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controller maintained soil moisture at values close to the desired value of 25.1%
with lower error rates, saving 858 mL more water than manual irrigation and 16 mL
more than conventional fuzzy control. The results confirm the potential of fuzzy-GA
systems in optimizing irrigation efficiency and ensuring sustainable use of water in

Corresponding Author: agriculture. The fuzzy-genetic algorithm (Fuzzy-GA) improves fuzzy logic control by
B4 anannugroho@mail.unnes.ac.id maintaining soil moisture at a target level of 25.1%, with a very low steady-state
(Anan Nugroho) error of 0.03783%.

1. INTRODUCTION

About 70% of the freshwater used worldwide is used for agriculture (Perez-Blanco et al., 2020). The demand for food
and water is anticipated to increase dramatically as the world's population is predicted to reach 10 billion people by
2050 (Ganivet, 2020). But conventional irrigation methods frequently depend on set timetables or farmers' instincts,
which results in wasteful water use (Bwambale et al., 2022). Both excessive and insufficient irrigation can be caused
by these inefficiencies, which pose major risks to crop health and water sustainability (Islam et al., 2021; Violino et
al., 2023).

Over-irrigation wastes water and damages plant growth, while under-irrigation limits nutrient uptake and reduces
crop yields (Li e al., 2009; Davies & Albrigo, 1983). Since water availability also affects nutrient mobility and
uptake, efficient irrigation is necessary to optimize both water and nutrient use efficiency. Irrigation systems, thus,
need to consider not only the nutrient content but also the soil water status (Li et al., 2009).

To address these issues, recent technologies have focused on smart irrigation technologies. Internet of Things (IoT)
technologies enable real-time monitoring of the environment, such as soil moisture, and their use for more effective
irrigation decision-making (Liang & Shah, 2023; Saha et al., 2021). Most of the IoT-based systems, however, are still
manual adjustment-dependent. Fuzzy logic controllers are more autonomous in their approach, controlling irrigation
based on parameters like humidity, temperature, and soil moisture (Krishnan et al., 2020). They have saved as much as
58% of water compared to flood irrigation and have the potential to increase crop yield by 164% (Jaiswal & Ballal,
2020). Although they are strong, fuzzy controllers heavily depend on the knowledge expertise to define rules and
membership functions, limiting their efficiency (Niu ez al., 2021).
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To overcome this limitation, optimization algorithms such as Particle Swarm Optimization (PSO) have been
applied, improving soil moisture control and reducing average error compared to non-optimized fuzzy systems (Xie et
al., 2022). Genetic Algorithms (GAs), in particular, have shown promise due to their ability to avoid local optima
through crossover and mutation operations (Bajpai & Kumar, 2010). GAs have been successfully used to optimize
fuzzy rules and membership functions in various control applications, leading to enhanced response time and reduced
overshoot (Niu ef al., 2021; Liang et al., 2020).

Despite these advancements, there is limited research applying GA-optimized fuzzy logic specifically to irrigation
systems. This study addresses that gap by developing a fuzzy logic controller optimized with a Genetic Algorithm for
controlling soil moisture. The proposed system aims to improve irrigation efficiency by delivering water more
precisely and maintaining soil moisture stability, thereby reducing waste without compromising crop health.

2. MATERIALS AND METHODS

2.1. Hardware

The block diagram of the overall system was shown in figure 1, the input is from a soil moisture sensor and the output
is water pump. The soil moisture sensor measures soil capacitance and outputs a corresponding analog signal. The
ESP-32 microcontroller converts this signal to a moisture percentage using its ADC and transmits the data to a central
server via HTTP. The schematic diagram is shown in Figure 2.
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Figure 1. System block diagram
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Figure 2. Schematic wiring diagram

1583



Jurnal Teknik Pertanian Lampung Vol. 14, No. 5 (2025): 1582 - 1592

On the server, a Fuzzy-Genetic Algorithm (Fuzzy-GA) processes the data to compute a Pulse Width Modulation
(PWM) output ranging from 0 to 255. The algorithm determines the PWM value based on the error and derivative
error relative to the target soil moisture level. The schematic of the irrigation system is shown on figure 3. The
computed PWM value dynamically controls the voltage supplied to the water pump, adjusting its speed to optimize
irrigation based on real-time soil moisture. The ESP-32 retrieves the PWM output from the server via HTTP and
actuates the pump to maintain the target moisture level.
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Figure 3. Schematic of irrigation system

2.2. Test Area and Target Setpoint

The experiment was conducted on Citrus sinensis (orange) trees at JI. Kecapi, Serua, Kec. Ciputat, Kota Tangerang
Selatan, Banten (latitude: -6.3070420909202625, longitude: 106.71126629234902). The climate of this region is
tropical. With a wilting point (WP) of 0.1 m*/m* and a field capacity (FC) of 0.25 m*/m?, the soil at the experimental
site is categorised as loam. The sensor probe was positioned 30 cm below the citrus tree canopy to precisely measure
soil moisture, focusing on the root zone where water uptake is most significant. The experimental setup of the study
area is illustrated in Figure 4.

Figure 4. Location of citrus area

To determine the soil moisture setpoint for Fuzzy-GA control, specific formulas were utilized. The first step
involved calculating the Total Available Water (TAW), which represents the amount of water a crop can extract from
its root zone. The magnitude of TAW depends on field capacity, wilting point of soil, and rooting depth. The formula
was shown in Equation 1 (Allen et al., 1998).
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TAW = 1000(FC — WP) x Zr (1)

where FC is field capacity, WP is wilting point, and Zr is the rooting depth. Using Equation 1, the Readily Available
Water (RAW) can then be determined. RAW refers to the portion of TAW that crops can utilize before experiencing
significant water stress, which may lead to yield or quality reduction. The formula was shown in Equation 2.

RAW = p x TAW 2)

where p is the allowable depletion fraction, representing the proportion of soil water content that can be depleted
without causing crop stress, and TAW is the total available water. The p value for Citrus sinensis is 33% (Allen &
MacAdam, 2020; Kadyampakeni et al., 2017). Using equation 2, the target soil moisture was determined by
subtracting FC from RAW. The formula is shown in Equation 3.

RAW

1000 =* Zr) @)

Target = FC — (

2.3. Fuzzy Control

The fuzzy input system comprised two variables: soil moisture error (SME) and the rate of change of soil moisture
error (SMECR). The output variable, designated as u, represents the control signal. The block diagram of the control
system was shown in Figure 5.

Setpoint — = —F— Error —
Fuzzy
—> Plant
Controller
—> d/dt —> Error —
Soil
Moiture €
Sensor

Figure 5. Block diagram of fuzzy control

All three linguistic variables were quantized into 13 levels (Xie et al., 2022). The fuzzy theoretical domain for
SME spans [-8.8], for SMECR it ranges between [-4.4], and for u, the range is [0.255] with an actuator dead zone of 0
—65. The input linguistic variable was defined by seven fuzzy subsets: Positive Big (PB), Positive Middle (PM),
Positive Small (PS), Zero (ZE), Negative Small (NS), Negative Middle (NM), and Negative Big (NB) as for the
output linguistic variable is defined by four fuzzy subsets Zero(ZE), Positive Small (PS), Positive Middle (PM), and
Positive Big (PB). For this study, triangular membership functions, known for their simplicity and computational
efficiency, were employed to represent these subsets (Sutikno ez al., 2021). The analytical formulation of the triangular
membership function was presented in Equation 4 (MathWorks, 2024).

0 x<a
XxX—a
b a a<x<bh
f(x,a,b,c) = {c—x 4)
| b<x<c
tc—b
0 x=>c

where a, b, and c are critical parameters that define the morphology of the membership functions. These parameters
ensure that the membership functions are properly aligned with the fuzzy domain by dictating their shape and
distribution. The specific distribution of the membership functions was illustrated in Figure 6.
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Figure 6. a) Membership function of SME, b) Membership function of SMECR, ¢) Membership of u

A fuzzy controller's design principle was to maximize output when the error is large, minimize output when the
error is small, and carefully consider system stability and overshoot to ensure optimal performance (Xie ef al., 2022).
The rules of the fuzzy controller consisted of 49 rules, as shown in Table 1. The rules in Table 1 adhered to the format:
“If SME x and SMECR Yy, then u z.”

Table 1. Table of fuzzy rules

SMECR
SME NB NM NS ZE PS PM PB
NB PB PB PM PM PM PS ZE
NM PB PB PM PM PS ZE ZE
NS PB PM PM PS ZE ZE ZE
ZE PM PM PS ZE ZE ZE ZE
PS PM PS ZE ZE ZE ZE ZE
PM PS ZE ZE ZE ZE ZE ZE
PB ZE ZE ZE ZE ZE ZE ZE
Table 2. Equations of the performance metrics

Performance Metrics Equations Number

Error = System Input — System Output 5)

RMSE = (6)

1
MAE = —ZIErroriI @)
"=
n
IAE = ZlErroril X At (8)
i=1
n
ITAE = Z(ti X |Error;|)At ©)
i=1
fitness =| RMSE | +| MAE | +| IAE | +| ITAE | (10)

2.4. Fuzzy Genetic Algorithm

In this study, a fuzzy genetic algorithm (Fuzzy-GA) was employed to optimize fuzzy control by altering the range of
triangular membership functions. The membership functions of the fuzzy controller were encoded into chromosomes
to form the initial population. These chromosomes were then subjected to simulation, where the output was evaluated
using performance metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Integral Absolute
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Error (IAE), and Integral Time Absolute Error (ITAE). The formula for the performance metrics was shown in Table 2.
In the table, n is the number of observations, error; is the error for the i™ observation, At is is the time step (At =
time_steps[1] — time_steps[0])8, and t; is the i-th time step value. The evaluation values were inputed into a fitness
function in Equation 10, and the resulting fitness scores were used to select the best membership functions through a
tournament selection method with a size of three.

In this method, three individuals were randomly selected, and the one with the best fitness is chosen as a parent for
the next generation. Tournament selection was employed due to its efficiency and rapid iteration capability (Razali &
Geraghty, 2011). The selected genes were then recombined using Blend Crossover (BLX-a). For each gene in the
parent chromosomes, a child gene was generated by sampling uniformly from an interval around the parent genes
(Tebbal & Hamida, 2023). Small, random mutations were introduced into the genes to maintain genetic diversity and
prevent premature convergence. The next generation was formed by replacing less fit individuals while employing
elitism. The elitism retained the best individuals from the current generation, ensuring that the optimal solution was
preserved despite variations introduced during selection, crossover, or mutation. The flowchart of the Fuzzy-GA was
shown in Figure 7. The genetic algorithm was configured to produce an output after 50 generations.

v
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PETTITTETI Simu"ate ¥
i Response Mutation
v
Calculate v
Fitness
Replace
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is number L.

: of New Optimized

..................... NO"""""'""'"'" generation ---‘YES..) Fuzzy ‘ LD
507 Membership

Figure 7. Flowchart of genetic algorithm optimization process

2.5. Simulation

The simulation for the Fuzzy-GA system was modeled as a first-order system, with its mathematical expression

presented in Equation 11.
288.1953
— 11
¢) = T505605 + 1 (1

The Fuzzy-GA controller was compared to conventional fuzzy control in simulation. In field experiments, the
Fuzzy-GA controller is evaluated against the FAO standard manual irrigation method, as represented in Equation 12.

ETc = Kc + ETo (12)
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where ETc is the crop evapotranspiration (mm/day), Kc is the crop coefficient, and E7o0 is the reference crop
evapotranspiration (mm/day). According to the FAO 56 guidelines, the Kc value for citrus in the late season with 50%
canopy coverage is 0.60, and the E7o is reported as 2159 mm/year (Marganingrum & Santoso, 2019). Based on these
values, the ETc for citrus sinensis is calculated to be 3.9 mm/day.

Volume = ETc X Area (13)

The volume of water required for the plant was determined using the evapotranspiration (E7c) value, as described
by Equation 13. In this calculation, the area represents the soil surface where the plant is cultivated, which is measured
as 706.5 cm?. By applying the appropriate formula, the estimated daily water requirement was determined to be 275
mL. The irrigation schedule for manual control was set at an interval of every two days. This schedule was designed
based on the calculated daily water requirement of 275 mL, ensuring that the plant receives adequate moisture.

3. RESULTS AND DISCUSSION
3.1. Sensor Calibration

Sensor calibration was performed on the sensors used in this experiment to ensure accurate measurement of soil
moisture in the field. The calibration process was conducted to minimize errors and improve measurement reliability,
the calibration is done on 200ml of soil. The results of the sensor calibration are presented in Table 3. Based on these
results, a polynomial regression analysis was conducted to derive the calibration equations, as presented in Eq. (14).

F(x) = (4%107%)x2 — (0.185)x + 207.76 (14)

where x is the sensor value, Equation 14 has a fit of 96.95%. The graphical representation of the calibration curve is
shown in Figure 8, illustrating the correlation between the measured and predicted values.

Table 3. Sensor calibration output

Sensor Read 2110 1860 1690 1598 1410 1325 1110 955 947
Soil Moisture (%) 0 1.1 5.5 14.3 23.1 44.0 55.0 64.9 67.1
CALIBRATION
80 - y = 4E-05x? - 0.185x + 207.76
R2 = 0.9695
® 60
=]
& 40 - ¢
B
a
L 2
9 20 -
—
o 0 hd
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Figure 8. Equation fit from calibration

3.2. Control Result

The simulation was conducted using the Python programming language, with a target soil moisture level of 25.01%, as
calculated using Equation 3. The results of the simulation are presented in Figure 9. From the figure, it can be
observed that the fuzzy GA approach achieves a stable value with reduced steady-state error. The system response of
the GA-optimized system includes a steady-state error of 0.03783%, an overshoot of 0.4920%, a settling time of 1.301
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seconds, a root mean square (RMS) error of 1.6416%, and a mean absolute error (MAE) of 0.37588%. This occurs
because the Genetic Algorithm (GA) continuously searches for optimal membership parameters and evaluates the
system response over 50 generations. Upon reaching the 50th generation, a new membership function is generated and
applied to the system, resulting in improved fuzzy control performance and enhanced irrigation optimization.

System Response with Fuzzy GA Logic Control (Target = 25.01) System Response with Fuzzy Logic Control (Target = 25.01)

15 4

15

10 10

Soil Moisture (%)
Soil Moisture (%)

—— System Output

—— System Output

04 ——- Target (25.01) 04 ——- Target (25.01)
6 Zb 4‘0 Gb BIO 160 6 2‘0 4‘0 6‘0 Sb 160
Time [s] Time [s]
Figure 9. Response of fuzzy GA control Figure 10. Response of fuzzy logic control

In contrast, the standard fuzzy controller's system response, shown in Figure 10, reveals a steady-state error of
0.091%, an overshoot of 0.331%, a settling time of 1.301 seconds, a root mean square (RMS) error of 1.648%, and a
mean absolute error (MAE) of 0.403%. These performance metrics suggest that, although the fuzzy controller
manages soil moisture levels, it displays a relatively higher steady-state error and less overshoot. This variance from
the intended setpoint is attributed to the suboptimal performance of the membership function, highlighting the
necessity for controller optimization to improve accuracy and stability in agricultural applications. The comparison
between fuzzy logic and fuzzy GA is depicted in Figure 1la. The fuzzy and fuzzy GA controllers, tested in a

greenhouse experiment on Citrus sinensis, produced results consistent with those obtained from the simulation. The
results are represented in Figure 11b.

Comparison of Fuzzy, Fuzzy GA, and Manual

Fuzzy GA and Fuzz: | o Fuzzy [
Y Y 425 -m- Fuzzy GA /."' '
2T ———————— e — | Fr———gr————— —&- Manual /‘, \,
40.0 7 .- Target (25.01) e A
s v
204 3754 & e~ ‘/
gk —
T S
35.0 1 *-

15
32.5

Soil Moisture (%)

10

Soil Moisture (%)
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— Fuzzy
0 — Fuzzy GA
0 20 2 60 80 100 2 4 6 8 10 12 14
Time Days
(a) (b)

Figure 11. (a) Comparison of fuzzy and fuzzy GA, and (b) Experimental results of fuzzy, fuzzy GA, and manual

The experimental setup demonstrated a higher Mean Absolute Error (MAE) for both the fuzzy and fuzzy-GA
models, measuring 0.9138% and 0.7695%, respectively. This rise in error is linked to environmental noise factors like
fluctuations in temperature and air humidity, leading to discrepancies in sensor readings. Furthermore, the system's
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sensor placement influences the readings, particularly if the sensor is not adequately in contact with the soil. Despite
these challenges, the results indicate that the fuzzy GA controller demonstrated greater stability compared to the
standard fuzzy controller. The manual control method recommended by the FAO maintains an average soil moisture
level of 38.61%, which remains within a reasonable range to adequately support plant growth. The FAO method results
in higher soil moisture levels due to its reliance on a fixed irrigation schedule rather than real-time soil moisture
measurements. As a result, irrigation is applied even when the soil still has sufficient water to support plant growth.

3.3. Water Usage and Plant Growth

The water usage and plant growth in this experiment was recorded and analyzed, with the results presented in Table 4.
The results indicate that fuzzy control achieves more optimized water utilization compared to manual methods, with
further improvements when the fuzzy GA approach is utilized. This enhanced efficiency stems from the adaptive
characteristics of fuzzy control, which respond dynamically to actual soil moisture levels rather than following a fixed
irrigation schedule. Consequently, irrigation occurs only when soil moisture falls below the target level, thus
eliminating waste from excessive water application.

Table 4. Water usage and plant growth

Citrus Sinensis Tree Manual Control Fuzzy Control Fuzzy GA Control
Plant Water Usage 4125 mL 3283 mL 3267 mL

Plant Height Growth 0.4 cm 0.3 cm 0.3 cm

Stem Width Growth 0cm 0cm 0cm

With minimal water usage, plant growth remains unaffected, as evidenced by the data presented in Table 14. The
results indicate that plant growth under the fuzzy and fuzzy GA control methods is either comparable to or only
slightly different from that observed under the scheduled irrigation control recommended by the FAO. This outcome
suggests that the optimized irrigation approach successfully maintains soil moisture within the optimal range for plant
growth. Since the minimum water requirement for optimal growth is met, plant development proceeds similarly to that
of plants irrigated using the conventional schedule. This demonstrates that adaptive irrigation strategies, such as fuzzy
and fuzzy GA control, can lead to substantial water conservation without compromising crop health and yield. The
unchanged stem width observed in the experiment is likely due to the short duration of the study, which was
insufficient to capture measurable growth changes. Given the natural growth rate of stem width, the experimental
period may not have been long enough to allow for meaningful comparisons.

4. CONCLUSION

This study shows that using a fuzzy-genetic algorithm (Fuzzy-GA) improves fuzzy logic control by maintaining soil
moisture at a target level of 25.1%, with a very low steady-state error of 0.03783%. Compared to both manual control
and a standard fuzzy controller, the Fuzzy-GA method reduces water usage by 858 mL and 16 mL respectively making
it more efficient. These findings indicate that Fuzzy-GA offers a promising approach for precision irrigation,
particularly in applications where resource optimization and system responsiveness are critical. The observed
improvements in both accuracy and efficiency underscore its potential for deployment in automated agricultural
environments. However, a key limitation of this study is that the system can only maintain soil moisture when it falls
below the target threshold. If soil moisture exceeds the target level, the system merely waits for natural evaporation
instead of actively reducing moisture levels. Consequently, this approach is most suitable for controlled environments
such as greenhouses. Moreover, sensor placement and stability may influence measurement accuracy, which can affect
control reliability.

Future research should address this limitation by incorporating actuators capable of artificially reducing soil
moisture, such as adding an aerator to ventilate the system more effectively and enhance adaptability. Additionally, it
could explore sensor placement strategies to ensure continuous contact with the probe, possibly by incorporating an
anchor mechanism. Investigating different optimization algorithms, such as the Grey Wolf Optimizer or hybrid
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methods that combine various algorithms, may enhance performance. Furthermore, extending the experiment duration
would provide a more comprehensive evaluation of system performance.
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