
Physical condition Colorless pale-yellow crystals to solid or white powder; odorless
Solubility rate Soluble in water and polar solvents
Stability Stable to melting point
Fluorescence emission Concentrated fluorescent blue (Amax = 450 nm)
UV Absorbance Absorbs at 265 and 362 nm wavelengths
Mass spectrum [M+H]+; m/z 329.077
AFM1 IUPAC Name (2,3,6aR,9aS)-2,3,6a,9a-Tetrahydro-6a-hydroxy-4- Luis et al. (2016),
methoxycyclopenta[c]furo[2,3-h]chromen-1,11-dione Chen et al. (2018)
Molecular weight 328.289
Melting point 254-256°C
Physical condition Colorless to pale yellow crystalline powder
Solubility rate Soluble in polar solvents
Stability Stable in milk but decomposes upon UV exposure
Fluorescence emission Concentrated fluorescent (Amax = 435 nm)
UV Absorbance Absorbs at 223 and 333 nm wavelengths
Mass spectrum [M+H]+; m/z 328.076
AFM2 IUPAC Name (2R,3R,6aR,9aR)-2,3,6a,9a-Tetrahydro-6a-hydroxy-4- Luis et al. (2016);
methoxydifuro[3,2:2',3"|chromen-1,11-dione Finglas et al.
Molecular weight 329.290 (2008)
Melting point 254-255°C
Physical condition Colorless to pale yellow crystalline powder
Solubility rate Soluble in polar solvents
Stability Stable in milk but decomposes upon UV exposure
Fluorescence emission Concentrated fluorescent (Amax = 435 nm)
UV Absorbance Absorbs at 223 and 333 nm wavelengths
Mass spectrum [M+H]+; m/z 329.077

3.2. Analytical Method

Several methods of analysis have been established and can be classified into three categories: chromatographic
(Cernoch et al., 2012), immunochemical (Anfossi ef al., 2011), and spectroscopic (Szulc et al., 2021). Each offers
distinct advantages and limitations depending on factors such as sensitivity, cost, and sample preparation.

Chromatographic methods, including Thin Layer Chromatography (TLC), High-Performance Liquid
Chromatography (HPLC), and Liquid Chromatography-Mass Spectrometry (LC-MS/MS), provide high sensitivity and
specificity. While TLC is cost-effective, it is less sensitive compared to HPLC, which offers better resolution but
requires complex sample preparation and is more expensive. LC-MS/MS allows for highly sensitive detection of
multiple mycotoxins but requires specialized equipment and is costly. On the other hand, Immunochemical methods,
such as Enzyme-Linked Immunosorbent Assay (ELISA) and Radioimmunoassay (RIA), are faster and less expensive.
These methods are suitable for high-throughput screening but suffer from lower sensitivity and potential cross-
reactivity. Meanwhile, Spectroscopic methods, like fluorescence spectroscopy is rapid, non-destructive, and suitable
for field testing with minimal sample preparation. However, their sensitivity can be impacted by background
interference, limiting their use for detecting low levels of contamination.

The selection of an appropriate method is contingent upon the required sensitivity, speed, cost, and complexity of
the sample matrix. Table 2 provide comparison of these methods based on detection limits, sample preparation
requirements, and their ability to analyze multiple mycotoxins. Additionally, Table 3 summarizes the advantages and
disadvantages of the methods discussed. Chromatographic techniques offer high precision but are costly and require
extensive sample preparation. Immunochemical methods are faster and more affordable but exhibit lower sensitivity
and are more prone to cross-reactivity. Spectroscopic methods are non-destructive and fast, making them ideal for
field applications; however, their sensitivity is susceptible to background interference.
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Category Methods San'lple Portable AVM LOD Sampl('a Ref.
price preparation
Chromatographic ~ TLC Medium No No 1-20 ng/kg SPE Marutoiu et al., 2004
Chromatographic =~ HPTLC Medium No No Pictogram Extraction = Ramesh ez al., 2013
Chromatographic =~ HPLC Medium No No 0.008-0.014 IAC or SPE  Jaimez et al., 2000
ngkg
Chromatographic =~ LC-MS/MS Medium No Yes 0.8 pg/kg Extraction  Cappiello et al., 1995
Chromatographic ~ RIA Medium No No 1 pg/kg Extraction  (Mahfuz ez al., 2020)
Chromatographic ~ ELISA Medium No No 0.006 pg/kg Extraction  (Zheng et al., 2006)
Immunochemical  Immunodipstick  Medium Yes No 5 pngkg Extraction  (Mahfuz ef al., 2020)
Immunochemical  Immunosensor Medium No No OWLS (0.5- (Mahfuz et al., 2020)
10 ng/mL)
Immunochemical  Electrochemical =~ Medium No No 1M Extraction  (Ammida et al., 2004)
Immunochemical VICAM Expensive  No No - - (Mahfuz et al., 2020)

Note: TLC = Thin Layer Chromatography; HPTLC = High-Performance Thin-Layer Chromatography, HPLC = High-Performance Liquid
Chromatography; LC-MS/MS = Liquid Chromatography-Mass Spectrometry; RIA = Radioimmunoassay; ELISA = Enzyme-Linked Immunosorbent
Assay; VICAM = VlIsual Immunoassay for Mycotoxins; LOD = Limit of detection; AVM = Analysis of various mycotoxins; SPE = Solid Phase

Extraction; OWLS = Optical Waveguide Lightmode Spectroscopy.

Table 3. Advantages and disadvantages of various analytical methods in detecting aflatoxin

Methods Pros Disadvantages

Gas Chromato- Simultaneous analysis of Expensive equipment, expertise required, derivation

graphy (GC) mycotoxins, high sensitivity, can be automated, required, problems in matrix interference, non-linear
provides confirmation (MS detector). calibration curves, response drifting, carry-over effects

from previous samples, variations in repeatability

TLC A reliable counting method when Destructive to samples, largely replaced by HPLC for
combined with densitometry, more quantitative analysis of aflatoxins
accurate and precise, comparable to the HPLC
(HPTLC,; OPLC) method, official reference
technique for aflatoxin

HPLC High sensitivity, high selectivity, Expensive equipment, specialized operators required,
high repeatability, short analysis sample preparation by destructive methods
time

LC-MS Simultaneous analysis of Very expensive, special skills required, ionization-
mycotoxins, capable of low limit dependent sensitivity, matrix-assisted calibration curves
detection (LC/MS/MS), provides (for quantitative analysis), lack of internal standards.
confirmation, no derivation required.

ELISA Specific, fast and relatively easy to use, simple Possible cross-reactivity with related mycotoxins,
sample preparation, cheap equipment, low limit possible false positives/negatives, matrix interference
of detection, simultaneous analysis few samples, issues, narrow detection range, LC analysis to confirm
suitable for screening, semiquantitative or required
quantitative analysis possible, limited use of
organic solvents

Biosensor Fast, no cleaning procedure, high selectivity, The requirement for sample destruction.
reproducibility, and sensitivity, ease of use, low
cost and portability, self-contained, simple
design.

Immunoaffinity  IAC in combination with liquid fluorometry is Sample destruction; limited to analysis of total aflatoxin.

assay comparable to LC for aflatoxin determination, the

official method.

Source: (Mahfuz et al., 2020)
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3.3. Digital Image

Digital imaging plays an essential role in the non-destructive inspection and monitoring of agricultural products,
allowing for real-time analysis without damaging the products. The technology captures images based on the light that
is reflected, emitted, or transmitted by the agricultural product. Light interacts with the product at different
wavelengths, which is key to understanding how digital imaging applies to agricultural inspection.

Agricultural products, such as fruits, grains, and vegetables, interact with light in a way that can reveal important
information about their quality, safety, and potential contaminants. The electromagnetic spectrum, as shown in Figure
2, includes a wide range of wavelengths, with visible light and infrared (IR) being particularly important in
agricultural inspections. Visible light (VIS), ranging from 400 to 700 nm, is the range in which human eyes operate,
but digital imaging systems can extend into other wavelengths, including UV light, infrared, and visible light are used
to capture detailed images of the products (Adao et al., 2017, Oliveira et al., 2022).

Each wavelength of light interacts with agricultural products in a distinct manner, providing unique information.
For instance, colors in the visible spectrum correspond to specific wavelengths of light: blue light has a wavelength of
approximately 475 nm, green light is around 520 nm, and red light is at 650 nm (Adao ef al., 2017). Color images
illustrate an integration of three primary wavelength bands: red, green, and blue (Neittaanmaki-Perttu er al.,
2015).While the human eye is responsive to the blue, green, and red parts of the spectrum, with each color exhibiting a
distinct range that is stimulated significantly based on the wavelength of the emitted light. The colors visible by the
human eye represent a limited segment of the electromagnetic spectrum, ranging from 400 to 700 nm (Figure 2).

Visible light (400-700 nm) is commonly used to detect external features such as surface defects, color variations,
and mold growth. UV light makes use of the fluorescence properties of certain contaminants like aflatoxins. When
exposed to UV light, substances like aflatoxins emit fluorescence that can be captured by the camera, allowing for the
identification of contamination (Fujita ez al., 2013; Gao et al., 2018; Zhu et al., 2016). Infrared light, particularly in the
the near-infrared (NIR) and short-wave infrared (SWIR) ranges, is used to examine internal characteristics like
moisture content, ripeness, and internal damage that may not be visible with visible light.

The infrared range (IR) (from 700 nm to several um, including NIR and SWIR regions) is crucial for detecting
internal properties of agricultural products. For example, NIR can be used to assess the moisture content or detect
early signs of spoilage in fruits and vegetables (Giines ef al., 2013; Moreau et al., 2011). SWIR, however, provides a
more detailed analysis, useful for detecting mold growth or other hidden defects beneath the surface, offering a non-
invasive means to assess internal damage that visible light alone cannot capture (Khalid ez a/., 2018; Zhu et al., 2016).

Spectrum range
Wavelength

107-6 10A-2 10A-1 1 1003 1045 (um)

Gamma rays X - Rays Ultra violet Visible Infra-red Microwaves Radio waves

NIR SWIR MWIR  LWIR

400nm N " 700nm  1um 2.5um 5um 8-12um 1000um

1000 nanometers (nm) = 1 micrometers (ium)

‘ =
| =

RGB image - 3 wavelengths X .

1000 micrometers (um) = 1 milimeter (mm)

Hyperspectral range

Figure 2. Electromagnetic spectrum featuring visible and infrared light (Lowe ez al., 2013)
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Once the images are captured using these varied wavelengths, the next crucial step is pre-processing. This step
improves the quality of the captured image by removing noise and enhancing contrast, making key features more
apparent for further analysis. After pre-processing, the image is segmented into different regions of interest (ROI),
such as areas exhibiting contamination or surface damage. Important features, including color, fluorescence intensity,
shape, and texture, are then extracted from these regions (Magnus et al., 2021; Sadimantara et al., 2024). These
features provide data that can be analyzed using machine learning algorithms, which help classify the product based
on quality. For instance, in fluorescence imaging, thy of fluorescence emission can be measured and correlated with
contamination levels, such as the presence of aflatoxins (Fujita ez al., 2013; Magnus et al., 2021). Machine learning
models, trained on this data, can then automatically classify the agricultural products as either safe or contaminated.

This non-destructive method offers several benefitng the ability to inspect large batches of products quickly,
without damaging them. Furthermore, digital imaging systems are capable of providing detailed insights into both the
surface and internal quality of the products, improving the efficiency and reliability of quality control processes
(Jallow et al., 2021; Kumar et al., 2017).

3.4. Fluorescence Imaging

Fluorescence imaging is a powerful optical technique that utilizes the phenomenon of fluorescence to visualize and
quantify specific molecules within biological and agricultural samples. When a fluorescent compound absorbs light at
a specific wavelength, it becomes excited and subsequently emits light at a longer wavelength. This property allows
researchers to detect and analyze the presence of fluorescently labeled substances, making it a valuable tool in various
fields, including biochemistry, molecular biology, and agricultural monitoring. The principle of fluorescence imaging
is based on the excitation of fluorescent molecules by a light source, typically in the ultraviolet (UV) or visible
spectrum. When these molecules absorb photons, their electrons are elevated to a higher energy state. The excited state
is unstable, and the molecules quickly return to their ground state, releasing energy in the form of emitted light. This
emitted light has a longer wavelength than the absorbed light due to energy loss during the excitation process. The
fluorescence process typically occurs on a timescale of nanoseconds, allowing for rapid imaging and analysis (Gottfert
et al., 2017). Aflatoxins exhibit specific fluorescence excitation peaks under UV light, aiding contamination detection
in maize (Han et al., 2019). Higher contamination levels shift fluorescence peaks to longer wavelengths with reduced
intensity (Zhu et al., 2016). High-speed dual-camera systems leveraging multispectral fluorescence imaging accurately
identify contaminated maize samples. Effective aflatoxin detection depends on wavelengths strongly absorbed by
aflatoxins, such as 200-250 nm and ~365 nm, resulting in high fluorescence intensity (Rasch et al., 2010; Smeesters et
al., 2015) as shown in Figure 3.

The microspectrometer has been installed in a 90-degree configuration with the illumination system, in an optical
setup that ensures a distance of 5 cm from the sample surface to the spectrometer as shown in Figure 4. The sample
level in the petri dish is set to reach the edge so that the sample surface is at a fixed distance from the detector range
(Bertani et al., 2020).
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Figure 3. Absorbance and fluorescence spectra of aflatoxin B1 Figure 4. Schematic of fluorescence imaging setup.
(Smeesters et al., 2015) Adapted from Momin et al. (2023)
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3.5. Classification of Aflatoxin Contaminated Food Products with Fluorescence Imaging

Aflatoxins, toxic secondary metabolites from Aspergillus flavus and A. parasiticus, are a persistent issue in maize.
Rapid, non-destructive techniques like Fluorescence imaging offer potential for early detection and sorting of
contaminated kernels as shown at Table 4. Fluorescence in the VNIR range (400-900 nm) has shown promising
results for aflatoxin detection. Yao et al. (2010), observed a negative correlation between aflatoxin levels and
fluorescence in blue-green bands (1> = 0.72). Subsequent studies confirmed longer fluorescence peak wavelengths in
contaminated kernels and achieved classification accuracies up to 88% using binary code analysis (Yao ef al., 2013b).

The application of spectral analysis in agricultural product inspection has become increasingly important, particularly
for non-destructive methods aimed at detecting contaminants such as aflatoxins, assessing quality, and improving
overall food safety. Several statistical methods have been utilized in conjunction with fluorescence imaging (FI) to
interpret spectral data, classify agricultural products, and identify potential contaminants. Key techniques such as
Multiple Linear Regression (MLR), Binary Encoding (BE), Principal Component Analysis (PCA), Factorial
Discriminant Analysis (FDA), Partial Least Squares Discriminant Analysis (PLS-DA), Least Squares Support Vector
Machines (LS-SVM), and Random Forest (RF) have shown promising results in enhancing the accuracy and
efficiency of contamination detection, particularly when combined with fluorescence imaging for aflatoxin detection.

Table 4. Fluorescence imaging for detecting aflatoxin in food

Optimal Spectral Type of Aflatoxm. Data Model Performance
Mode wavelength range " Concentration . , Ref.
Aflatoxin Analysis Metrics
range (nm) _ (nm) (ng/kg)
Fluorescence N/A 400-600  Not Specified 0-14000 MLR R%=0.72 (Yao et al.,
(AF 13 strain) 2010)
Fluorescence N/A 400-700 Not 0-2000 DA The Classification accuracy (Yao ef al.,
Specified is 94.4% 2013a)
Fluorescence =~ 437 and 400-900  Not Specified 0-11000 BE The classification accuracy (Yao et al.,
537 (AF 13 strain) is 87% for thresholds of 20 2013b)
mg/kg and 88% for 100
mg/kg
Reflectance 501 and 400-900  Not Specified 0-8000 - - (Hruska ef
478 (AF 13 and 36 )
. al., 2013)
strain)
Reflectance N/A 1000-2500 AFB1 10-500 PCA  The classification accuracy (Wang et al.,
FDA is >88% 2014)
Reflectance N/A 1000-2500 AFB1 0-3800 PCA The classification (Wang et al.,
accuracy is 92% 2015)
Reflectance N/A 1100-1700 AFBI1 0-1000 PLS-DA The classification (Kandpal et
SWIR accuracy is 97% al.,2014)
Fluorescence 501 399-701 Not 0-2662 LS-SVM The classification (Zhu et al.,
Reflectance 701 461-877 specified accuracy is 90-95.3% 2016)
Reflectance N/A 304-1086 Not 0-20000 Random The accuracy is
and Specified forest approximately 95% with  (Cheng et
fluorescence 86% sensitivity and 97%  al., 2019)
specificity
Fluorescence Ex: 365 400-2500 Not 10-1000 SVM The classification (Kim et al.,
specified accuracy is 89.1% 2023)
Fluorescence Ex: 365 N/A AFB1 0-320.2 DNN The classification Bertani et
Em: 420-480 accuracy is between al., 2023
84.7% and 93.0%
Fluorescence Ex: 365 N/A AFGl1 83.1 CNN The classification (Sadimantara

accuracy is 96%

et al.,2024)

Note: MLR: Multiple Linear Regression, PLS: Partial Least Squares, BE: Binary Encoding, PCA: Principal Component Analysis, R2p:
Determination Coefficient for Prediction, FDA: Factorial Discriminant Analysis, LS-SVM: Least Squares Support Vector Machines, ANN:
Convolutional Neural Network, DNN: Deep Neural Network
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PCA is a widely used statistical technique for reducing the dimensionality of spectral data. By transforming the
data into orthogonal principal components (PCs), PCA helps retain the most significant features while minimizing
noise and irrelevant information. This technique is particularly useful when dealing with high-dimensional data, such
as fluorescence spectra, which contain multiple variables and intricate patterns. Recent research by Hruska e al.
(2013) demonstrated the effectiveness of PCA in identifying aflatoxin contamination in maize kernels based on spectral
shifts observed in fluorescence imaging (Hruska ez al., 2013). The study found that PCA significantly simplified the
complex fluorescence spectra, making it easier to detect contamination. Similarly, Zhu et al. (2016), integrated
fluorescence and reflectance data using PCA, achieving classification accuracies of 90-95% in maize contamination
detection. They found that the germinal side of maize kernels exhibited superior performance, indicating that certain
areas of the product provide more reliable spectral information for contamination detection (Zhu ez al., 2016).

PLS-DA, a combination of Partial Least Squares Regression (PLSR) and Discriminant Analysis, is widely used for
classification tasks, particularly when the data is highly multicollinear. PLS-DA maximizes the variance between
different classes, which is critical for distinguishing subtle differences in contamination levels. Wang e al. (2015)
successfully used PLS-DA to identify key wavelengths, such as 1729 nm and 2344 nm, for the characterization of
Aflatoxin B1 (AFB1) contamination in maize kernels (Wang et al., 2015). Their study achieved classification
accuracies between 88% and 96.9%, showing that PLS-DA could effectively detect AFB1 contamination from
fluorescence spectral data. This highlights the robustness of PLS-DA in detecting contaminants and its ability to
handle complex fluorescence imaging data efficiently.

LS-SVM is an enhanced version of traditional Support Vector Machines (SVM), using a least-squares cost function
to solve the optimization problem. This method has been found to be particularly effective for non-linear
classification, making it well-suited for the complex relationships present in fluorescence spectra. In a study by (Zhu
et al., 2016), LS-SVM was used to classify aflatoxin-contaminated maize based on fluorescence imaging data from
near-infrared (NIR) spectra. The study achieved an impressive 96% classification accuracy, demonstrating that LS-
SVM is highly effective for classifying agricultural products based on spectral data. The method's ability to handle
complex, non-linear relationships between spectral features and contamination levels makes LS-SVM a valuable tool
for contamination detection in fluorescence imaging applications.

Random Forest (RF) is an ensemble learning method that creates multiple decision trees and combines their results
to improve classification accuracy. This method is particularly useful when working with large, high-dimensional
datasets, which are common in fluorescence imaging data. In Chu ez a/. (2018b), RF was used to classify wheat grain
quality based on fluorescence imaging data, achieving 92% classification accuracy (Chu ef al., 2018b). This study
demonstrated the effectiveness of RF in handling the complexity of fluorescence spectra, where multiple features
(such as color, fluorescence intensity, and texture) need to be processed simultaneously. RF is particularly
advantageous because it is less prone to overfitting compared to individual decision trees and can effectively handle
missing data, making it a robust choice for large-scale agricultural inspections.

Binary Encoding (BE) is an optimization technique often used for feature selection. In the context of fluorescence
imaging, BE helps identify the most relevant spectral features by converting categorical data into binary form,
improving the performance of classification models. Yao er al. (2013b), demonstrated the application of BE for
selecting relevant spectral features in the detection of aflatoxins in grains (Yao ef al., 2013b). By optimizing the
feature set, BE improved the classification accuracy of fluorescence imaging models, helping to identify the most
significant wavelengths related to contamination. This study illustrates the importance of feature selection in
improving the accuracy and efficiency of fluorescence-based contamination detection.

Fluorescence imaging combined with statistical methods such as PCA, PLS-DA, FDA, LS-SVM, RF, and MLR
provides a robust framework for aflatoxin detection in agricultural products. Each method offers distinct advantages,
such as data reduction, classification accuracy, and the ability to handle multivariate and non-linear data. While PCA
and PLS-DA excel in simplifying data and identifying key wavelengths for contamination detection, methods like LS-
SVM and RF offer high classification performance, especially with large datasets. The integration of these statistical
techniques with fluorescence imaging has shown considerable promise for improving the speed and accuracy of
agricultural inspections, ensuring food safety, and enhancing the overall quality control processes. Continued research
is essential to optimize these methods and enable their large-scale application in agricultural industries.
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3.6. Limitations

Fluorescence imaging techniques demonstrate potential for classifying aflatoxin-contaminated food products and
healthy grains, yet several challenges and limitations must be addressed. For instance, many studies rely on artificially
inoculated samples with Aspergillus flavus conidia rather than naturally contaminated grains. This reliance raises the
possibility that the fluorescence signals primarily reflect fungal presence rather than aflatoxin levels, especially since
there is no direct linear relationship between fungal infection and the production of secondary metabolites like
aflatoxins (Hruska et al., 2017). Consequently, results from these studies may not accurately represent contamination
levels in real-world food products, where aflatoxin concentrations are typically within acceptable regulatory limits (2—
20 pg/kg) (Wacoo et al., 2014; Yao et al., 2015).

Moreover, low fluorescence signal intensity can result in significant errors when recording maximum fluorescence
intensity and emission peaks, particularly in samples with minimal contamination (Bartoli¢ et al., 2022). In addition,
Internal contamination of imaging instruments and cross-contamination during bulk sample analysis can also lead to
false positives, further complicating the detection process (Bartoli¢ et al., 2022). Furthermore, agricultural products
often contain naturally fluorescent compounds whose emission spectra may overlap with those of aflatoxins, thereby
obscuring the accurate identification and quantification of contamination.

However, higher contamination levels do not always equate to better detection sensitivity. For example, internal
contamination within corn kernels, such as deeply embedded aflatoxin deposits, may affect fluorescence signal
detection, since signal strength often depends on the contamination's location (Hruska ez al., 2017; Yao et al., 2012).
While it is assumed that the system’s performance should remain unaffected by internal contamination,
inconsistencies in signal response have been observed (Smeesters ef al., 2016).

Additionally, the color of the sample may also influence fluorescence imaging results. Variations in the sample's
surface color or pigmentation can alter the absorption and emission properties of fluorescence, potentially causing
inconsistent or inaccurate results (Bartoli¢ et al., 2022; Bertani et al., 2020). Thus, this issue underscores the
importance of developing robust calibration techniques to account for such variability (Yao et al., 2023).

Another limitation is that fluorescence-based detection systems are sensitive to the operational conditions and
design of the equipment. For instance, poorly maintained or contaminated systems can skew results, and cross-
contamination is especially problematic when screening bulk samples (Chavez ef al., 2020; Wacoo ef al., 2014). For
example, fluorescence imaging systems designed for bulk corn kernels may inadvertently detect fluorescence signals
from external contaminants or environmental factors, thereby leading to false positives (Bartolic et al., 2022;
Smeesters et al., 2016).

Despite these challenges, fluorescence imaging remains a promising tool for aflatoxin detection. To address these
limitations, refinements in system design, such as advanced filtering to isolate aflatoxin-specific signals, improved
calibration methods, and integration with complementary detection technologies, can enhance accuracy and reliability.
Therefore, further studies are needed to optimize these systems for real-world applications, ensuring they can reliably
detect contamination at regulatory limits and provide consistent results across diverse agricultural commodities.

3.7. Opportunities and Challenges

Overall, fluorescence imaging presents a promising non-invasive method for detecting mycotoxin contamination in
agricultural commodities, offering a lower cost per sample compared to traditional analytical methods. This is due to
the fluorescence imaging techniques can be implemented at a lower cost per sample than methods such as HPLC or
mass spectrometry, making them accessible for widespread use in agricultural monitoring (Jacobson, 2024).
Furthermore, fluorescence imaging allows for the simultaneous acquisition of spectral and spatial features, providing
comprehensive data on the condition of agricultural products. As a result, this capability enhances the potential for
early detection of aflatoxin contamination (Singh & Prasad, 2018). Fluorescence imaging has the potential to serve as
an early detection tool for predicting the health of corn kernels and seeds, enabling timely interventions to mitigate
contamination risks (Mateus et al., 2021).
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A key advancement in fluorescence imaging is its integration with machine learning algorithms, particularly deep
learning models, to enhance classification accuracy. Recent studies have demonstrated that combining fluorescence
imaging with deep learning improves the discrimination of contaminated and uncontaminated samples by extracting
subtle spectral features that may not be discernible using conventional analytical techniques (Li ez al., 2020). Deep
learning approaches, including convolutional neural networks (CNNs) and support vector machines (SVMs), have
shown considerable success in classifying fluorescence spectral data with high accuracy. However, most of these
studies have been conducted under controlled laboratory conditions, limiting their applicability to real-world
agricultural environments. Future research should therefore focus on developing robust calibration models that
account for environmental variability, including differences in lighting conditions, moisture content, and sample
heterogeneity (Qin ef al., 2020).

Despite its potential, fluorescence imaging faces several challenges that must be addressed to enhance its reliability
and applicability. One major limitation is the reliance on artificially inoculated samples in experimental studies, which
may not accurately reflect real contamination scenarios (Levasseur-Garcia, 2018). Future studies should compare corn
samples contaminated with aflatoxin derived from Aspergillus flavus with pure aflatoxin, which is typically used as an
analytical standard. Such a comparison is crucial for validating detection methods (Otto ez al., 2020). Additionally, the
presence of secondary metabolites in agricultural products may interfere with fluorescence signals, leading to false-
positive or false-negative results. Therefore, optimizing the selection of excitation and emission wavelengths
(particularly > 365 nm) can minimize spectral interference and improve detection specificity (Abdallah e al., 2018).

Another critical challenge is the development of universal calibration models to accommodate variations in
biological activity, crop variety, and environmental conditions. Fluorescence signal intensity can be influenced by
factors such as grain composition, pigmentation, and storage conditions, which may lead to inconsistencies in
detection accuracy (Omar et al., 2020). Addressing these challenges requires the expansion of training datasets and the
incorporation of advanced statistical techniques, such as discriminant analysis and regression models, to improve
predictive performance and adaptability across different agricultural settings (Zhang et al., 2018).

Given these considerations, integrating fluorescence imaging with deep learning represents a promising direction
for improving aflatoxin detection. Deep learning techniques can enhance fluorescence imaging by automating feature
extraction, reducing background noise, and refining classification models for real-time application. Future research
should explore hybrid approaches that combine fluorescence imaging with complementary detection technologies to
further enhance sensitivity and specificity. By addressing these technical limitations and leveraging advancements in
artificial intelligence, fluorescence imaging has the potential to become a highly reliable and scalable solution for
ensuring food safety and mitigating mycotoxin contamination in agricultural commodities.

4. CONCLUSION

The effectiveness of fluorescence imaging for detecting aflatoxin contamination in corn relies on the careful selection
of hardware tailored to the specific fluorescent characteristics of the kernels. Key factors include the use of a UV light
source emitting wavelengths around 365 nm, optimal for exciting aflatoxin fluorescence, and a sensitive camera to
capture emissions typically observed between 425 and 450 nm. Despite its potential, several challenges persist, such
as background fluorescence interference and the need for robust calibration models to account for biological
variability. Future advancements, including the integration of machine learning for data analysis and the development
of portable imaging devices, promise to enhance detection capabilities. Continued research should focus on validating
these systems with naturally contaminated corn samples and optimizing imaging parameters. By addressing these
challenges, fluorescence imaging can become a vital tool for ensuring food safety and monitoring aflatoxin
contamination in agricultural products.
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