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ABSTRACT 
 

The Krueng Peusangan Watershed in Aceh Province is highly vulnerable to flooding, with 

20.39% of its area classified as flood-prone, particularly in Bireuen Regency. This study 

aims to develop a water level prediction model using the Extreme Learning Machine (ELM), 

a type of Artificial Neural Network known for its computational efficiency and ability to 

handle uncertainty in hydrological data. The model was trained using water level data from 

the Krueng Peusangan River from January 2014 to June 2023. The results show a Mean 

Squared Error (MSE) of 0.063, indicating high predictive accuracy. Compared to 

conventional methods, ELM delivers faster computation and better precision. This research 

contributes to the development of data-driven flood early warning systems, supports 

adaptive and sustainable water resource management, and offers potential for replication in 

other watersheds with similar characteristics. Furthermore, the model provides a scientific 

basis for formulating disaster risk reduction policies leveraging artificial intelligence 

technologies. The promising accuracy of ELM supports its potential integration into real-

time flood early warning systems and long-term adaptive water resource management in 

vulnerable river basins. 

1. INTRODUCTION 

Global climate change triggered by global warming has caused significant impacts worldwide, including the increased 

frequency and intensity of extreme rainfall events (Syafitri & Harahap, 2023; Ramli et al., 2019a). This phenomenon 

has led to frequent floods in many regions, further threatening human lives and the economy. Flooding can damage 

critical infrastructure, homes, and agricultural land, which is the primary source of livelihood for many communities. 

The effects of this climate change are becoming increasingly alarming, as they threaten food security, health, and the 

well-being of people in various areas. Therefore, this phenomenon has become a major concern for many parties, 

especially in regions vulnerable to natural disasters, including floods (Rahmi et al., 2024; Zalmita et al., 2021). 

One of the areas affected by climate change is the Krueng Peusangan River basin located in Aceh. This river plays 

an important role in supporting agricultural, fisheries, and domestic water needs for the local community. Historically, 

it has been the main water source for agricultural activities and also serves as a transportation route for fishery 

products (Ferijal et al., 2016). However, in recent years, the region has experienced an increase in the frequency of 

floods, causing significant damage (Tyagi et al., 2014; Yulida et al., 2022). The damage includes the destruction of 

infrastructure, the collapse of residents' homes, and the flooding of agricultural land, which directly impacts the local 

economy, which heavily relies on these sectors. 
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The Krueng Peusangan river basin is highly vulnerable to flooding. This is due to various biophysical factors that 

affect the river's capacity to store and flow water effectively. These factors include the area's low-lying topography, 

uncontrolled land use, and increasingly unpredictable rainfall patterns (Rahmi et al., 2024; Ramli et al., 2021; Achmad 

et al., 2024; Ramli et al., 2019b). In addition to the more frequent extreme weather events caused by climate change, 

poorly planned land use changes also exacerbate the river's ability to manage water flow. The conversion of farm land 

into settlements or industrial areas, as well as deforestation, leads to a reduction in the soil's ability to absorb rain 

water, contributing to the increased volume of water flowing into the river and worsening the potential for flooding. 

In facing this situation, it is crucial to have an accurate method for predicting water flow, so that the potential for 

flooding can be estimated and mitigation efforts can be carried out more effectively. Accurate water flow predictions 

can help local governments and communities prepare preventive measures before flooding occurs. One method widely 

used in modern hydrology is the application of machine learning techniques, one of which is Extreme Learning 

Machine (ELM) (Dewi et al., 2018). ELM is a relatively new machine learning method that has rapidly developed in 

recent years. This method is used to improve accuracy in predicting water flow, especially compared to traditional 

methods such as linear regression or more complex physical hydrological models (Rachmawardani et al., 2022). 

ELM works differently compared to traditional artificial neural networks. In ELM, the weights in the hidden layer 

of the neural network are determined randomly, which makes the training process much faster and more efficient 

(Rochman et al., 2018). The main advantage of ELM is its ability to handle data with high uncertainty and significant 

variation, which is often encountered in hydrological data. By using ELM, the training process can be completed in a 

shorter time, while still producing a model with high accuracy. Several studies have shown that ELM can provide 

more accurate predictions in forecasting monthly river flow, compared to other methods such as linear regression or 

ARIMA (AutoRegressive Integrated Moving Average) models (Rochman et al., 2018; Ridwan et al., 2021). 

The use of ELM in this study is highly relevant, considering that historical water level data in the Krueng 

Peusangan river basin is already available and can be used for more in-depth analysis (Padhila et al., 2022). Although 

this historical data exists, accurate and relevant predictions require more advanced and efficient analytical techniques 

such as ELM. By utilizing ELM, water flow predictions can be made more accurately and timely, which will be 

extremely useful for water resource managers and other relevant parties in planning more effective flood mitigation 

strategies (Sandiwarno, 2024). 

In addition, the combination of ELM's efficient and accurate potential with a comprehensive data-driven flood 

management strategy is expected to make a significant contribution to reducing the impact of floods on local 

communities. In the face of climate change, which has led to an increase in extreme rainfall, this prediction-based 

approach will be extremely helpful in designing more appropriate and timely mitigation policies and actions. To date, 

no studies have applied ELM in the Krueng Peusangan Watershed, making this research a novel and relevant 

contribution both scientifically and practically. Therefore, this study aims to develop a water level prediction model 

that not only enhances the accuracy of predictions but also provides a solid foundation for policymakers to design 

more effective flood mitigation strategies in the Krueng Peusangan river basin. With the right measures in place, the 

negative impacts of climate change, particularly flooding, can be minimized, and the well-being of the community can 

be safeguarded. The expected benefit of this research is to support the development of adaptive and data-driven flood 

management policies that can be applied not only in the Krueng Peusangan river basin but also as a reference for other 

regions facing similar hydrological challenges.  

2. METHOD 

The data used in this study was secondary data obtained from the River Basin Management Office (BWS), which 

provided information on the water level of the Krueng Peusangan River (Figure 1). The Krueng Peusangan Watershed, 

located in Aceh Province, is highly vulnerable to flooding, with 20.39% of its area classified as flood-prone, 

particularly in Bireuen Regency. The data spans a considerable period, from January 2014 to June 2023. The water 

level data collected during this period is crucial for analyzing the patterns of water level changes in the Krueng 

Peusangan River, which will serve as the basis for the prediction model. By utilizing this secondary data, the study can 

leverage previously recorded information, enabling a more in-depth and accurate analysis of the factors affecting  
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Figure 1. Research Location 

water level changes in the watershed area. The relationship is represented by the function 𝑌 = 𝑓(𝑋1, 𝑋2,𝑋3) shows that 

X1 represents the water level data in the morning, X2 represents the water level data in the afternoon, X3 represents the 

water level data in the evening, and Y represents the average of all water levels. 

2.1 Extreme Learning Machine (ELM) 

In general, the artificial neural network model that applies Extreme Learning Machine (ELM) as its learning method 

(Figure 2), as proposed by (Huang et al., 2004). This figure 3 provides a basic structural overview of how the ELM 

framework is implemented within the network. The calculation process in the ELM method is divided into two main 

stages: the training process and the testing process.  

 

Figure 2. The structure of an Extreme Learning Machine (ELM) 

2.1.1 Training Process 

Figure 2 illustrates the ELM-based neural network model proposed by Huang et al. (2006). The training process stages 

were as follows: 

1. Randomly initialize input weights and biases in the range -1 to 1. 

2. Compute hidden layer outputs using a nonlinear activation function (Eq. 1). 

𝐻𝑖,𝑗 = (∑ 𝑥𝑖𝑘
𝑛
𝑘=1 . 𝑤𝑗𝑘) + 𝑏𝑗        (1) 
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where 𝐻𝑖,𝑗 is matrix element 𝐻 in row i column j, 𝑖 = [1,2, …, 𝑁], where 𝑁 is the amount of data, 𝑗 = [1,2, …, 𝑁̃], 

k is number of input neurons, 𝑤𝑗𝑘 is the weight connecting the input neuron to the hidden neuron i, n is number of 

hidden layer neurons, 𝑏𝑗 is bias of the hidden neuron, and 𝑥𝑖𝑘 is input data vector. 

3. The hidden layer output (H) was processed using a sigmoid activation function, f(x), to map values between 0 and 

1 (Eq. 2). 

𝑓(𝑥) =  
1

1+𝑒−𝑥        (2) 

4. The transposed hidden layer output (after activation) is used to compute neural network weights in ELM. 

5. Calculating the Moore-Penrose Generalized Inverse Matrix (H+), as shown in (Eq. 3). 

 𝐻+ = (𝐻𝑇𝐻)−1𝐻𝑇       (3) 

where H is hidden layer matrix with the activation function 

6. Output weights matrix (β) are computed from the hidden to output layer for accurate predictions (Eq. 4). 

β = 𝐻+𝑇        (4) 

where T is target matrix 

2.1.2. Testing Process 

The steps in the testing process are as follows: 

1. Apply trained weights and biases to new inputs. 

2. Compute hidden layer output 

3. Next, calculate the output layer result (y), which is the prediction outcome, as shown in (Eq. 5).  

𝑦 = 𝐻𝛽       (5) 

2.1.3. Data Normalization 

To keep outputs within range, ELM applies Min-Max normalization to scale inputs between 0 and 1 (Eq. 6). 

𝑥′ =
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
      (6) 

where 𝑥′ = normalized data value, 𝑥 = data value before normalization, min = minimum value in the dataset, max = 

maximum value in the dataset. 

2.1.4. Data Denormalization 

To interpret results in real scale, denormalization is applied to reverse normalization (Eq. 7). 

𝑥 = 𝑥′(𝑚𝑎𝑥 − min) + 𝑚𝑖𝑛     (7) 

where 𝑥′ is data value before denormalization, and 𝑥 is data value after denormalization 

2.1.5. Mean Square Error (MSE) 

Mean Square Error (MSE) evaluates ELM performance by comparing predicted and actual outputs (Eq. 8). 

𝑀𝑆𝐸 =
∑ 𝑒𝑖

2𝑛
𝑖=1

𝑛
=

∑ (𝑦𝑖−𝑡𝑖)2𝑛
𝑖=1

𝑛
      (8) 

where 𝑛 = number of data, 𝑒 = error, 𝑦𝑖  = output value (prediction), and 𝑡𝑖 = actual value 

2.1.6. Relative Root Mean Square Error (RRMSE) 

Relative Root Mean Mean Square Error (RRMSE) evaluates ELM performance by comparing predicted and actual 

outputs (Eq. 8). 
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𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸      (9) 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦̅
× 100%      (10) 

where 𝑅𝑅𝑀𝑆𝐸 is the square root of the prediction error variance, and 𝑦̅ is the average of the actual values 

All ELM computations were implemented in MATLAB R2023a, which provides efficient matrix operations and 

visualization tools. The training and testing datasets were processed using built-in functions, and the ELM algorithm 

was coded manually for flexibility in model architecture and evaluation. 

2.2 Water Level Prediction Model for Krueng Peusangan 

The prediction model in ELM is a mathematical representation of the relationship between input data and output that 

is learned by the ELM (Huang et al., 2006). This model is used to map input data (𝑋) to the predicted output (𝑌). 

based on previous training with the target data (𝑇). In this study, the best ELM model produced is: 

The output matrix of the hidden layer is represented as 𝐻𝑖. 

𝐻𝑖 = 𝑏𝑖 + ∑ (𝑥𝑗 × 𝑤𝑖,𝑗)11
𝑗=1               (11) 

𝐻1 = 𝑏1 + ∑ (𝑥𝑗 × 𝑤1,𝑗)11
𝑗=1   

𝐻1 = 𝑏1 + [(𝑥1 × 𝑤1,1) + (𝑥2 × 𝑤1,2) + (𝑥3 × 𝑤1,3) + ⋯ + (𝑥11 × 𝑤1,11)] 

𝐻2 = 𝑏2 + [(𝑥1 × 𝑤2,1) + (𝑥2 × 𝑤2,2) + (𝑥3 × 𝑤2,3) + ⋯ + (𝑥11 × 𝑤2,11)] 

𝐻3 = 𝑏3 + [(𝑥1 × 𝑤3,1) + (𝑥2 × 𝑤3,2) + (𝑥3 × 𝑤3,3) + ⋯ + (𝑥11 × 𝑤3,11)] 

⋮ 

𝐻9 = 𝑏9 + [(𝑥1 × 𝑤9,1) + (𝑥2 × 𝑤9,2) + (𝑥3 × 𝑤9,3) + ⋯ + (𝑥11 × 𝑤9,11)] 

The output matrix of the hidden layer with an activation function= 𝐺𝑖 = 𝑔(𝐻𝑖) 

𝐺𝑖 = 𝑔(𝐻𝑖) =
1

1+𝑒(−𝐻𝑖)  
            (12) 

𝐺1 = 𝑔(𝐻1) =
1

1+𝑒(−𝐻1)  
  

𝐺2 = 𝑔(𝐻2) =
1

1+𝑒(−𝐻2)  
  

𝐺3 = 𝑔(𝐻3) =
1

1+𝑒(−𝐻3)  
  

⋮ 

𝐺11 = 𝑔(𝐻9) =
1

1+𝑒(−𝐻9)  
  

The prediction results = 𝑌 

𝑌 = ∑ (𝛽𝑖 × 𝐺𝑖)
9
𝑖=1        (13) 

𝑌 = [(𝛽1 × 𝐺1) + (𝛽2 × 𝐺2) + (𝛽3 × 𝐺3) + ⋯ + (𝛽9 × 𝐺9)] 

Therefore, if 𝑌 is expanded, it will become : 

𝑌 = ∑ [𝛽𝑖 × 𝑔(𝑏𝑖 + ∑ (𝑥𝑗 × 𝑤𝑖,𝑗)11
𝑗=1 )] 9

𝑖=1     (14) 

where Y is the predicted output, 𝛽𝑖 is output weight, 𝑤𝑖𝑘 is the weight that connects the input neuron to the hidden 

neuron-i, 𝑛 is the number of neurons in the hidden layer, 𝑏𝑗 is the bias in the hidden neuron, 𝑥𝑗is the input data vector. 
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3. RESULTS AND DISCUSSION 

3.1 Determining Input Neuron and Neuron Layer 

The water level data used consists of 2.755 data points. The data is then split into 2,204 for training data and 551 for 

testing data, with a training-to-testing data ratio of 80%:20%. The number of input layers is set to 11, with 9 hidden 

layers. Next, the prediction calculation is carried out using the best input layer and hidden layer. To provide a clearer 

representation of the data pattern and distribution, a scatter plot of the water level data is presented in Figure 3. 

 

Figure 3. Water level data of the Krueng Peusangan River during 2014-2023 

Table 1. Comparison of MSE values for 11 input layer neurons with 1, 5, 7, 9, and 11 hidden neurons 

Hidden Neurons with 11 Input Layer Neurons 

 1 5 7 9 11 

1 4.942 0.585 0.453 0.072 0.749 

2 2.433 0.846 0.547 0.012 0.688 

3 3.687 0.790 0.951 0.007 0.627 

4 3.463 0.832 0.917 0.044 0.851 

5 3.330 0.498 0.578 0.019 0.530 

6 2.882 0.951 1.004 0.028 0.646 

7 3.626 0.742 0.675 0.010 0.544 

8 2.882 0.873 0.817 0.260 0.606 

9 2.884 0.634 0.798 0.047 0.679 

10 3.592 0.610 0.687 0.126 0.559 

Average 3.372 0.736 0.743 0.063 0.648 

At this stage, testing is conducted on the number of input neurons and neurons in the layer being used. The goal is 

to achieve better prediction results. Determining the number of neurons in the input and hidden layers is crucial in the 

Extreme Learning Machine (ELM) method, as it directly affects the model's performance in making predictions. The 

number of neurons in the hidden layer is a key parameter that influences the model’s ability to generalize. Too few 

neurons can lead to underfitting, where the model is not complex enough to capture the data patterns. Too many 

neurons can result in overfitting, where the model becomes too complex and fits the noise in the data, reducing its 

generalization ability. Therefore, in this study, the number of neurons in the input layer tested was 11, while the 

number of neurons in the hidden layer tested was 1, 5, 7, 9, and 11. 

Table 1 shows a comparison of the testing results for the number of neurons in the input layer (11 neurons) and 

hidden layer (1, 5, 7, 9, and 11 neurons) as follows. With various numbers of neurons in the hidden layer specifically 
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1, 5, 7, 9, and 11 units the table aims to demonstrate how changes in the number of hidden neurons affect the model's 

performance in predicting water level. This comparison allows for the identification of the most effective neuron 

configuration in producing an optimal model, as well as its impact on the prediction accuracy of the artificial neural 

network employed in this study. As shown in the Table 1, the lowest Mean Squared Error (MSE) is achieved when 

using 9 hidden neurons, with an MSE value of 0.063. Thus, the model with 9 hidden neurons is considered optimal, as 

it is capable of capturing daily variations without overfitting. Therefore, based on the tables above, it can be concluded 

that the smallest average MSE value is found with the 11th input layer and 9 hidden neurons, with an MSE value of 

0.063. Thus, to predict the water level in the Peusangan River Basin (DAS Krueng Peusangan), the 11th input layer 

and the 9th hidden layer neurons are used. 

3.1. Comparison of Predicted and Actual Water Level Values  

The comparison results between predicted and actual values water level data are used to evaluate the performance of 

the applied model. The analysis is conducted by calculating evaluation metrics such as Mean Squared Error (MSE) to 

measure the model's accuracy level. Additionally, this comparison helps determine whether the model experiences 

overfitting or underfitting and assists in refining the model to produce more accurate predictions (Figure 4).  

The ELM method is very relevant in hydrological prediction and flood management. (Xu et al., 2023) Based on 

the comparison of predicted and actual values over the next 10 days, it is evident that the prediction model has a fairly 

good accuracy level with varying errors. On certain days, such as 6/5/2023 (0.04), the model produces results very 

close to the actual values, indicating accurate predictions. The graph shows a comparison between predicted values 

(blue line) and actual values (red line) over the next 10 days based on testing data. In general, the prediction pattern 

follows the trend of actual values, although there are some differences at certain points. On specific days, such as 

6/4/2023 and 6/5/2023, the predicted values closely match the actual values, indicating high model accuracy. This 

graph helps evaluate the performance of the prediction model and determine steps to improve accuracy. 

  

Figure 4. Comparison of prediction and actual results for the next 10 days with absolute errors in the right 

3.2 Prediction Results Based on MSE Values Using Training and Testing  

The water level prediction testing based on training and testing data with an 80%:20% split was conducted using 

Excel 2017 and Matlab. The prediction results for the next 50 days, starting in July 2023, can be seen in Figure 5. The 

lowest predicted value occurred on Sunday, July 2, with a water level of 50.78 cm, while the highest predicted value 

was recorded on Friday in August, reaching 61.39 cm. The test results indicate that during the first seven weeks, the 

water level remained within the normal category without any significant peaks. The predicted water level results are 

illustrated in Figure 5. Thus, the lowest predicted value occurred on Saturday, July 1st, with a water level of 
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47.04 cm, while the highest predicted value was recorded on Friday in August, reaching 60.49 cm. These 

test results indicate that during the first seven weeks, the water level remained within a normal range, with 

no significant increases in water level.  

 

Figure 5. Predicted water level for the next 50 days 

The increase in water levels over the seven weeks could be influenced by various factors, such as rain-fall patterns, 

hydrological conditions, or human activities in the surrounding area. However, the water level remained within the 

"normal" range, meaning it has not yet reached levels that indicate a high-risk or flood situation. In hydrological 

terms, a high water level occurs when the water surpasses the capacity of the channel or storage reservoir. A water 

level ranging from 50.78 cm to 61.39 cm indicates that the storage system is still capable of holding the water without 

high risk. This suggests that the first seven-week observation period remained within a safe hydrological limit. 

The implementation of the ELM method can be used to predict the water level in Krueng Peusangan by defining 

the number of hidden layers and input weights that result in the output with the smallest error value. The lowest Mean 

Square Error (MSE) achieved was 0.063. This result proves that the amount of training and testing data in ELM affects 

the error value produced, as the ELM method is a training-based approach. Therefore, the more training data available, 

the better the prediction results obtained. This study highlights the importance of applying machine learning 

technology, such as Extreme Learning Machine (ELM), in water resource management for the agricultural sector. This 

technology enables faster and more accurate data analysis and can predict flood risks based on rainfall patterns, river 

flow, and other environmental factors. Data-driven management strategies have proven to be key in addressing flood 

challenges, ensuring water use efficiency, and supporting the sustainability of agricultural systems. LM has been 

implemented to predict various phenomena, including water discharge, water level, and rainfall prediction. ELM 

accuracy tests are superior to other methods, such as Support Vector Machine (SVM) and traditional artificial neural 

networks, in predicting river discharge and drought (Parajuli et al., 2024). 

The integration of monitoring, forecasting, and control is essential to achieving a balance between agricultural 

water needs and environmental conservation. The implementation of predictive technologies such as ELM can 

enhance the accuracy of water resource management, particularly in long-term planning to mitigate droughts, floods, 

and land degradation (Xie et al., 2017). This approach aligns with the concept of sustainable water resource 

management, emphasizing a holistic, data-driven system to minimize the impacts of climate change and pressures on 

agricultural ecosystems. 

3.3 The Comparison Between Predicted and Observed Values 

The comparison between predicted and observed values is conducted to evaluate the accuracy of the model in 

mapping the water level patterns based on historical data. The observed values represent the actual recorded water 

levels, while the predicted values are the outcomes generated by the model, which is built using input variables.  The  
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Table 2. Comparison results between predictions and observations. 

No Date 
Prediction  

(cm) 

Observation  

(cm) 

Absolute Error  

(cm) 

Percentage Error 

(%) 

1 7/01/2023 51.04 49.3 1.74 3.53 

2 7/02/2023 50.78 53.7 2.92 5.44 

3 7/03/2023 52.01 51.7 0.31 0.60 

4 7/04/2023 53.51 53.3 0.21 0.39 

5 7/05/2023 51.64 53.7 2.05 3.84 

6 7/06/2023 52.92 53.3 0.37 0.70 

7 7/07/2023 53.92 53.3 0.62 1.16 

8 7/08/2023 53.92 54.3 0.37 0.70 

9 7/09/2023 53.72 54.7 0.98 1.79 

10 7/10/2023 54.23 55.3 1.07 1.93 

11 7/11/2023 55.29 53.3 1.99 3.73 

12 7/12/2023 55.10 51.7 3.39 6.58 

13 7/13/2023 54.81 54.3 0.51 0.94 

14 7/14/2023 55.54 53.3 2.24 4.20 

15 7/15/2023 56.17 55.0 1.16 2.13 

16 7/16/2023 55.97 56.1 0.12 0.23 

17 7/17/2023 55.94 58.3 2.35 4.05 

18 7/18/2023 56.57 57.7 1.12 1.96 

19 7/19/2023 57.00 58.3 1.29 2.23 

20 7/20/2023 56.81 59.0 2.18 3.71 

21 7/21/2023 56.90 58.3 1.39 2.40 

22 7/22/2023 57.49 59.1 1.60 2.72 

23 7/23/2023 57.74 59.5 1.75 2.96 

24 7/24/2023 57.61 58.3 0.68 1.18 

25 7/25/2023 57.81 59.3 1.49 2.51 

26 7/26/2023 58.28 61.7 3.41 5.54 

27 7/27/2023 58.42 60.0 1.57 2.63 

28 7/28/2023 58.35 60.0 1.64 2.75 

29 7/29/2023 58.96 59.7 0.73 1.24 

30 7/30/2023 59.04 58.3 0.74 1.27 

31 7/31/2023 59.03 56.7 2.33 4.11 

32 8/01/2023 59.28 60.0 0.71 1.20 

33 8/02/2023 59.56 60.4 0.83 1.39 

34 8/03/2023 59.60 60.7 1.09 1.81 

35 8/04/2023 59.64 59.8 0.15 0.27 

36 8/05/2023 59.89 55.3 4.49 8.30 

37 8/06/2023 60.10 60.3 0.19 0.33 

38 8/07/2023 60.12 63.3 3.17 5.02 

39 8/08/2023 60.20 58.7 1.50 2.56 

40 8/09/2023 60.42 58.3 2.12 3.64 

41 8/10/2023 60.57 58.3 2.27 3.89 

42 8/11/2023 60.60 60.7 0.09 0.16 

43 8/12/2023 60.70 58.3 2.40 4.12 

44 8/13/2023 60.89 60.0 0.89 1.48 

45 8/14/2023 60.89 60.0 0.89 1.48 

46 8/15/2023 61.01 61.3 0.29 0.47 

47 8/16/2023 61.04 60.0 1.04 1.73 

48 8/17/2023 61.15 60.7 0.45 0.74 

49 8/18/2023 61.31 61.3 0.01 0.02 

50 8/19/2023 61.39 61.7 0.30 0.50 

Average 57.43 57.59 1.39 2.39 
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results of comparing the predicted values with the actual values over the next 7 weeks (Table 2) show that the 

prediction model has a relatively good accuracy, with errors varying. On certain days, such as 12/8/2023 (0.0943) and 

18/8/2023 (0.0108), the model provided results very close to the observed values, indicating accurate predictions. The 

graph of the predicted water levels is shown in Figure 6. The graph shows the comparison between the predicted 

values (blue line) and the observed values (red dots) over the next 7 weeks. In general, the prediction pattern follows 

the trend of the observed values, but there are some differences at certain points. On days such as 12/8/2023 and 

18/8/2023, the predicted values closely matched the observed values, indicating high model accuracy. This graph helps 

in evaluating the performance of the prediction model and determining steps for improving accuracy. 

 

Figure 6. Comparison results between predictions and observations 

This study indicates a tendency for an increase in water levels during the first seven weeks of observation. This 

increase is suspected to be influenced by various factors such as rainfall patterns, regional hydrological conditions, 

and anthropogenic activities around Krueng Peusangan. However, the recorded water levels remain within the normal 

range, between 50.78 cm and 61.39 cm, indicating that the water channels or reservoirs still have the capacity to 

handle the existing flow without causing potential flooding. Therefore, this period can still be considered 

hydrologically safe. 

The use of the Extreme Learning Machine (ELM) method in this study produced satisfactory results in terms of 

prediction accuracy, with the lowest Mean Square Error (MSE) value of 0.063. The model demonstrated strong 

predictive performance, with an MSE of 0.063 and RMSE of 0.2511, while the RRMSE is 0.44%, indicating that the 

model can accurately capture the observed water level variations with minimal relative error. Since an RRMSE value 

below 10% is generally considered excellent, this result suggests that the model achieves a high level of accuracy and 

is well-suited for practical applications such as flood forecasting and early warning systems. This model successfully 

generated predicted values that closely match the actual data, as seen in the graph, which shows a similar pattern 

between the predicted and observed results. These findings confirm that the quantity of training and testing data 

significantly affects the model's accuracy. The larger the dataset used for training, the higher the quality of the 

predictions. Thus, ELM has proven to be an effective machine learning method for modeling water surface levels (Xie 

et al., 2023). 

From a contribution standpoint, this research holds considerable value in supporting disaster mitigation efforts, 

particularly regarding floods that can cause widespread economic and social losses. However, since this study focuses 

primarily on prediction aspects, further development is needed. In the future, integrating prediction results with early 

warning systems, decision-making support, and regional planning would be highly beneficial. The presentation of 

results can also be enhanced by using more interactive data visualizations, making it easier to understand and apply for 

various stakeholders.  
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4. CONCLUSION 

The Extreme Learning Machine (ELM) method has proven to be effective in predicting water levels in the Krueng 

Peusangan River Basin (DAS Krueng Peusangan). The predictions for the next 50 days (July–August) show a stable 

water level during the first 7 weeks, with no signs of significant increases in water levels. The discovered ELM model 

has proven to be accurate in predicting water levels, with optimal neuron weights providing more precise and effective 

prediction results. The findings indicate that ELM can produce accurate and optimal predictive models, as evaluated 

through error analysis using Mean Square Error (MSE). With a well-trained model, the predicted water levels can 

serve as a basis for water management in the Krueng Peusangan watershed, offering crucial insights for planning and 

policymaking related to water resource management in the region. These results highlight the importance of 

implementing advanced machine learning techniques such as ELM and data-driven strategies to support water 

resource management efforts. This stability forms an important basis for planning more accurate and effective flood 

management strategies. The success of ELM in predicting water levels supports its application in developing real-time 

flood early warning systems and long-term water resource planning strategies, especially in flood-prone river basins 

like Krueng Peusangan. Therefore, it is recommended that future research explores the integration of ELM with 

remote sensing data and GIS for spatial analysis, and compares its performance with other advanced machine learning 

models such as LSTM, GRU, or hybrid approaches. Additionally, optimizing ELM parameters using multi-objective 

algorithms like genetic algorithms or particle swarm optimization could further enhance model robustness. The 

development of user-friendly decision support tools based on ELM outputs, such as interactive dashboards or mobile 

applications, is also encouraged to aid local stakeholders and policymakers. These steps will not only improve 

predictive accuracy but also ensure the practical applicability of ELM in supporting sustainable, data-driven water 

resource management and disaster risk reduction in the Krueng Peusangan watershed and similar regions. 
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