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1. INTRODUCTION

Coffee is one of the most widely consumed beverages worldwide, primarily produced from Arabica and Robusta
beans. Global coffee consumption exceeds 400 billion cups annually, generating an economic value of approximately
USD 100 billion (Hunt et al., 2020). This increasing trend is expected to continue in the coming years, driven by
continuous innovation in coffee-based beverages, the expansion of online trading platforms, and the growing culture
of consuming coffee outside the home (Samoggia & Riedel, 2019). Consequently, rising consumer demand must be
supported by proportional increases in coffee production.

Global coffee production reached approximately 168.5 million 60-kg bags in 2021, with Brazil as the leading
producer, followed by Vietnam, Colombia, and Indonesia (Freitas et al., 2024). In Indonesia, national coffee
production exceeded 770,000 tons in 2022, with export volumes reaching 270,000 tons, representing approximately
35% of total production (BPS, 2023). These figures highlight the strategic importance of coffee as a major agricultural
commaodity and emphasize the need to enhance its production potential.

The implementation of good agricultural practices is essential to achieve optimal coffee productivity. A
comprehensive understanding of soil-plant interactions, particularly the role of nutrient elements in plant growth and
stress tolerance, is fundamental for sustainable production. Nutrients play a crucial role throughout the plant life cycle,
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from vegetative growth to harvest, with macronutrients being especially important (Toor et al., 2021). Among these,
potassium has been identified as a key element influencing coffee plant performance by regulating assimilate transport
and water balance (Hifnalisa et al., 2024). Moreover, potassium contributes to plant resilience against abiotic stresses
such as temperature fluctuations, drought, and salinity (Hasanuzzaman et al., 2018; Johnson et al., 2022).

Various approaches have been developed to forecast coffee production; however, a comprehensive understanding
of the interactions among multiple influencing factors remains limited. Linear regression models have been widely
applied in agricultural research to estimate and predict plant-related variables based on interrelated parameters.
Previous studies have demonstrated the effectiveness of regression-based models using soil and plant data to estimate
leaf area and crop productivity, including in coffee cultivation (Mufioz et al., 2015; Sholikah et al., 2023).
Nevertheless, studies integrating soil, plant, and remote sensing variables simultaneously remain scarce.

Therefore, this study aims to evaluate the combined influence of soil properties, plant characteristics, and remote
sensing data on Robusta coffee productivity using multiple linear regression models. The findings are expected to
contribute to improving productivity estimation and supporting data-driven management strategies in coffee cultivation.

2. MATERIALS AND METHODS
2.1. Research Location and Time

This research was conducted at the Robusta coffee plantation of PT Perkebunan Nusantara | Regional 5, located in
Wonosari Subdistrict, Malang Regency, Indonesia. Geographically, the study site is located between 8°03'30.3"—
8°05'22.3" S latitude and 112°28'34.5"-112°29'17.5" E longitude. Field data collection was conducted from
September to November 2024. The study area is situated on the southern slope of Mount Kawi, within the Mount
Kawi-Butak geological formation (Qpkb), characterized by volcanic landforms. The plantation lies at an altitude
ranging from approximately 400 to 660 meters above sea level (masl).

The plantation consists of two main divisions, namely Besaran and Kampung Baru, which experience an average
annual rainfall of 2,100-2,600 mm and a mean temperature of approximately 25 °C. This study focused on the
Besaran Division, covering an area of approximately 354.2 hectares.

2.2. Tools and Materials
2.2.1. Soil Sampling and Analysis

Soil sampling was conducted at 30 observation points distributed across the study area (Fig. 1), with samples collected
at two depths: 0-30 cm and 30-60 cm. The distribution of observation points was based on the division of the
plantation into 10 blocks within the division. Observation points were determined using stratified random sampling
according to plant performance in the field. Crop performance was classified into three categories—good, moderate,
and poor—based on preliminary field observations. At each observation point, composite soil samples weighing
approximately 500 g were collected from five subsampling locations within a 10 x 10 m plot. The collected samples
were analyzed in the laboratory for exchangeable potassium (K_ex) using the 1 N NH+sOAc (pH 7) extraction method.
Soil pH and electrical conductivity (EC) were determined using the electrometric method.

2.2.2. Crop Sample Measurement

Crop samples were collected at the same locations and during the same period as soil sampling (Figure 1). At each of
the 30 observation points, samples were obtained from nine coffee plants. All crop measurements were conducted
within 10 x 10 m plots corresponding to the soil sampling locations.

The measured parameters included plant height, crown diameter, leaf chlorophyll content, and fruit yield per plant.
The average height of coffee trees in the study area ranged from 1.5 to 2.5 m, with crown diameters between 1.5 and
3.5 m. Plant height and crown diameter were measured manually using a measuring tape. Leaf chlorophyll content
was measured using a SPAD-502 Minolta chlorophyll meter and calibrated using the equation proposed by Netto et al.
(2005). Fruit yield was estimated by counting the number of berries per plant without measuring individual fruit
weight, considering that the fruits were at different ripening stages during sampling.
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Fig. 1. Research site map

Productivity was determined by counting the average number of berries per cluster, the average number of clusters
per productive branch, and the total number of productive branches per tree. Only healthy and fully developed berries
were included in the analysis. Coffee productivity was calculated using Equation (1):

PA = B xCxPB (1)

Notes: PA = Productivity (number of berries), B = average number of berries, C = average number of cluster, PB =
number of productive branch.

2.2.3. Remote Sensing Data Collection

This study utilized remote sensing data derived from Sentinel-2 Multispectral Instrument (MSI) imagery that had
undergone atmospheric correction and was provided by the European Space Agency through the Copernicus Data
Space platform. The Sentinel-2 data were acquired in September 2024 and processed to generate the Normalized
Difference Vegetation Index (NDVI).

NDVI is one of the most widely used vegetation indices for assessing vegetation greenness and vigor and has been
extensively applied in land and crop analysis (Leroux et al., 2016; lhuoma & Madramootoo, 2017). This index is
calculated using reflectance values from the near-infrared (NIR) band (760-900 nm) and the red (R) band (630-690
nm), as originally proposed by Rouse et al. (1974), as expressed in Equation (2):

NIR — R

e e 2
NDVI NIRTR 2
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2.3. Development of the Linear Regression Model

The coffee The coffee production estimation model was developed using simple and multiple linear regression
approaches. Variable selection was performed using the backward elimination method, in which all candidate
independent variables were initially included in the model and subsequently removed if they did not show a
statistically significant contribution to the dependent variable (Chowdhury & Turin, 2020).

The significance of each independent variable was evaluated based on its p-value. Variables with p-values lower
than the significance level (o = 0.05) were retained in the final model to ensure statistical reliability and predictive
accuracy.

Y=PF0+ X1+ BoXo+ -+ ¢ 3)

2.4. Model Evaluation

The formulated model was evaluated based on its ability to explain variations in the dependent variable using the
coefficient of determination (R?). This parameter is widely used to assess model performance, where an R? value close
to 1 indicates a strong explanatory power and high predictive efficiency (Despotovic et al., 2016).

1— T —9)°
X (i — y)?
Model validation continues using a paired t-test to determine whether the results derived from the model can

accurately represent field measurement results. If the paired t-test results show that the t-value is smaller than the t-
table, the model is considered capable of representing field measurement results (Putra et al., 2021).

R? = 4)

Tp = SD/Vn (5)

Model accuracy was evaluated using the Root Mean Square Error (RMSE) and the Relative Root Mean Square

Error (RRMSE). RMSE is a widely used indicator for assessing predictive accuracy, where lower RMSE values

indicate better model performance (Willmott & Matsuura, 2005; Despotovic et al., 2016). RRMSE expresses
prediction error as a percentage and reflects the suitability of a model.

1 n
RMSE = j—z i —9:)? (6)
n n=1
RMSE
RRMSE = > x 100 (7
i

Based on Jamieson et al. (1991) and Despotovic et al. (2016), model performance can be classified as excellent
(0-10%), good (10-20%), fair (20-30%), and inadequate (>30%). All statistical analyses and model computations
were performed using R software.

3. RESULTS AND DISCUSSION
3.1. Description of Dataset

Soil and crop data used for predicting Robusta coffee production exhibited considerable variability, as indicated by the
presence of outliers and relatively high coefficients of variation (CV), including in the production data itself (Figure
2). Electrical conductivity (EC) in the topsoil ranged from 0.04 to 0.14 mS/cm, with an average of 0.08 mS/cm (CV =
29%), while subsoil EC ranged from 0.04 to 0.11 mS/cm, averaging 0.07 mS/cm (CV = 24%). Topsoil pH values
varied from 5.88 to 6.41, with a mean of 6.09 (CV = 2%), while subsoil pH ranged from 5.76 to 6.34 (average 6.10, CV
= 2%). Exchangeable potassium (K-ex) in the topsoil ranged from 0.05 to 0.32 me/100 g, with a mean of 0.18 me/100
g (CV = 36%), while subsoil K-ex values ranged from 0.05 to 0.32 me/100 g, with an average of 0.19 me/100 g (CV =
42%). Total chlorophyll content varied from 269.65 to 414.04 pmol/m2, with a mean of 332.66 pmol/ m2, CV = 10%).
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Figure 2. Distribution of measured parameters

Plant height ranged from 1.58 to 2.76 m, averaging 1.95 m (CV = 11%), while crown diameter ranged from 1.70 to
3.71 m, with a mean of 2.59 m (CV = 22%). NDVI values ranged from 0.30 to 0.52, with an average of 0.42 (CV =

17%). Production showed the highest variability, ranging from

1,303.70 to 19,866.00 fruits, with a mean of 8,329.02

fruits (CV = 55%), indicating substantial heterogeneity in yield among sampling sites.

3.2. Model Formulation: Soil Data

The results of the soil data—based coffee production estimation model are presented in Table 1. The analysis showed
that several soil variables had a significant effect on coffee production (p < 0.05), including potassiuml1 (p = 0.009),
pH1 (p = 0.003), and potassium2 (p < 0.001), while EC1 had a significant effect at the 10% level (p = 0.08). These
results indicate that soil properties, particularly potassium content, play an important role in determining coffee yield.

Table 1. The results of multiple regression analysis between soil variables on coffee production

Variable Estimate Std. Error t value Pr(>|t|)
Intercept -180275 53306 -3.382 0.003803
Potassium! (me/100g) -64619 21780 -2.967 0.009085
pH1 29198 8463 3.450 0.003294
ECI (mS/cm) 95885 51346 1.867 0.080273
Potassium2 (me/100g) 78157 16493 4.739 0.000222
pH2 13146 8723 1.507 0.15403
EC2 (mS/cm) 109215 78856 1.385 0.18773
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Accordingly, efforts to increase coffee production can be directed toward improving soil potassium availability,
especially exchangeable potassium (K-ex), through appropriate fertilization, particularly in soils with low initial K-ex
levels (Elephant ef al., 2023). Furthermore, potassium fertilization has been reported to enhance coffee production by
increasing the number of productive branches, clusters per branch, fruits per cluster, and total fruits per plant
(Hifnalisa et al., 2024). Potassium also plays a fundamental role in supporting plant growth from the vegetative to the
generative stage, as its function as an enzyme cofactor is essential for photosynthesis and the translocation of
assimilates throughout the plant (Hasanuzzaman et al., 2018).

3.3. Model Formulation: Crop Data

The results of the plant data—based coffee production forecasting model are presented in Table 2. The analysis showed
that among the evaluated variables, only crown diameter had a significant effect on coffee production (p = 0.003 <
0.05), while the other variables were not statistically significant. The influence of crown diameter on production is
mainly associated with an increase in the number of branches, which enhances the potential formation of productive
branches bearing fruit. In general, higher coffee yield is achieved through an increase in the number of fruits, which is
strongly influenced by the number of clusters and productive branches.

Therefore, efforts to improve coffee production can be directed toward increasing crown diameter by promoting
the development of productive branches. This can be achieved by ensuring adequate potassium nutrition in plants
(Hifnalisa et al., 2024). In addition, appropriate pruning practices can be applied to stimulate the formation of new
productive branches and improve canopy structure (Karim et al., 2021; Permanasari et al., 2024).

Table 2. The results of multiple regression analysis between crop variables on coffee production

Variable Estimate Std. Error t value Pr(>|t|)
Intercept 10576.4 13061.1 0.81 0.42927
Total Chlorophyll (pmol/m?) -38.14 37.05 -1.029 0.31776
Plant Height (m) -3270.92 4652.41 -0.703 0.49154
Crown Diameter (m) 6522.4 1909.03 3.417 0.00329

3.4. Model Formulation: NDVI Data

The results of the crop data—based coffee production forecasting model are presented in Table 3. The analysis
indicated that coffee production forecasting using the NDVI index did not have a statistically significant effect on
coffee production (p = 0.527). Data collection at different times (July) also showed no significant differences, varying
only about 10% from the research data (September) (Figure 3). These results contradict those of Aziz & Santosa
(2019) and Sholikah ef al. (2023). Plant production estimation using vegetation indices is one of the most widely used
methods at present (Luo ef al., 2022). The ease of data access and interpretation is the reason for the application of this
method in estimating the production of various plants using various approaches. The different results from previous
studies may be due to various factors such as chlorophyll content in leaves and leaf area index (LAI). The NDVI
formula is formed from the ratio of the red and near-infrared channels, so the absorption and reflection of light waves
from the leaves affect the value obtained. Furthermore, AbdelRahman (2023) explains that under optimal conditions,
the absorption of the red spectrum is carried out by pigments such as chlorophyll, while the reflection of the near-
infrared spectrum is carried out by the leaf tissue. On the other hand, a lower LAI value can affect NDVI due to the
plant canopy not being able to fully cover the soil surface, resulting in light spectrum reflection from the soil also
being captured in the image. In addition, Nogueira ef al. (2018) also explain that changes in NDVI values in coffee
fields can be caused by differences in LAI at each plant growth stage.

Table 3. The results of simple regression analysis between NDVI variables on coffee production

Variable Estimate Std. Error t- value Pr(>|t])
Intercept 4154 6885 0.603 0.553
NDVI 10153 15748 0.645 0.527
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Figure 3. Comparison of NDVT in July and September

3.5. Model Formulation: Seil and Crop Data

The results of the soil and crop data-based coffee production forecasting model are shown in Table 4. The combination
of soil and crop data involved several parameters that were selected based on their relevance and potential influence
on coffee production. Several soil variables included in this model were potassium! (p = 0.001), pH1 (p = 0.004), ECI
(p = 0.017), and potassium2 (p < 0.001), while the plant variables consisted of plant height (p = 0.037) and canopy
diameter (p < 0.001). The integration of multiple variables into a single model aims to enhance the models
performance and accuracy, making it more applicable (Ratner, 2010; Chowdhury & Turin, 2020).

Table 4. The results of multiple regression analysis between soil and crop variables on coffee production

Data Variabel Coefficient Std. Error t value Pr(>|t))
Intercept -130136 39628 -3.284 0.005433

Soil Potassium1 (me/100g) -56997 15038 -3.790 0.001989
pHI 21202 6108 3.471 0.003744

ECI (mS/cm) 93777 34790 2.696 0.017409

Potassium2 (me/100g) 66898 12236 5.468 0.0000829

Crop Plant Height (m) -7227 3151 -2.294 0.037805
Crown Diameter (m) 5401 1182 4.569 0.000438

3.6. Model Formulation: Soil, Crop and NDVI Data

The results of developing a coffee production estimation model based on soil, crop, and NDVI data are shown in Table
5. The addition of NDVI data to the previous model, which had combined soil and crop data, aimed to assess whether
there were significant changes in the significance of each variable. The results of the model development indicate that
there was no increase in the significance of the influence of each variable from the previous model. This result also
proves that the addition of NDVI data to the model does not affect other variables and does not significantly affect
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coffee production (p = 0.134). The addition of variables to the model in this way is a forward selection approach in
variable selection for model formation (Ratner, 2010; Chowdhury & Turin, 2020). However, the result that the
addition of NDVI data does not significantly affect coffee production deviates from the principle of parsimony.
According to this principle, a simpler model with fewer variables is preferred over a model with complex variables.
Additionally, a simpler model is easier to apply and interpret (Steyerberg, 2019).

Table 5. The results of multiple regression analysis between soil, crop and NDVI variables on coffee production

Data Variabel Coefficient Std. Error t value Pr(>|t|)
Intercept -130338 37602 -3.466 0.00418
Soil Potassium1 (me/100g) -55770 14290 -3.903 0.00182
pH1 20562 5810 3.539 0.00363
EC1 (mS/cm) 92024 33030 2.786 0.01544
Potassium (me/100g) 72843 12193 5.974 4.64E-05
Crop Plant height (m) -7828 3014 -2.598 0.0221
Crown diameter (m) 4658 1214 3.836 0.00206
Remote sensing NDVI 13608 8524 1.597 0.13438

3.7. Model Performance and Validation

Model performance was assessed through analysis of the coefficient of determination (R?), whereas the higher the
coefficient of determination, the greater the ability of a model to describe the variability of field observation results.
The highest coefficient of determination among the five models was found in the model based on soil, crop, and NDVI
data (R? = 0.88), while the lowest coefficient of determination was found in the NDVI-based model (R? = 0.02).
These results indicate that better performance is found in the model based on soil, plant, and NDVI data with a
coefficient of determination value close to 1 (Despotovic ez al., 2016).

Model accuracy assessment was conducted using several approaches, such as the T-test, RMSE, and RRMSE.
Model validation through paired T-tests showed that the T-values of each model were smaller than the two-tailed T-
table value (2.31). This indicates that the developed models can produce accurate predictions and are consistent with
field measurement results (Prasetya et al., 2025; Putra ef al., 2021).

Accuracy assessments using RMSE and RRMSE were conducted to determine the extent of errors in the models
and evaluate their suitability. The soil and crop data-based model yielded the smallest results compared to other
models (RMSE = 2,659.44 units, RRMSE = 11%), while the soil data-based model had the largest results (RMSE =
6,079.09 units, RRMSE = 26%). Model evaluation based on RMSE refers to lower values indicating better model
accuracy in the field (Jierula ef al., 2021). Alternatively, model accuracy evaluation using RRMSE refers to the level
of suitability, where only the soil-based model has acceptable accuracy (26%), while the other models have good
suitability (<20%) (Jamieson ef al., 1991; Tsele et al., 2023).

Table 6. Model Performance and Validation

Data R? T-value T-Table RMSE (Berries) RRMSE (%)
Soil 0.70 0.10 2.31 6079.09 26
Crop 0.50 0.18 2.31 4467.37 19
NDVI 0.02 0.41 2.31 2880.45 12
Soil + Crop 0.85 0.70 2.31 2659.44 11
Soil + Crop+ NDVI 0.88 0.17 2.31 2757.10 12

Based on the results of model accuracy and performance tests, the combination of soil and crop data was found to
be capable of representing coffee fruit production. The accuracy test results were better than those of other models,
accompanied by a coefficient of determination that was only slightly lower than that of models based on soil, crop,
and NDVI data. In line with the principle of parsimony, the fewer variables involved in model development, the more
effective the model (Chowdhury & Turin, 2020). The coffee production model based on soil and crop data is presented
in Equation (8).
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Y =-130136 — 56997 (K1) + 21202 (pH1) + 93777 (EC1) + 66898 (K2) — 7227 (H) + 5401 (CD) (8)

with K is Kalium, EC is electrical conductivity, H is plant height, and CD is crown diameter.

4. CONCLUSION

The results of this study indicated that several variables from soil and plant data had a significant influence on coffee
production. Therefore, efforts to increase coffee production can be enhanced through the optimization of several
related variables, such as the K« content in the soil and the diameter of the coffee canopy, which have a greater
influence than other variables. In efforts to increase coffee production, this model can be widely applied in different
locations. However, limitations in certain areas, such as data availability and differences in other factors affecting
plant growth, must be considered. Future research is expected to provide more detailed models or methods for
predicting the variables that can significantly contribute to coffee production.
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