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ABSTRACT 
 

The oil content of oil palm fruit is a crucial parameter that must be determined before 

harvest, as it directly impacts crude palm oil (CPO) quality and processing efficiency. The 

conventional chemical method for oil content determination is costly and time consuming. 

This study aims to develop a non-destructive, accurate, and rapid method for predicting oil 

content in oil palm fruit based on its electrical properties. Measurements of electrical 

properties were taken across frequencies of 50 Hz to 5 MHz. Oil content of samples were 

determined by chemical method. Some pre-treatments of electrical properties were carried 

out and the pre-treated electrical properties were calibrated with reference oil content using 

simple linear regression and partial least squares regression. Linear regression model 

showed moderate accuracy (r = 0.61–0.81), with RMSE values between 9.54% and 12.99%. 

PLS regression models using admittance (r = 0.99, R² = 0.98, SEP 2.20%, RPD 7.99), 

resistance (r = 0.98, R² = 0.97, SEP 2.62%, RPD 5.56), and impedance (r = 0.98, R² = 0.95, 

SEP 3.16%, RPD 4.68) produced high prediction accuracy. The results confirm that 

electrical properties can be used to predict oil content in oil palm fruit rapidly and non-

destructively. 

1. INTRODUCTION 

Palm oil is a globally strategic agricultural commodity, playing a pivotal role in boosting foreign exchange earnings and 

supporting economic growth in producing nations. As the world’s largest producer, Indonesia accounted for 

approximately 60% of global palm oil supply in 2023, with a plantation area of 15.9 million hectares and a total 

production of 51.3 million tons of crude palm oil (CPO). The commodity contributed significantly to the national 

economy, generating US$29.5 billion in export revenue (BPS, 2024), with key markets including India, China, and 

Pakistan. The quality of oil palm fruit at harvest is crucial for improving Crude Palm Oil (CPO) quality. Accurately 

determining the maturity of oil palm fruit—whether under-ripe or over-ripe—is essential for maximizing oil yields and 

protecting the revenues of palm oil companies. The oil content of oil palm fruit is a critical quality parameter that does 

not increase post-harvest, making the harvesting of low-oil-content fruit detrimental to processing efficiency and 

profitability. Current assessment methods, such as visual inspection or indirect field measurements, lack of accuracy, 

while the standard Soxhlet extraction method—though reliable—is time-consuming, costly, and hazardous due to its 

use of n-hexane (Chin-Hashim et al., 2022). 

This highlights the urgent need for a non-destructive, rapid, cost-effective, and environmentally friendly alternative 

for oil content measurement. Several non-destructive techniques have been explored, including Near-Infrared 

Spectroscopy (NIRS), which is rapid and reagent-free but requires extensive calibration (Pourdarbani et al., 2022); 
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Nuclear Magnetic Resonance (NMR), which is highly accurate but expensive and impractical for field use (Hao et al., 

2022); Hyperspectral Imaging, which provides detailed spatial and spectral data but involves complex processing 

(Phattaraworamet et al., 2024); and Ultrasonic Sensing, which is portable but affected by fruit heterogeneity 

(Mohammed et al., 2021). Among these, electrical property-based methods, such as Electrical Impedance Spectroscopy 

(EIS) and capacitance measurement, stand out due to their cost-effectiveness, portability, real-time analysis capability, 

and strong correlation with oil content (Chin-Hashim et al., 2022). These methods also eliminate the need for hazardous 

chemicals, align with green chemistry principles, and are adaptable for both industrial and smallholder use, making them 

a promising solution for accurate and sustainable oil content assessment in oil palm fruit. Electrical method has also 

been previously studied to determine maturity in various crops, including melon, banana (Jamaludin et al., 2014), 

mango, and citrus fruits (Juansah et al., 2014). Moreover, method based on electrical properties have been assessed to 

determine oil and moisture content in oil palm fruit (Chin-Hashim et al., 2022; Mellyana et al., 2024; Misron et al., 2016).  

This study extended the work of previous study (Chin-Hashim et al., 2022), who evaluated the water and oil content 

in oil palm fruits using electrical impedance spectroscopy. Their study achieved the best predictions at 100 kHz, with 

coefficients of determination (R²) of 0.72 for oil content (RMSE = 5.71%) and 0.77 for moisture content (RMSE = 

5.85%). Whilst these results demonstrated potential, the prediction accuracy required improvement. One possible 

limitation was the relatively narrow frequency range used, up to only 100 kHz. In contrast, previous studies on other 

fruits have shown that higher frequency ranges can enhance prediction accuracy. For instance, (Juansah et al., 2013) 

investigated Garut citrus fruits using resistance and impedance measurements up to 5 MHz to determine fruit maturity 

based on sugar content (total soluble solids), firmness, and pH. They found that at 1 MHz, the correlations between 

electrical properties and physicochemical attributes were strongest, with R² values of 0.96 for resistance versus pH and 

0.97 for impedance versus pH. Additionally, the correlation between resistance and firmness was R² = 0.95, and between 

impedance and firmness was R² = 0.92. Similarly, the study reported a strong correlation between the ratio of total 

soluble solids (TSS) to hydrogen ion concentration (H⁺) and electrical properties. Specifically, at a frequency of 1 MHz, 

R² between impedance and TSS/H⁺ was 0.91, while between resistance and TSS/H⁺ it was 0.91.  

Furthermore, (Kato, 1997) utilized capacitance measurements at frequencies above 1 MHz to assess the internal 

cavity status of watermelon fruits, correlating specific gravity with fruit quality. Watermelons with a specific gravity 

greater than 0.95 g/cm³ were classified as non-hollow, while those below this threshold were considered hollow. A 

correlation coefficient of r = 0.69 was observed between fruit weight and specific gravity. These findings suggest that 

employing higher frequencies can significantly improve the accuracy of nondestructive fruit quality assessments. 

The objective of this research is to develop a non-destructive method for predicting the oil content of oil palm fruitlets 

by analyzing their electrical properties—specifically impedance, resistance, admittance, inductance, capacitance, 

reactance, and conductance—across frequencies ranging from 50 Hz to 5 MHz. This study is expected to offer an 

accurate, rapid, and non-destructive method for determining the oil content of oil palm fruit, serving as an alternative to 

conventional chemical analysis methods. The availability of the method will be beneficial for farmer and industries in 

increasing productivity and quality of CPO, reducing cost of production and increasing competitiveness of CPO 

industries as well. 

2. MATERIALS AND METHODS 

2.1. Oil Palm Fruit 

A total of 106 Tenera oil palm fruit samples were harvested from the Cikabayan plantation, IPB University, Bogor, 

Indonesia. The samples were systematically classified based on their maturity stages into the following distinct 

categories: 12 samples at three months (3M), 12 samples at four months (4M), 12 samples at four months and one week 

(4M1W), 9 samples at four and a half months (4M2W), 9 samples at four and three-quarter months (4M3W), 9 samples 

at five months (5M), 9 samples at five and a quarter months (5M1W), 12 samples at five and a half months (5M2W), 

12 samples at five and three-quarter months (5M3W), and 12 samples at six months (6M). Preliminary procedures for 

these samples included cleaning, weighing, and measuring their physical dimensions. Following this, the study 

progressed with electrical characterization and chemical analysis, both of which were integral components of the 

research framework. 
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2.2. Electrical Properties Measurements 

The electrical impedance characteristics of oil palm fruit were evaluated using a custom measurement system consisting 

of copper elliptical electrodes (30 mm length × 20 mm width) connected to an LCR Hitester 3532-50, Hioki, Tokyo, 

Japan. The instrument was calibrated following the manufacturer's standard procedure (Hioki Corporation, 2015) prior 

to measurements. Frequency sweeps were performed across 200 points from 50 Hz to 5 MHz at room temperature 

(25±1°C), with the fruit sample placed between two parallel copper plates. The following electrical properties were 

measured and recorded: 

1. Impedance (Z): Total opposition to current flow, measured through the voltage-current phase relationship at each 

test frequency. 

2. Resistance (R): Real component of impedance representing ohmic losses, determined via direct measurement of in-

phase voltage and current. 

3. Admittance (Y): Reciprocal of impedance (1/Z), quantifying how easily current flows through the fruit tissue. 

4. Inductance (L): Minor inductive effects in the fruit tissue, computed from reactance values at lower frequencies. 

5. Capacitance (C): Charge storage capacity of the fruit tissue, derived from the imaginary component of admittance. 

6. Reactance (X): Imaginary component of impedance representing energy storage/release, calculated from the phase 

difference between voltage and current. 

7. Conductance (G): Real component of admittance (1/R), indicating the fruit's ability to conduct electric current. 

All measurements were performed using the LCR meter's automatic ranging function to ensure optimal accuracy 

across the wide frequency spectrum. The instrument's built-in algorithms automatically calculated derived parameters 

(X, Y, G) from primary measurements of Z, R, and C using standard AC circuit theory relationships. Three replicate 

measurements were taken for each fruit sample, with the electrodes cleaned between samples to prevent contact 

resistance variations. 

This comprehensive characterization of multiple electrical parameters enables robust correlation analysis between 

electrical properties and oil content, providing multiple potential indicators for non-destructive quality assessment. The 

block diagram of the electrical impedance measurement setup is shown in Figure 1. 

 

Figure 1. The block diagram of electrical impedance measurement 

2.3. Oil Content Measurements 

Oil extraction was performed using a Soxhlet extraction apparatus with n-hexane as the solvent. The extraction process 

lasted approximately four hours, during the oil was fully extracted from the samples. The oil content of each fruit was 

calculated using Equation (1): 

% Oil Content = (
𝑊−𝑊2

𝑊1
) 𝑥100     (1) 

where % oil content represents the percentage of oil, 𝑊 is the weight of the flask with the oil, 𝑊2 is the weight of the 

empty flask, and 𝑊1 is the weight of the dry mesocarp sample. 
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2.4. Statistical Analysis 

An analysis of variance (ANOVA) at a 5% significance level was used to assess the electrical variations across different 

frequencies and their correlation with the oil content of oil palm fruit. 

2.5. Linear Regression Model 

A regression analysis was performed to develop a linear regression model correlating electrical values with oil content. 

The model was evaluated by calculating the root-mean-square error (RMSE) using Equation (2):  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑡𝑛 − 𝑦𝑐𝑛)2𝑁

𝑛=1      (2) 

Where N is the number of samples in the dataset, 𝑦𝑡𝑛 is the predicted value from the regression equation, and 𝑦𝑐𝑛 is the 

measured value obtained through experimental procedures. 

2.6. Calibration and Validation of Partial Least Square (PLS) 

Partial Least Squares (PLS) is a regression-based technique designed for analyzing high-dimensional data in low-

structure environments (Silalahi et al., 2021; Wu et al., 2023). PLS modelling uses a component-based approach to 

generate deterministic construct scores for predictive purposes (Shmueli et al., 2016), aiming to estimate the variance 

of endogenous constructs and their associated manifest variables. Model validation in PLS typically involves parameter 

inference and testing the significance of the estimated parameters. 

In this study, calibration models were developed and evaluated to examine the relationship between spectral data (x-

variables) and chemical variables (y-variables) using an optimal number of PLS factors (Borràs et al., 2016; Miloš et 

al., 2022; Widyaningrum et al., 2024). The spectral data, which included measurements of impedance, resistance, and 

admittance, along with the reference dataset, employed 3, 5, and 7 PLS factors to create the calibration model for 

predicting oil content. This process was facilitated by Unscramble Software 10, developed by CAMO in Norway 

(CAMO Software, 2014). The goal was to enhance model performance by providing a comprehensive toolbox for data 

processing. The software effectively managed and pre-processed both the spectral and reference data. 

For model development and testing, approximately two-thirds of the samples were used to train the model, while the 

remaining third served to evaluate its performance. The training set was deliberately selected to include spectral 

extremes, ensuring the robustness and boundary sensitivity of the model. Various data pre-treatments were applied to 

the spectral data for different purposes. Normalization was used to reduce the effects of particle size and improve spectral 

values, compensating for errors caused by physical factors such as uneven data dispersion, noise, and suboptimal spectral 

shapes. This method minimized interference from underlying factors by dividing each row of the data matrix by its 

mean. The Standard Normal Variate (SNV) correction was commonly applied to improve spectral data quality by 

mitigating scattering effects during data acquisition (Widyaningrum et al., 2024). Additionally, first-derivative data pre-

treatment, such as the Savitzky-Golay filter, was used to better distinguish components within the data, leading to 

improved calibration outcomes.  

 In this study, various data pre-treatment methods were applied, including a) no pre-treatment (original), b) 

normalization mean (NM), c) standard normal variate (SNV), d) first derivative Savitzky-Golay (dg1), and e) a 

combination of normalization mean and first derivative Savitzky-Golay (NM-Dg1) (Miloš et al., 2022). The calibration 

model for predicting oil content was evaluated using key statistical metrics, such as the correlation coefficient (r), 

standard error (SE), coefficient of variance (CV), ratio of standard deviation (RPD), and consistency (Williams et al., 

2019). 

The correlation coefficient (r) indicates the strength and direction of the linear relationship between predicted and 

actual values, with higher values of r signifying stronger correlations, which are critical for validating the model's 

predictive accuracy. The standard error (SE) measures prediction accuracy by indicating the average deviation of 

observed values from the regression line; lower SE values suggest higher accuracy. The coefficient of variance (CV) 

assesses the relative variability by comparing the standard deviation to the mean, helping to understand data dispersion 

and reliability. The ratio of standard deviation (RPD) evaluates the model’s predictive power by comparing the standard 
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deviation of the reference data to the standard error of prediction, with higher RPD values indicating a more reliable 

model. Lastly, consistency reflects the model's reliability across different datasets, showing that it can produce stable, 

repeatable results under varying conditions. These metrics were essential for assessing the calibration model's accuracy 

and reliability, ensuring precise measurements of oil content. 

3. RESULTS AND DISCUSSION 

3.1. Chemical Properties of Oil Palm Fruit 

The progression of oil content, moisture content, and free fatty acid (FFA) across ten different maturity stages is shown 

in Figure 2a. The fruits exhibited varying characteristics, with oil content ranging from 0.16% to 53.5% (Table 1), 

moisture content between 27.75% and 86.39%, and FFA content from 0 to 14.87% (Mellyana et al., 2024). The 

correlation between moisture content and oil content during fruit maturation is depicted by a linear regression line, 

indicating an inverse relationship (Figure 2b). The regression analysis revealed an R² value of 0.89, which is comparable 

to the R² value of 0.86 observed at the 12, 16, and 20 weeks after anthesis (WAA) stages (Chin-Hashim et al., 2022). 

These findings support the notion that as oil palm fruit matures, its oil content reaches a peak while the moisture content 

decreases to its lowest level. 

Previous studies also revealed an inverse linear relationship between moisture content and oil content in oil palm 

fruit, suggesting this trend can be a useful indicator of mesocarp maturity. Variations in the moisture content of oil palm 

fruit cause changes in electrical impedance due to the reactive nature of water molecules when exposed to alternating 

electric currents (Ibrahim et al., 2019). Statistical analysis using ANOVA revealed significant differences in oil content 

across the ten maturity stages, with a p-value of less than 0.05 (Table 2). 
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Figure 2. (a) The progression of oil content, moisture content, and FFA at ten diverse maturity stages, (b) The association between oil 

and moisture content in oil palm fruit. 

Table 1. Reference data of Tenera oil palm fruit 

Chemical 

properties 

Stages of 

maturation 

Average 

(%) 

Deviation 

standard (%) 

Minimum 

(%) 

Maximum 

(%) 

Oil content 

 

3M 0.38 0.23 0.16 0.73 

4M 5.91 1.85 3.83 10.31 

4M1W 7.37 4.23 0.39 10.97 

4M2W 10.53 7.78 2.18 20.57 

4M3W 21.30 12.88 6.44 40.92 

5M 21.77 10.06 4.79 36.27 

5M1W 37.52 6.39 29.54 47.31 

5M2W 35.58 6.14 28.00 46.87 

5M3W 35.07 8.49 21.48 49.64 

6M 43.54 8.02 8.37 53.50  
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Table 2. ANOVA results for oil content of oil palm fruit 

Mesocarp Oil Content Sum of squares df Mean Squares F Sig 

Between Groups* 23513.07 9 2612.56 50.47 0.00 

Within Groups* 4969.52 96 51.77   

Total 28482.59 105    

*Groups are 3M, 4M, 4M1W, 4M2W, 4M3W, 5M, 5M1W, 5M2W, 5M3W, and 6M. 

3.2. Linear Regression Model of Electrical Characteristics of Oil Palm Fruit 

3.2.1. Impedance Characteristics of Oil Palm Fruit at Different Maturity Levels 

In an electrical circuit, impedance is defined as the ratio of the voltage across a circuit element to the current passing 

through it. In oil palm fruit, electrical impedance hinders the flow of electric charge or alternating current, and its 

magnitude is influenced by resistance, frequency, and reactance. At low frequencies, reactance plays a significant role, 

resulting in higher impedance. As the frequency increases, reactance decreases, leading to a reduction in impedance. 

Impedance is the total resistance experienced when the fruit is subjected to alternating current. Additionally, impedance 

values are related to conductance and capacitance, both of which vary with frequency. Capacitive reactance is an 

imaginary component of impedance and is directly proportional to the product of capacitance and frequency, while 

conductance is inversely proportional to resistance. As frequency increases, both resistance and reactance decrease, 

leading to a reduction in impedance. The interaction of resistance and reactance determines the total impedance, which 

generally decreases with increasing frequency (Barsoukov & Macdonald, 2018). 

 
Figure 3. The impedance spectrum per unit weight at different maturity levels 

In Figure 3, impedance initially increases up to a frequency of 89 Hz, then decreases at frequencies above 1 MHz. 

At low frequencies, the high impedance values indicate that current is restricted to the extracellular region. At higher 

frequencies, however, lower impedance values suggest that current can flow within the cells. The strongest correlation 

between impedance and oil content was observed at a frequency of 3.74 MHz, with a coefficient of determination (R²) 

of 0.48 (r = 0.70) and the lowest RMSE (11.76%) across the ten maturity levels (Table 3). In comparison, (Chin-Hashim 

et al., 2022) reported the best results at a frequency of 100 kHz, with an R² of 0.72 and an RMSE of 5.71% for the 12, 

16, and 20 WAA stages. 

3.2.2. Resistance Characteristics of Oil Palm Fruit at Different Maturity Levels 

Resistance refers to an object's ability to impede the flow of electrical current. The oil content in a liquid can influence 

its resistance value, as dissolved oil affects the liquid's chemical properties. Liquids with higher moisture content exhibit 

better conductivity. This relationship is shown in Figure 4, where oil palm fruit at 3 months of maturity demonstrates 

high resistance, inhibiting the flow of electrical current. 
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Table 1. A linear regression model, coefficient of determination, correlation, and RMSE to describe the relationship between electrical 

characteristics and oil content at various frequencies 

Electric 

characteristics 

Frequency 

(MHz) 

Linear Regression 

Models 

Regression 

Coefficient (R2) 
Correlation (r) RMSE (%) 

Impedance 

3.74 y = 716.55x + 5.06 0.48 0.7 11.76 

3.53 y = 626.21x + 4.76 0.48 0.69 11.81 

4.45 y = 781.26x + 5.23 0.47 0.69 11.88 

5 y = 622.88x + 6.28 0.47 0.69 11.92 

4.2 y = 827.33x + 5.17 0.46 0.68 12.05 

Resistance 

3.53 y = 891.30x + 2.70 0.53 0.73 12.16 

4.45 y = 1146.56x + 1.70 0.52 0.72 12.23 

3.74 y = 1435.52x + 0.31 0.51 0.71 12.47 

5 y = 808.95x + 3.93 0.49 0.7 12.55 

4.2 y = 1239.36x + 1.83 0.49 0.7 12.65 

Admittance 

5 y = -0.030x + 41.52 0.66 0.81 11.26 

3.74 y = -0.028x + 41.13 0.64 0.8 11.34 

4.2 y = -0.026x + 41.82 0.64 0.8 11.48 

3.97 y = -0.027x + 42.26 0.64 0.8 11.65 

3.53 y = -0.034x + 41.69 0.63 0.8 11.7 

Inductance 

3.74 y = 16.78x + 9.45 0.4 0.63 11.76 

3.97 y = 23.50x + 9.70 0.39 0.63 11.84 

5 y = 26.60x + 12.93 0.39 0.62 11.85 

4.45 y = 26.15x + 11.19 0.38 0.61 11.9 

3.53 y = 17.30x + 9.014 0.37 0.61 11.93 

Capacitance 

3.74 y = -347.69x + 37.98 0.56 0.75 9.54 

3.97 y = -274.87x + 37.81 0.54 0.73 9.8 

3.53 y = -354.01x + 38.53 0.52 0.72 9.81 

3.33 y = -407.90x + 38.06 0.52 0.72 9.88 

3.15 y = -309.35x + 35.85 0.4 0.63 9.92 

Reactance 

3.74 y = 713.56x + 9.45 0.4 0.63 12.7 

3.97 y = 942.88x + 9.70 0.39 0.63 12.76 

5 y = 846.87x + 12.93 0.39 0.62 12.8 

4.45 y = 934.77x + 11.19 0.38 0.61 12.93 

3.53 y = 779.53x + 9.01 0.37 0.61 12.99 

Conductance 

5 y = -0.029x + 40.38 0.64 0.8 9.93 

4.72 y = -0.026x + 39.39 0.61 0.78 10.17 

3.97 y = -0.029x + 40.33 0.61 0.78 10.35 

4.2 y = -0.027x + 40.07 0.61 0.78 10.38 

3.74 y = -0.032x + 38.73 0.59 0.77 10.4 

 
Figure 4. The resistance spectrum per unit weight at different maturity levels 
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Conversely, fruit at 4 months of maturity has low resistance, allowing for greater electrical current flow. As the fruit 

matures further, resistance decreases, which in turn reduces impedance to electrical flow. The strongest correlation 

between resistance and oil content occurred at a frequency of 3.53 MHz, with a coefficient of determination (R²) of 0.53 

(r = 0.73) and an RMSE of 12.16% across the ten maturity levels (Table 3). 

3.2.3. Admittance Characteristics of Oil Palm Fruit at Different Maturity Levels 

Admittance, the inverse of impedance, measures a material’s ability to conduct alternating current at a specific 

frequency. It consists of two components: conductance (the real part) and susceptance (the reactive part). In Figure 5, 

the admittance of oil palm fruit increases at frequencies above 1 MHz and continues rising to 5 MHz, highlighting 

differences between various maturity stages. The best correlation between admittance and oil content was observed at 5 

MHz, with a coefficient of determination (R²) of 0.66 (r = 0.81) and an RMSE of 11.26% across the ten maturity levels 

(Table 3). 

 

Figure 5. The admittance spectrum per unit weight at different maturity levels 

3.2.4. Inductance Characteristics of Oil Palm Fruit at Different Maturity Levels 

Inductance Inductance is the property of an electrical circuit that enables it to store energy in a magnetic field when an 

electric current flows through it. Measured in Henrys (H), inductance depends on factors like core material, number of 

windings, spacing, and coil diameter (Fowler & Schultz, 2022). 

The strongest correlation between inductance and oil content was found at a frequency of 3.74 MHz, with a 

coefficient of determination (R²) of 0.40 (r = 0.63) and an RMSE of 11.76% across the ten maturity levels (table 3). 

Previous research on inductive sensors, such as capacitance inductive sensors (Harun et al., 2014) and triple flat-type 

inductive sensors (Aliteh et al., 2018), has focused on measuring moisture content. These sensors also detect oil palm 

fruit maturity at resonance frequencies between 270–500 Hz, with RMSE values of 13.45% (Sinambela et al., 2020). 

Flat-type oil sensors (Misron et al., 2016) have similarly been used to assess both raw and ripe oil palm fruit at resonance 

frequencies. One study indicated that fruit ready for harvest showed a frequency of 9.8 MHz at week 18, but inductance 

values overlapped at 8.5 MHz during week 10. This overlap may be due to changes in moisture content as the fruit 

matures. 

3.2.5. Capacitance Characteristics of Oil Palm Fruit at Different Maturity Levels 

Capacitance refers to a capacitor's ability to store electrical energy. The presence of a dielectric material increases 

capacitance. In Figure 6, capacitance in oil palm fruit fluctuates at frequencies above 2 MHz, continuing up to 5 MHz. 

The strongest correlation between capacitance and oil content was observed at 3.74 MHz, with a coefficient of 

determination (R²) of 0.56 (r = 0.75) and an RMSE of 9.54% across the ten maturity levels (Table 3). 
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Figure 6. The capacitance spectrum per unit weight at different maturity levels 

At low frequencies, capacitance can be influenced by moisture content and electrode polarization. Frequency 

changes also affect ion movement within the material. As frequency increases, dipole reorientation occurs more rapidly, 

shortening the time available for polarization events, and resulting in reduced overall polarization. Polarization within 

oil palm fruit is affected by moisture content and its chemical composition (Juansah et al., 2014). 

3.2.6. Reactance Characteristics of Oil Palm Fruit at Different Maturity Levels 

Reactance can be defined as the resistance caused by the capacitive and inductive phenomena of materials when 

subjected to alternating current (AC). Hence, this reactance can be analogized as resistance. Reactance arises because 

of circuit elements such as capacitors and inductors. Reactance is a crucial concept in the analysis of AC circuits as it 

affects the flow of current within the circuit and the associated voltage. Reactance, together with resistive resistance, in 

a circuit forms impedance, which characterizes the overall resistance to AC current. In Figure 7, the reactance of oil 

palm fruit at various stages of maturity experiences fluctuations at frequencies above 2 MHz, continuing up to 5 MHz. 

The strongest correlation between reactance and oil content was observed at 3.74 MHz, with a coefficient of 

determination (R²) of 0.40 (r = 0.63) and an RMSE of 12.70 % across the ten maturity levels (Table 3). 

 

Figure 7. The reactance spectrum per unit weight at different maturity levels 

3.2.7. Conductance Characteristics of Oil Palm Fruit at Different Maturity Levels 

Conductance is the ability of a material to conduct electricity. Conductance is influenced by the concentration of ions 

and the mobility of ions that can conduct electricity within the material. The greater the number of ions and the higher 

the ion mobility, the larger the value of conductance. Conductance is inversely proportional to resistance, where the 
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greater the resistance of oil palm fruit, the smaller its conductance. In Figure 8, the conductance of oil palm fruit at 

various stages of maturity exhibits fluctuations at frequencies above 2 MHz continuing up to 5 MHz. The best correlation 

between conductance and oil content was observed at 5 MHz, with a coefficient of determination (R²) of 0.64 (r = 0.80) 

and an RMSE of 9.93% across the ten maturity levels (Table 3). 

The most favorable results for distinguishing between the stages of maturity across ten different harvest periods 

(ranging from 3 to 6 months) included: impedance (3.74 MHz, r = 0.70, RMSE = 11.76%), resistance (3.53 MHz, r = 

0.73, RMSE = 12.16%), admittance (5 MHz, r = 0.81, RMSE = 11.26%), inductance (3.74 MHz, r = 0.63, RMSE = 

11.76%), capacitance (3.74 MHz, r = 0.75, RMSE = 9.548%), reactance (3.74 MHz, r = 0.63, RMSE = 12.70%), and 

conductance (5 MHz, r = 0.80, RMSE = 9.93%). Additional data processing is required for each electrical measurement 

to develop an accurate calibration model for predicting oil content.  

 

Figure 8. The conductance spectrum per unit weight at different maturity levels 

3.3. PLS Calibration Model for Estimating Oil Content  

Pre-processed Partial Least Squares (PLS) data formed the basis for developing a predictive model for estimating oil 

content in oil palm fruit. Table 4 outlines the descriptive statistics for oil content across reference, calibration, and 

validation datasets. The data exhibited a wide range of oil content values, varying from minimum 0.16% to maximum 

53.50%. Importantly, the distribution of data within the calibration and validation samples showed high consistency, 

ensuring robust model performance. 

Table 2. Compositional analysis of oil content and calibration oil palm fruit 

Chemical 

composition 
Research phase 

Number of 

samples 
Average (%) 

Deviation 

standard (%) 

Minimum 

(%) 

Maximum 

(%) 

Oil content (%) 

References 106 21.39 16.47 0.16 53.50 

Calibration 74 23.02 16.39 0.16 53.50 

Validation 32 17.62 16.28 0.16 51.92 

Based on the impedance, resistance, admittance, inductance, capacitance, reactance and conductance data (Table 3), 

the highest correlation values ranged from 0.61 to 0.81, with RMSE values between 9.54% and 12.99%. Although these 

results show a moderate level of accuracy, further calibration is necessary to improve the precision of oil content 

predictions. In the next phase, calibration could be refined using impedance, resistance, or admittance spectra, depending 

on the selected approach. 

The calibration results for the impedance spectra (Table 5, Figure 9) revealed that using NM-Dg1-7 factor produced 

values of r = 0.98, R² = 0.95, SEC = 3.51%, SEP = 3.16%, CV = 15.23%, and an RPD of 4.68. An RPD value above 4.1 

signifies that this model is excellently categorized and can be applied to a variety of applications involving this type of 

material. (Williams, 2014). 
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Table 3. Calibration results for oil content using impedance, resistance, and admittance 

Electrical 

properties 

Treatment 

(PLS-factor) 
R2 r 

SEC 

(%) 

SEP 

(%) 
CV (%) RPD Bias Consistency 

Impedance Original /3 0.74 0.86 8.33 6.23 36.20 1.97 1.30 133.77 

Original /5 0.84 0.92 6.56 5.70 28.52 2.50 0.59 115.10 

Original /7a 0.93 0.96 4.46 4.90 19.38 3.67 0.11 90.96 

NM /3 0.71 0.84 8.83 7.02 38.37 1.86 0.40 125.88 

NM /5 0.86 0.93 6.12 5.97 26.60 2.68 0.18 102.63 

NM /7a 0.93 0.96 4.34 3.67 18.86 3.78 -0.15 118.14 

SNV /3 0.44 0.66 12.31 10.74 53.47 1.33 1.01 114.60 

SNV /5 0.78 0.88 7.79 7.92 33.85 2.10 0.89 98.42 

SNV /7 0.87 0.93 5.96 5.53 25.87 2.75 0.39 107.68 

Dg1 /3 0.64 0.80 9.90 7.50 43.02 1.66 1.55 131.98 

Dg1 /5 0.77 0.88 7.79 6.05 33.86 2.10 1.10 128.75 

Dg1 /7 0.87 0.93 6.01 5.34 26.12 2.73 0.91 112.64 

NM-Dg1 /7b 0.95 0.98 3.51 3.16 15.23 4.68 0.02 110.97 

Resistance Original /3 0.78 0.88 7.77 6.07 33.75 2.11 0.90 127.98 

Original /5 0.85 0.92 6.40 4.40 27.82 2.56 0.29 145.38 

Original /7a 0.90 0.95 5.10 3.15 22.17 3.21 0.05 161.81 

NM /3 0.61 0.78 10.25 6.49 44.54 1.60 0.41 158.06 

NM /5 0.84 0.92 6.54 5.40 28.40 2.51 0.25 121.00 

NM /7a 0.94 0.97 3.90 3.20 16.95 4.20 -0.08 122.12 

SNV /3 0.47 0.69 11.94 8.35 51.86 1.37 1.04 142.94 

SNV /5 0.78 0.88 7.86 6.72 34.15 2.09 0.38 117.04 

SNV /7 0.88 0.94 5.69 4.82 24.72 2.88 0.17 118.16 

Dg1 /3 0.66 0.81 9.52 6.99 41.37 1.72 1.10 136.14 

Dg1 /5 0.77 0.88 7.92 5.74 34.42 2.07 0.94 138.00 

Dg1 /7 0.85 0.92 6.29 4.38 27.31 2.61 0.65 143.61 

NM-Dg1 /7b 0.97 0.98 2.95 2.62 12.80 5.56 -0.19 112.45 

Admittance Original /3 0.71 0.84 8.90 7.57 38.65 1.84 -0.43 117.58 

Original /5 0.83 0.91 6.83 6.48 29.68 2.40 0.04 105.40 

Original /7 0.89 0.94 5.57 5.54 24.20 2.94 0.12 100.48 

NM /3 0.84 0.92 6.55 6.70 28.44 2.50 0.21 97.78 

NM /5a 0.91 0.95 4.95 4.97 21.51 3.31 0.26 99.60 

NM /7a 0.95 0.98 3.57 3.81 15.49 4.60 0.29 93.64 

SNV /3 0.86 0.93 6.08 6.98 26.40 2.70 0.37 87.07 

SNV /5a 0.93 0.96 4.42 4.43 19.18 3.71 0.12 99.77 

SNV /7a 0.96 0.98 3.42 2.89 14.86 4.79 0.17 118.34 

Dg1 /3 0.87 0.93 5.93 6.51 25.77 2.76 - 0.01 91.16 

Dg1 /5a 0.93 0.96 4.32 3.52 18.78 3.79 0.64 122.84 

Dg1 /7a 0.97 0.98 2.94 2.58 12.77 5.58 0.22 113.76 

NM-Dg1 /7b 0.98 0.99 2.05 2.20 8.91 7.99 0.02 93.46 

Original: no data pre-treatment; NM: Normalization Mean (NM); SNV: Standard Normal Variate (SNV); Dg1: First derivative Savitzky-golay; NM-

Dg1: the combination of normalization mean-first derivative Savitzky-golay. a R2>0.90; bR2>0.90 and the best model. 

For the resistance spectra (Table 5, Figure 10), the best calibration results were obtained using the NM-Dg1-7 factor, 

yielding r = 0.98, R² = 0.97, SEC = 2.95%, SEP = 2.62%, CV = 12.80%, and an RPD of 5.56. An RPD value above 4.1 

signifies that this model is excellently categorized and can be applied to a variety of applications involving this type of 

material (Williams, 2014). The optimal calibration results for the admittance spectra (Table 5, Figure 11) were achieved 

using the NM-Dg1-7 factor, with r = 0.99, R² = 0.98, SEC = 2.05%, SEP = 2.20%, CV = 8.91%, and an RPD of 7.99. 

An RPD value exceeding 4.1 indicates that this model is superbly classified and highly applicable across a wide range 

of materials. 
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Figure 9. Plot of reference versus predicted oil content of the calibration data set based on impedance 

 

Figure 10. Plot of reference versus predicted oil content of the calibration data set based on resistance 

 

Figure 11. Plot of reference versus predicted oil content of the calibration data set based on admittance 
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4. CONCLUSION  

The findings of this study demonstrate that linear regression models based on electrical properties—such as impedance, 

resistance, admittance, inductance, capacitance, reactance, and conductance—measured at specific frequencies, possess 

considerable potential for estimating oil content in oil palm fruit. These models yielded correlation coefficients (r) 

ranging from 0.61 to 0.81, with root mean square errors (RMSE) between 9.54% and 12.99%, indicating a moderate 

predictive accuracy. However, these results also suggest that further refinement of the calibration process is needed to 

enhance prediction precision. Future efforts may focus on optimizing spectral calibration using impedance, resistance, 

or admittance data, depending on the selected modelling approach. 

Notably, the application of spectral pre-treatment techniques and Partial Least Squares (PLS) calibration significantly 

improved prediction performance. The most accurate results were obtained using the following models: 

a) Impedance using NM-Dg1/7 (a combination of Normalization Mean and First Derivative Savitzky-Golay, 7 factors) 

with r = 0.98, R² = 0.95, SEC = 3.51%, SEP = 3.16%, CV = 15.23%, and RPD = 4.68. 

b) Resistance using NM-Dg1/7 with r = 0.98, R² = 0.97, SEC = 2.95%, SEP = 2.62%, CV = 12.80%, and RPD = 5.56. 

c) Admittance using NM-Dg1/7 with r = 0.99, R² = 0.98, SEC = 2.05%, SEP = 2.20%, CV= 8.91%, and RPD = 7.99. 

These results underscore the high potential of utilizing electrical property-based measurements, in conjunction with 

advanced calibration techniques, as a reliable, accurate, and non-destructive method for determining oil content in oil 

palm fruit. 
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