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ABSTRACT 
 

Nursery plays an important role on starting chili cultivation, determining the crop health, 

fertility from disease, and growth performance. Early-stage germination detection is necessary 

to minimize nursery failure and improve plant health, but manual detection is challenging for 

large scale nursery in the greenhouse. The aim of this research was to develop an automatic 

detection model integrated with a You Only Look Once (YOLO) based deep learning algorithm 

using RGB camera to monitor the chili germination stages. Method to detect germination was 

YOLO with several steps, included: (1) early stages chili germination images acquisition, (2) 

datasets preparations, (3) dataset annotation and labeling, (4) model development using deep 

learning YOLO algorithms, and (5) model testing and validation. The training of 11,423 images 

was conducted utilizing the YOLOv5 and YOLOv8 algorithms, which categorized into, three 

classes (germinated, not germinated, and cotyledon appearance). The model was evaluated 

using mean Average Precision (mAP), precision, accuracy, and recall with the respective values 

of 0.697, 73%, 75%, and 73% for YOLOv8, and 0.664, 70%, 73%, and 70% for YOLOv5. Both 

model achieved high accuracy, but YOLOv8 was better to detect and classify chili seedling 

growth stages than YOLOv5. This study also demonstrated that model can be implemented in 

real applications integrated with automatic monitoring system included in the model. 

1. INTRODUCTION 

Chili peppers (Capsicum annuum L.) are an important product in Indonesia. In 2023, the consumption of chili peppers 

is 2,42 kg per capita per year (increase 7.11% from previous), and productions 1.55 million tons (Portal Satu Data 

Pertanian, 2023). Chili cultivations are starting with the nursery process to produce high quality seed (Muslimin et al., 

2021; do Rêgo et al., 2016). The seedling stages consist of media preparations, and transplanting sprouts into seed 

trays. There are several stages on nursery are emergence (3 to 7 days after seedling), cotyledon expansion (7 to 14 

days after seedling), first true leaves (14-21 days after seedling), and preparation to planting in the filed or greenhouse 

(21 to 30 days after seedling) (Lutfiana et al., 2019; Wahyudi & Topan, 2011). Optimal management and monitoring 

in these stages are crucial process to achieve the productivity and plant health (Jean & Sihombing, 2024). The present 

monitoring of chili nurseries still relies on direct observation by eye. This method is labour-intensive and time-

consuming, and frequently results in a incomplete survey of the entire nursery area. One potential solution to this issue 

is the integration of deep learning technology in the monitoring process.  

Currently, nursery process are conduct inside the controlled environment such as greenhouse or plant factory with 

artificial light to achieve the high quality product (Anam et al., 2020; Niam et al., 2019). Modern nursery greenhouses 

are using IoT based environment control of several parameters such as light intensity, temperature, and nutrient. This 

integration enables automated responses, such as adjusting irrigation or lighting, based on real-time environmental 

data and plant conditions (Feng & Hu, 2021; Nugrahapsari et al., 2020). The seedling process is using the tray with 
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automatic seeder to maximize the speed and minimize the human errors (Sun et al., 2023). Then, seedling trays move 

the seedling rack continue to the grow stages. In a commercial greenhouse with an area of 760 m² (40 x 19 m), it is 

possible to accommodate 20 rack of seedling, 920 trays, and 172,040 seed per batch (30 days). Assuming 10 batches 

of seedling per year, the greenhouse capacity is approximately 1.720.400 seeds, sufficient for 10 ha cultivation area.  

Monitoring seedling inside the greenhouse should use the sensing technology to monitor seedling stages, health, 

and growth of chili seedling (Singh et al., 2021). Recently, research on monitoring the growth of seedlings has 

received special attention from researchers. Cui et al. (2023) developed a real-time method for detecting and counting 

missing rice seedlings using an improved YOLOv5s and ByteTrack, achieving 93.2% accuracy and five times faster 

counting than manual methods, making it practical and efficient for real-time application in paddy fields. YOLO 

receives input images divided into 𝑆 𝑥 𝑆 boxes sent by the Neural Network for Bounding box generation and the 

system predicts using the dimensional division as the anchor box (Redmon et al., 2016). In another study, an improved 

mask R-CNN model was developed for the detection and segmentation of lettuce seedlings from seedling trays. The 

method enabled early-stage monitoring of seedlings and efficient size estimation for better management of 

environmental stresses (Islam et al., 2024). Perugachi-Diaz, Tomczak & Bhulai, (2021) conducted a study to classify 

the seedbed stages in white cabbage seedlings using Convolutional Neural Networks (CNN). Another study used deep 

learning with the CNN algorithm to classify 12 different types of seedlings in the seedbed process, this study used a 

dataset of 4,234 images and produced an accuracy of more than 90% (Alimboyong et al., 2019). The datasets division 

is based on the size of the model, the largest size has higher accuracy, and the detection time for a single image will 

increase (Li et al., 2022).  

However, the limitation of deep learning was difficult to implement in other locations without updated the datasets 

with the specific condition. These studies highlight the critical importance of early detection and the integration of 

advanced technologies in agricultural practices. In this research we proposed a deep learning algorithm to detect early 

stages of nursery process inside the commercial greenhouse in Indonesia. The aim of this research was to develop a 

deep learning algorithm using YOLOv5 and YOLOv8, along with camera technology, to detect the early germination 

stages of chili pepper seedlings in a nursery greenhouse. By leveraging these advanced algorithms, the study seeks to 

enhance the accuracy and efficiency of monitoring seedling development, focusing on critical stages such as 

germination, not germination, and the appearance of cotyledon leaves. This approach will facilitate timely 

interventions during the nursery process, ultimately contributing to improved seedling health and productivity. 

Through this research, the goal is to advance sustainable agricultural practices in Indonesia by integrating innovative 

technology into the management of chili pepper cultivation.  

2. MATERIAL AND METHODS 

2.1. Materials and Tools 

The materials used in this study included seeds of chili pepper (Capsicum annuum L.), sourced from a reputable local 

seed supplier. The seedlings were cultivated in rockwool, a growing medium known for its excellent water retention 

and aeration properties, which supports optimal seedling growth. The seedlings were placed in plastic seed trays. 

Clean water, free from contaminants, was used for irrigation. The camera utilized a red-green-blue (RGB) 

configuration to ensure detailed imagery. The images undergo a preprocessing step before annotation, which involves 

selecting high-quality images and removing unsuitable images to improve the datasets. The selected images were then 

annotated and labeled using RoboFlow, a software tool designed for dataset preparation. After annotation, dataset 

augmentation was performed to ensure the robustness of the training data. Augmentation techniques included auto-

orientation, applying blur up to 4.5px, horizontal and vertical flipping, static cropping, and the addition of noise. The 

training of the deep learning models was conducted using Google Colaboratory, which provided the necessary 

computational resources. Additionally, initial data processing and development were performed using a Lenovo 

Ideapad 330s laptop equipped with an Intel Core i7 processor, 4GB RAM, and 1TB HDD storage. The deep learning 

algorithms implemented in this study were YOLOv5 and YOLOv8, developed in a Python environment using 

TensorFlow and PyTorch libraries. The training was conducted using specific hyperparameters to optimize model 

performance, including an input image size of 640 pixels, a batch size of 64, and 200 training epochs. 
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2.2. Methods 

This research was carried out at the Laboratory of Systems Engineering and Agricultural Informatics (Bioinformatics 

Engineering), IPB University, Bogor Regency, West Java. This research was conducted from January to August 2024. 

This study was conducted in several stages such as dataset collections, dataset labeling, training model, and testing 

(Figure 1). 

 

Figure 1. Stage of the research that consist of data collections, data labelling, training model, and testing 

2.2.1. Dataset Collections  

Dataset was collected in early stages of nursery, starting from ungerminated seeds to seedlings ready for transplanting. 

The dataset was collected using the red-green-blue camera to capture high resolution images. Two types of lighting 

conditions were applied during image capture: natural light, using sunlight during the day, and artificial light, using a 

controlled light source in indoor settings. This process was using the automatic capture during the morning time 

(08.00 am), afternoon (13.00 pm), and evening (15.00 pm). The use of both natural and artificial lighting introduced 

variability in visual conditions, which affected image consistency and, consequently, model performance. Natural light 

resulted in fluctuations in brightness, color saturation, and shadow intensity depending on the time of day, while 

artificial light provided more consistent illumination but lacked the subtle gradients of natural lighting. These 

variations occasionally reduced detection accuracy due to reflections, overexposure, or reduced contrast. 

Nonetheless, the inclusion of both lighting types was intentional to enrich the dataset and improve the model’s 

robustness in diverse, real-world environments. To mitigate the impact of lighting inconsistencies, preprocessing was 
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conducted to select only high-quality images. Furthermore, data augmentation techniques such as, auto-orientation, 

blur (up to 4.5 px), noise addition, flipping, and cropping were applied to improve model generalization. The camera 

was capture at 30 and 40 cm above the seedling trays to capture optimum view without images distortions or damages. 

Figure 2 shows the configuration of camera was used to capture the images. 

The dataset, collected 20 days after planting, contains over 13,000 images of individual chili seeds categorized into 

germinated seeds, non-germinated seeds, and cotyledon appearance. All images were resized to 640 × 640 pixels for 

model compatibility and split into training (70%), validation (20%), and testing (10%) sets. Figure 3 presents sample 

images of chili seedlings at early stages. 

 

Figure 2. Schematic diagram of camera capture 

 

Figure 3. Sample of dataset of chili seedling in early stages  
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2.2.2. Data Pre-Processing 

In this step, data was pre-processed using starting by selecting a good image and remove unwanted images for training 

process. Then, the dataset was labelled with three classes such as germinated seeds, non-germinated seeds, and the 

appearance of cotyledon leaves using RoboFlow software (Figure 4). Then the output of these stages was the 

annotated images included the XML based data to store the annotation information. This format incorporates essential 

parameters, including the class ID, which serves to uniquely identify each object category, the central coordinates of 

the bounding box (x and y), which represent the middle position of the object, and the width and height of the 

bounding box, which define the size of the rectangular boundary. 

These parameters enable precise classification and detection of objects in the images. The bounding box itself acts 

as a spatial reference, ensuring the object of interest is accurately located and segmented for further analysis. Finally, 

to ensure the quality of training data was pre-processed with several options such as auto-orientation, blur up to 4.5px, 

flip horizontal and vertical, static crop, and noise. Figure 5 shows several examples of data pre-processing techniques 

applied to the images in the datasets. 

 

Figure 4. Datasets labelling using RoboFlow software with three classes 

 

Figure 5. Sample of data pre-processing. a) original image, b) blur, c) flip horizontal, d) flip vertical, e) static crop, f) noise 
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2.2.3. Training Deep Learning Model 

In this step, annotated datasets were trained, validated, and tested using separate datasets with the composition 70% 

allocated for training, 20% for validation, and 10% for testing. The proportions of training, validation, and testing 

dataset ensure the quality of model. The training process uses *.xml files generated during the object labeling phase, 

which contain structured annotation data specifying the locations and classes of objects in the images. The training 

process used two deep learning algorithms (YOLOv5 and YOLOv8), 15,000 datasets and 200 epoch iterations to 

process the dataset. The YOLO (You Only Look Once) model architecture is composed of convolutional layers 

responsible for extracting features, identifying patterns and detecting objects in input images, followed by fully 

connected layers to convert the two-dimensional feature maps into a one-dimensional matrix for efficient classification 

and bounding box prediction (Vilar-Andreu et al., 2024). YOLOv5 uses a CSPNet-based backbone for feature 

extraction, while YOLOv8 introduces several architectural improvements such as an anchor-free detection head, a 

decoupled head for classification and localisation, and an improved backbone and neck structure, including the use of 

C2f modules for better gradient flow and efficiency (Bochkovskiy et al., 2020; Yaseen, 2024). Figure 6 shows the 

number of instances of each class, bounding boxes dimension, the y center against the x center of each label, and the 

height of each label against its width. In all subfigures, the axes are normalized to the image dimensions, with values 

ranging from 0 to 1. In subfigure (a), the y-axis indicates the total count of objects per class. Subfigures (b) and (c) 

show the relative positions of object centers across the images, while subfigure (d) displays the distribution of 

bounding box sizes, with both height and width also expressed in normalized units. This normalization ensures 

consistency and robustness of the model across varying image sizes. 

 
Figure 6. Bounding box analysis: (a) The number of instances of each class, (b) Every bounding box, (c) The y center against the x 

center of each label, and (d) The height of each label against its width. 

2.2.4. Performance Evaluation 

The evaluation metrics used in this research consisted of accuracy, recall, precision, and mean average precision 

(mAP). These metrics are used to assess both the detection accuracy and real-time efficiency of the proposed method. 

In our study, we selected these metrics to evaluate our trial results. Precision was the proportion of true sample that 
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was correctly determined to the total of actual instance. Then, recall was the percentages of amount rightly true 

divided to all true datasets. The mAP is a metric of choice when it comes to evaluating the performance of object 

detection models. It measures the area under the precision-recall curve, providing a quantitative assessment of the 

model's accuracy in identifying objects. The mAP calculation typically considers a confidence threshold, which 

determines how confident the model must be in its predictions to be counted as correct. This metric can be calculated 

at specific thresholds or across a range of values. For instance, M0.5 uses a confidence threshold of τ = 0.5, meaning 

predictions with at least 50% confidence are evaluated. On the other hand, M0.95 provides a more comprehensive 

evaluation by averaging the precision across a range of thresholds from τ = 0.5 to τ = 0.95, incremented by 0.05. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (2) 

𝑚𝐴𝑃 =
1

𝑚
∑ 𝐴𝑃𝑖
𝑚
𝑖=1       (3) 

where TP is true positive, when the model predicts a positive outcome and the actual result is positive; FP is false 

positive, when the model predicted a positive outcome, but the actual value is negative; and FN is false negative, when 

a prediction by the model of a negative outcome when the actual result is positive.  

This ensures that the evaluation considers a variety of confidence levels, offering a better understanding of the 

model's performance across different detection scenarios. The mAP metric is particularly useful because it captures the 

balance between precision and recall. A higher mAP indicates that the model is both precise and comprehensive in its 

detections (Terven et al., 2023). By evaluating the performance at different confidence thresholds, M0.5 and M0.95 

provide insights into how well the model handles varying levels of prediction certainty, making it a standard 

benchmark in the field of object detection. 

3. RESULT AND DISCUSSION 

Figure 7 shows loss values during training bounding box, training classification, and training distribution focal for 

YOLOv5 and YOLOv8 algorithms. The models were trained using deep learning YOLOv5 and YOLOv8 algortihms on 

the same dataset for 200 epochs. The training process was monitored through various loss metrics, including box loss, 

 
Figure 7. Loss values at training (bounding box, classification, and distribution focal): (a) YOLOv5, and (b) YOLOv8 algorithm 
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object loss, and classification loss. Additionally, validation metrics such as precision, recall, and mAP were recorded 

to evaluate model performance. YOLOv5 exhibited lower training loss values across all metrics, with box loss 

decreasing from 0.12 to 0.03, object loss from 0.24 to 0.14, and classification loss from 0.04 to 0.01. This indicates 

effective learning and convergence. YOLOv8, on the other hand, started with higher training loss values, with box loss 

ranging from 1.6 to 1.0, classification loss from 3.0 to 0.5, and the introduction of distribution-focused loss (dfl_loss), 

which showed variability (Figure 7). 

In the validation phase, YOLOv5 maintained lower loss values, with box loss stabilizing around 0.04, object loss 

around 0.25, and classification loss around 0.02. YOLOv8 showed higher initial validation losses, with box loss 

fluctuating between 1.55 and 1.40, and classification loss decreasing from 2.5 to 1.0, indicating potential instability 

during training (Figure 8).  

The evaluation of precision and recall metrics revealed that YOLOv5 achieved a precision of approximately 0.7 

and a recall of 0.8. In comparison, YOLOv8 demonstrated a similar recall rate but exhibited higher precision, 

stabilizing around 0.7. This indicates that while both models are effective in detecting objects, YOLOv8 may have a 

slight advantage in precision (Figure 9). 

 
Figure 8. Validation of bounding box loss, classification loss, and distribution focal loss for (a) YOLOv5, (b) YOLOv8 algorithm 

 
Figure 9. Precision and recall for (a) YOLOv5 algorithm, (b) YOLOv8 algorithm 
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In terms of mean Average Precision (mAP), YOLOv5 recorded an mAP of 0.6 and an mAP0.5–0.95 of 0.4. 

Conversely, YOLOv8 achieved an mAP of 0.7 and an mAP0.5–0.95 of 0.4. These results suggest that YOLOv8 

performs better at the 0.5 Intersection over Union (IoU) threshold, indicating its greater effectiveness in accurately 

identifying objects compared to YOLOv5. 

As shown in Table 1, the detection performance of YOLOv5 and YOLOv8 was compared based on their mean 

Average Precision (mAP) at two different Intersection over Union (IoU) thresholds: 0.5 and 0.5–0.95. The results 

revealed that YOLOv8 outperforms YOLOv5 in terms of mAP@0.5, with a mean value of 0.697 compared to 

YOLOv5’s 0.664. This difference was found to be statistically significant, as confirmed by a paired t-test (t = 98.65, p 

< 0.001). Although YOLOv5 and YOLOv8 showed a smaller difference in their mAP0.5–0.95 values, with YOLOv8 

achieving a mean of 0.397 compared to YOLOv5’s 0.382, this difference was also statistically significant (p = 0.0021).  

Table 1 Comparison of detection performance between YOLOv5 and YOLOv8 

Metric YOLOv5 (Mean ± SD) YOLOv8 (Mean ± SD) p-value Significance 

mAP 0.664 ± 0.015 0.697 ± 0.016 < 0.001 Significant 

mAP0.5:0.95 0.382 ± 0.010 0.397 ± 0.012 0.0021 Significant 

 
Figure 10. mAP0.5, and mAP0.95 for : (a) YOLOv5 algorithm, (b) YOLOv8 algorithm 

Figure 10 provides a visual comparison of the mAP values at both IoU thresholds for each model, highlighting the 

relative performance between YOLOv5 and YOLOv8. The confusion matrix for the YOLOv5 and YOLOv8 algorithm 

provides a detailed overview of its classification performance across four categories such as cotyledon_appear, 

germinated_seed, not_germinated, and background (Figure 11). The YOLOv5 model demonstrates strong accuracy in 

identifying the cotyledon appear class, achieving a True Positive Rate (TPR) of 83%, which indicates high reliability 

in detecting this early growth stage. However, for the germinated seed class, the performance is moderate, with a TPR 

of 60%. This class also experiences a notable False Negative Rate (FNR) of 14%, where actual germinated seeds are 

misclassified as other categories, and a False Positive Rate (FPR) of 30%, primarily due to not germinated instances 

being incorrectly predicted as germinated seeds. Similarly, the not germinated class reaches a TPR of 68%, but 27% of 

its instances are misclassified as germinated seed, contributing to the observed confusion between early germination 

stages. The background class shows the lowest detection performance, with a TPR only 17%, suggesting a tendency of 

the model to misclassify background regions as plant-related classes, particularly cotyledon appear and not germinated. 

In comparison, the YOLOv8 model yields a higher TPR of 89% for the cotyledon appear class, indicating even 

greater detection accuracy than YOLOv5. The germinated seed class under YOLOv8 achieves a TPR of 56%, slightly 

lower than YOLOv5, but it benefits from a lower FNR of 13%, demonstrating improved sensitivity. The not 

germinated class performs better under YOLOv8, with a TPR of 72%. However, it still suffers from a considerable 

FPR of 32%, reflecting persistent confusion with the germinated seed class. The background class again shows limited 

performance, with a TPR of only 14%, similar to YOLOv5, indicating ongoing difficulty in distinguishing background 

from seed objects. 
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Figure 11 Confusion Matrix for (a) YOLOv5 algorithm, (b) YOLOv8 algorithm 

Overall, a comparison of the confusion matrices showed that although both models performed well in identifying 

the emerged cotyledon class, YOLOv5 showed better accuracy in classifying the non-germinated class, while 

YOLOv8 achieved higher precision in detecting the emerged cotyledon class. Although YOLOv8 experienced a slight 

improvement in detection accuracy, the speed of inference remains an important factor for real-time applications such 

as greenhouse monitoring. Based on the evaluation log, YOLOv5 achieved an inference speed of about 49 Frames Per 

Second (FPS), processing 56 images in 1.15 seconds. In contrast, YOLOv8 processes the same number of images in 

4.00 seconds, resulting in a lower effective speed of 14 FPS under the current setup. Thus, while the YOLOv8 offers 

better detection for certain classes, the YOLOv5 may be preferable for real-time systems that require higher frame 

rates and lower latency. 

The model developed in this study was specifically designed for chili (Capsicum annuum L.), and its application to 

other crop species or environmental conditions requires further validation. Different species have different growth 

characteristics, which may affect performance, and transfer learning can be used to adapt the model to other crops. In 

addition, the model was trained under controlled greenhouse conditions, and its robustness to environmental 

variability (e.g., light, temperature, humidity) should be tested through the addition of real-world data and evaluation. 

Performance may also vary with different imaging systems, so retraining or refinement with varying camera data is 

recommended. However, based on our knowledge this models has acceptable compared to other deep learning models 

on agriculture application. 

4. CONCLUSION  

A deep learning model for detecting the early germination stages of chili pepper has been successfully developed 

using the YOLOv5 and YOLOv8 algorithms. The results indicate that the model is stable and accurate in detecting 

objects, as evidenced by the higher number of correct detections compared to incorrect ones. The detection errors are 

likely due to unclear images, which hinder the model's ability to distinguish between objects effectively. Future 

research should focus on expanding the dataset and utilizing other cameras, such as multispectral or UV cameras, 

which would provide richer image data and improve the detection of early germination stages. Additionally, the 

computational limitations encountered during training deep learning models have posed challenges in handling larger 

datasets. Optimizing computational resources would enable the inclusion of more data and enhance the model's 

performance and scalability. These models show significant potential for supporting monitoring systems and detecting 

the early germination stages of chili peppers in nursery greenhouses. 
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