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ABSTRACT 
 

Coffee is an important global commodity, and understanding the relationships among 

factors influencing its productivity is essential for improving production efficiency. This 

study aimed to evaluate the effects of soil, plant, and remote sensing variables on Robusta 

coffee productivity. The production estimation model included soil variables (potassium, pH, 

and electrical conductivity), crop variables (plant height, crown diameter, and chlorophyll 

content), and remote sensing data (NDVI). Data were collected directly from field plots 

measuring 10 m × 10 m. Multiple linear regression models were developed to improve 

prediction performance. Model accuracy was evaluated using paired t-tests, RMSE, and 

RRMSE. The results showed that the model based on soil and crop data (R² = 0.85) 

performed slightly better than the model based on soil, plant, and NDVI data (R² = 0.88). 

Furthermore, the soil and crop data-based model produced lower error values (RMSE = 

2659.44; RRMSE = 11%) than the model incorporating NDVI (RMSE = 2737.10; RRMSE = 

12%). These findings indicate that soil and plant variables play a dominant role in 

predicting coffee productivity, while remote sensing data provide complementary 

information. This study provides a comprehensive understanding of the integrated influence 

of soil, plant, and remote sensing variables in estimating and improving Robusta coffee 

productivity. 

1. INTRODUCTION 

Coffee is one of the most widely consumed beverages worldwide, primarily produced from Arabica and Robusta 

beans. Global coffee consumption exceeds 400 billion cups annually, generating an economic value of approximately 

USD 100 billion (Hunt et al., 2020). This increasing trend is expected to continue in the coming years, driven by 

continuous innovation in coffee-based beverages, the expansion of online trading platforms, and the growing culture 

of consuming coffee outside the home (Samoggia & Riedel, 2019). Consequently, rising consumer demand must be 

supported by proportional increases in coffee production. 

Global coffee production reached approximately 168.5 million 60-kg bags in 2021, with Brazil as the leading 

producer, followed by Vietnam, Colombia, and Indonesia (Freitas et al., 2024). In Indonesia, national coffee 

production exceeded 770,000 tons in 2022, with export volumes reaching 270,000 tons, representing approximately 

35% of total production (BPS, 2023). These figures highlight the strategic importance of coffee as a major agricultural 

commodity and emphasize the need to enhance its production potential. 

The implementation of good agricultural practices is essential to achieve optimal coffee productivity. A 

comprehensive understanding of soil–plant interactions, particularly the role of nutrient elements in plant growth and 

stress tolerance, is fundamental for sustainable production. Nutrients play a crucial role throughout the plant life cycle, 
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from vegetative growth to harvest, with macronutrients being especially important (Toor et al., 2021). Among these, 

potassium has been identified as a key element influencing coffee plant performance by regulating assimilate transport 

and water balance (Hifnalisa et al., 2024). Moreover, potassium contributes to plant resilience against abiotic stresses 

such as temperature fluctuations, drought, and salinity (Hasanuzzaman et al., 2018; Johnson et al., 2022). 

Various approaches have been developed to forecast coffee production; however, a comprehensive understanding 

of the interactions among multiple influencing factors remains limited. Linear regression models have been widely 

applied in agricultural research to estimate and predict plant-related variables based on interrelated parameters. 

Previous studies have demonstrated the effectiveness of regression-based models using soil and plant data to estimate 

leaf area and crop productivity, including in coffee cultivation (Muñoz et al., 2015; Sholikah et al., 2023). 

Nevertheless, studies integrating soil, plant, and remote sensing variables simultaneously remain scarce. 

Therefore, this study aims to evaluate the combined influence of soil properties, plant characteristics, and remote 

sensing data on Robusta coffee productivity using multiple linear regression models. The findings are expected to 

contribute to improving productivity estimation and supporting data-driven management strategies in coffee cultivation. 

2. MATERIALS AND METHODS 

2.1. Research Location and Time   

This research was conducted at the Robusta coffee plantation of PT Perkebunan Nusantara I Regional 5, located in 

Wonosari Subdistrict, Malang Regency, Indonesia. Geographically, the study site is located between 8°03′30.3″–

8°05′22.3″ S latitude and 112°28′34.5″–112°29′17.5″ E longitude. Field data collection was conducted from 

September to November 2024. The study area is situated on the southern slope of Mount Kawi, within the Mount 

Kawi–Butak geological formation (Qpkb), characterized by volcanic landforms. The plantation lies at an altitude 

ranging from approximately 400 to 660 meters above sea level (masl). 

The plantation consists of two main divisions, namely Besaran and Kampung Baru, which experience an average 

annual rainfall of 2,100–2,600 mm and a mean temperature of approximately 25 °C. This study focused on the 

Besaran Division, covering an area of approximately 354.2 hectares. 

2.2. Tools and Materials 

2.2.1. Soil Sampling and Analysis  

Soil sampling was conducted at 30 observation points distributed across the study area (Fig. 1), with samples collected 

at two depths: 0–30 cm and 30–60 cm. The distribution of observation points was based on the division of the 

plantation into 10 blocks within the division. Observation points were determined using stratified random sampling 

according to plant performance in the field. Crop performance was classified into three categories—good, moderate, 

and poor—based on preliminary field observations. At each observation point, composite soil samples weighing 

approximately 500 g were collected from five subsampling locations within a 10 × 10 m plot. The collected samples 

were analyzed in the laboratory for exchangeable potassium (K_ex) using the 1 N NH₄OAc (pH 7) extraction method. 

Soil pH and electrical conductivity (EC) were determined using the electrometric method.  

2.2.2. Crop Sample Measurement  

Crop samples were collected at the same locations and during the same period as soil sampling (Figure 1). At each of 

the 30 observation points, samples were obtained from nine coffee plants. All crop measurements were conducted 

within 10 × 10 m plots corresponding to the soil sampling locations. 

The measured parameters included plant height, crown diameter, leaf chlorophyll content, and fruit yield per plant. 

The average height of coffee trees in the study area ranged from 1.5 to 2.5 m, with crown diameters between 1.5 and 

3.5 m. Plant height and crown diameter were measured manually using a measuring tape. Leaf chlorophyll content 

was measured using a SPAD-502 Minolta chlorophyll meter and calibrated using the equation proposed by Netto et al. 

(2005). Fruit yield was estimated by counting the number of berries per plant without measuring individual fruit 

weight, considering that the fruits were at different ripening stages during sampling. 
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Fig. 1. Research site map 

Productivity was determined by counting the average number of berries per cluster, the average number of clusters 

per productive branch, and the total number of productive branches per tree. Only healthy and fully developed berries 

were included in the analysis. Coffee productivity was calculated using Equation (1): 

𝑃𝐴 =  𝐵 ̅ × 𝐶̅ × 𝑃𝐵     (1) 

Notes: PA = Productivity (number of berries), B = average number of berries, C = average number of cluster, PB = 

number of productive branch.  

2.2.3. Remote Sensing Data Collection   

This study utilized remote sensing data derived from Sentinel-2 Multispectral Instrument (MSI) imagery that had 

undergone atmospheric correction and was provided by the European Space Agency through the Copernicus Data 

Space platform. The Sentinel-2 data were acquired in September 2024 and processed to generate the Normalized 

Difference Vegetation Index (NDVI). 

NDVI is one of the most widely used vegetation indices for assessing vegetation greenness and vigor and has been 

extensively applied in land and crop analysis (Leroux et al., 2016; Ihuoma & Madramootoo, 2017). This index is 

calculated using reflectance values from the near-infrared (NIR) band (760–900 nm) and the red (R) band (630–690 

nm), as originally proposed by Rouse et al. (1974), as expressed in Equation (2): 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (2) 
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2.3. Development of the Linear Regression Model 

The coffee The coffee production estimation model was developed using simple and multiple linear regression 

approaches. Variable selection was performed using the backward elimination method, in which all candidate 

independent variables were initially included in the model and subsequently removed if they did not show a 

statistically significant contribution to the dependent variable (Chowdhury & Turin, 2020). 

The significance of each independent variable was evaluated based on its p-value. Variables with p-values lower 

than the significance level (α = 0.05) were retained in the final model to ensure statistical reliability and predictive 

accuracy. 

 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝜀 (3) 

2.4. Model Evaluation 

The formulated model was evaluated based on its ability to explain variations in the dependent variable using the 

coefficient of determination (R²). This parameter is widely used to assess model performance, where an R² value close 

to 1 indicates a strong explanatory power and high predictive efficiency (Despotovic et al., 2016). 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

 (4) 

Model validation continues using a paired t-test to determine whether the results derived from the model can 

accurately represent field measurement results. If the paired t-test results show that the t-value is smaller than the t-

table, the model is considered capable of representing field measurement results (Putra et al., 2021).  

 
𝑇𝑝 =

𝐷̅

𝑆𝐷/√𝑛
 (5) 

Model accuracy was evaluated using the Root Mean Square Error (RMSE) and the Relative Root Mean Square 

Error (RRMSE). RMSE is a widely used indicator for assessing predictive accuracy, where lower RMSE values 

indicate better model performance (Willmott & Matsuura, 2005; Despotovic et al., 2016). RRMSE expresses 

prediction error as a percentage and reflects the suitability of a model.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑛=1
 (6) 

 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑖
× 100 (7) 

Based on Jamieson et al. (1991) and Despotovic et al. (2016), model performance can be classified as excellent 

(0–10%), good (10–20%), fair (20–30%), and inadequate (>30%). All statistical analyses and model computations 

were performed using R software. 

3. RESULTS AND DISCUSSION 

3.1. Description of Dataset  

Soil and crop data used for predicting Robusta coffee production exhibited considerable variability, as indicated by the 

presence of outliers and relatively high coefficients of variation (CV), including in the production data itself (Figure 

2). Electrical conductivity (EC) in the topsoil ranged from 0.04 to 0.14 mS/cm, with an average of 0.08 mS/cm (CV = 

29%), while subsoil EC ranged from 0.04 to 0.11 mS/cm, averaging 0.07 mS/cm (CV = 24%). Topsoil pH values 

varied from 5.88 to 6.41, with a mean of 6.09 (CV = 2%), while subsoil pH ranged from 5.76 to 6.34 (average 6.10, CV 

= 2%). Exchangeable potassium (K-ex) in the topsoil ranged from 0.05 to 0.32 me/100 g, with a mean of 0.18 me/100 

g (CV = 36%), while subsoil K-ex values ranged from 0.05 to 0.32 me/100 g, with an average of 0.19 me/100 g (CV = 

42%). Total chlorophyll content varied from 269.65 to 414.04 µmol/m², with a mean of 332.66 µmol/ m², CV = 10%). 
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Figure 2. Distribution of measured parameters 

Plant height ranged from 1.58 to 2.76 m, averaging 1.95 m (CV = 11%), while crown diameter ranged from 1.70 to 

3.71 m, with a mean of 2.59 m (CV = 22%). NDVI values ranged from 0.30 to 0.52, with an average of 0.42 (CV = 

17%). Production showed the highest variability, ranging from 1,303.70 to 19,866.00 fruits, with a mean of 8,329.02 

fruits (CV = 55%), indicating substantial heterogeneity in yield among sampling sites. 

3.2. Model Formulation: Soil Data  

The results of the soil data–based coffee production estimation model are presented in Table 1. The analysis showed 

that several soil variables had a significant effect on coffee production (p < 0.05), including potassium1 (p = 0.009), 

pH1 (p = 0.003), and potassium2 (p < 0.001), while EC1 had a significant effect at the 10% level (p = 0.08). These 

results indicate that soil properties, particularly potassium content, play an important role in determining coffee yield.  

Table 1. The results of multiple regression analysis between soil variables on coffee production 

Variable Estimate Std. Error t value Pr(>|t|) 

Intercept -180275 53306 -3.382 0.003803 

Potassium1 (me/100g) -64619 21780 -2.967 0.009085 

pH1 29198 8463 3.450 0.003294 

EC1 (mS/cm) 95885 51346 1.867 0.080273 

Potassium2 (me/100g) 78157 16493 4.739 0.000222 

pH2 13146 8723 1.507 0.15403 

EC2 (mS/cm) 109215 78856 1.385 0.18773 
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Accordingly, efforts to increase coffee production can be directed toward improving soil potassium availability, 

especially exchangeable potassium (K-ex), through appropriate fertilization, particularly in soils with low initial K-ex 

levels (Elephant et al., 2023). Furthermore, potassium fertilization has been reported to enhance coffee production by 

increasing the number of productive branches, clusters per branch, fruits per cluster, and total fruits per plant 

(Hifnalisa et al., 2024). Potassium also plays a fundamental role in supporting plant growth from the vegetative to the 

generative stage, as its function as an enzyme cofactor is essential for photosynthesis and the translocation of 

assimilates throughout the plant (Hasanuzzaman et al., 2018). 

3.3. Model Formulation: Crop Data  

The results of the plant data–based coffee production forecasting model are presented in Table 2. The analysis showed 

that among the evaluated variables, only crown diameter had a significant effect on coffee production (p = 0.003 < 

0.05), while the other variables were not statistically significant. The influence of crown diameter on production is 

mainly associated with an increase in the number of branches, which enhances the potential formation of productive 

branches bearing fruit. In general, higher coffee yield is achieved through an increase in the number of fruits, which is 

strongly influenced by the number of clusters and productive branches. 

Therefore, efforts to improve coffee production can be directed toward increasing crown diameter by promoting 

the development of productive branches. This can be achieved by ensuring adequate potassium nutrition in plants 

(Hifnalisa et al., 2024). In addition, appropriate pruning practices can be applied to stimulate the formation of new 

productive branches and improve canopy structure (Karim et al., 2021; Permanasari et al., 2024). 

Table 2. The results of multiple regression analysis between crop variables on coffee production 

Variable Estimate Std. Error t value Pr(>|t|) 

Intercept 10576.4 13061.1 0.81 0.42927 

Total Chlorophyll (µmol/m2) -38.14 37.05 -1.029 0.31776 

Plant Height (m) -3270.92 4652.41 -0.703 0.49154 

Crown Diameter (m) 6522.4 1909.03 3.417 0.00329 

3.4. Model Formulation: NDVI Data  

The results of the crop data–based coffee production forecasting model are presented in Table 3. The analysis 

indicated that coffee production forecasting using the NDVI index did not have a statistically significant effect on 

coffee production (p = 0.527). Data collection at different times (July) also showed no significant differences, varying 

only about 10% from the research data (September) (Figure 3). These results contradict those of Aziz & Santosa 

(2019) and Sholikah et al. (2023). Plant production estimation using vegetation indices is one of the most widely used 

methods at present (Luo et al., 2022). The ease of data access and interpretation is the reason for the application of this 

method in estimating the production of various plants using various approaches. The different results from previous 

studies may be due to various factors such as chlorophyll content in leaves and leaf area index (LAI). The NDVI 

formula is formed from the ratio of the red and near-infrared channels, so the absorption and reflection of light waves 

from the leaves affect the value obtained. Furthermore, AbdelRahman (2023) explains that under optimal conditions, 

the absorption of the red spectrum is carried out by pigments such as chlorophyll, while the reflection of the near-

infrared spectrum is carried out by the leaf tissue. On the other hand, a lower LAI value can affect NDVI due to the 

plant canopy not being able to fully cover the soil surface, resulting in light spectrum reflection from the soil also 

being captured in the image. In addition,  Nogueira et al. (2018) also explain that changes in NDVI values in coffee 

fields can be caused by differences in LAI at each plant growth stage.  

Table 3. The results of simple regression analysis between NDVI variables on coffee production 

Variable Estimate Std. Error t- value Pr(>|t|) 

Intercept 4154 6885 0.603 0.553 

NDVI 10153 15748 0.645 0.527 
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Figure 3. Comparison of NDVI in July and September 

3.5. Model Formulation: Soil and Crop Data  

The results of the soil and crop data-based coffee production forecasting model are shown in Table 4. The combination 

of soil and crop data involved several parameters that were selected based on their relevance and potential influence 

on coffee production. Several soil variables included in this model were potassium1 (p = 0.001), pH1 (p = 0.004), EC1 

(p = 0.017), and potassium2 (p < 0.001), while the plant variables consisted of plant height (p = 0.037) and canopy 

diameter (p < 0.001). The integration of multiple variables into a single model aims to enhance the models 

performance and accuracy, making it more applicable (Ratner, 2010; Chowdhury & Turin, 2020). 

Table 4. The results of multiple regression analysis between soil and crop variables on coffee production 

Data Variabel Coefficient Std. Error t value Pr(>|t|) 

 Intercept -130136 39628 -3.284 0.005433 

Soil  Potassium1 (me/100g) -56997 15038 -3.790 0.001989 

 pH1 21202 6108 3.471 0.003744 

 EC1 (mS/cm) 93777 34790 2.696 0.017409 

 Potassium2 (me/100g) 66898 12236 5.468 0.0000829 

Crop  Plant Height (m) -7227 3151 -2.294 0.037805 

 Crown Diameter (m) 5401 1182 4.569 0.000438 

3.6. Model Formulation: Soil, Crop and NDVI Data  

The results of developing a coffee production estimation model based on soil, crop, and NDVI data are shown in Table 

5. The addition of NDVI data to the previous model, which had combined soil and crop data, aimed to assess whether 

there were significant changes in the significance of each variable. The results of the model development indicate that 

there was no increase in the significance of the influence of each variable from the previous model. This result also 

proves that the addition of NDVI data to the model does not affect other variables and does not significantly affect 
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coffee production (p = 0.134). The addition of variables to the model in this way is a forward selection approach in 

variable selection for model formation (Ratner, 2010; Chowdhury & Turin, 2020). However, the result that the 

addition of NDVI data does not significantly affect coffee production deviates from the principle of parsimony. 

According to this principle, a simpler model with fewer variables is preferred over a model with complex variables. 

Additionally, a simpler model is easier to apply and interpret (Steyerberg, 2019). 

Table 5. The results of multiple regression analysis between soil, crop and NDVI variables on coffee production 

Data  Variabel  Coefficient Std. Error t value Pr(>|t|) 

 Intercept -130338 37602 -3.466 0.00418 

Soil  Potassium1 (me/100g) -55770 14290 -3.903 0.00182 

 pH1 20562 5810 3.539 0.00363 

 EC1 (mS/cm) 92024 33030 2.786 0.01544 

 Potassium (me/100g) 72843 12193 5.974 4.64E-05 

Crop  Plant height (m) -7828 3014 -2.598 0.0221 

 Crown diameter (m) 4658 1214 3.836 0.00206 

Remote sensing NDVI 13608 8524 1.597 0.13438 

3.7. Model Performance and Validation  

Model performance was assessed through analysis of the coefficient of determination (R2), whereas the higher the 

coefficient of determination, the greater the ability of a model to describe the variability of field observation results. 

The highest coefficient of determination among the five models was found in the model based on soil, crop, and NDVI 

data (R² = 0.88), while the lowest coefficient of determination was found in the NDVI-based model (R² = 0.02).  

These results indicate that better performance is found in the model based on soil, plant, and NDVI data with a 

coefficient of determination value close to 1 (Despotovic et al., 2016).  

Model accuracy assessment was conducted using several approaches, such as the T-test, RMSE, and RRMSE. 

Model validation through paired T-tests showed that the T-values of each model were smaller than the two-tailed T-

table value (2.31). This indicates that the developed models can produce accurate predictions and are consistent with 

field measurement results (Prasetya et al., 2025; Putra et al., 2021).   

Accuracy assessments using RMSE and RRMSE were conducted to determine the extent of errors in the models 

and evaluate their suitability. The soil and crop data-based model yielded the smallest results compared to other 

models (RMSE = 2,659.44 units, RRMSE = 11%), while the soil data-based model had the largest results (RMSE = 

6,079.09 units, RRMSE = 26%). Model evaluation based on RMSE refers to lower values indicating better model 

accuracy in the field (Jierula et al., 2021). Alternatively, model accuracy evaluation using RRMSE refers to the level 

of suitability, where only the soil-based model has acceptable accuracy (26%), while the other models have good 

suitability (<20%) (Jamieson et al., 1991; Tsele et al., 2023). 

Table 6. Model Performance and Validation 

Data R2 T-value T-Table  RMSE (Berries) RRMSE (%) 

Soil  0.70 0.10 2.31 6079.09 26 

Crop  0.50 0.18 2.31 4467.37 19 

NDVI 0.02 0.41 2.31 2880.45 12 

Soil + Crop 0.85 0.70 2.31 2659.44 11 

Soil + Crop+ NDVI 0.88 0.17 2.31 2757.10 12 

Based on the results of model accuracy and performance tests, the combination of soil and crop data was found to 

be capable of representing coffee fruit production. The accuracy test results were better than those of other models, 

accompanied by a coefficient of determination that was only slightly lower than that of models based on soil, crop, 

and NDVI data. In line with the principle of parsimony, the fewer variables involved in model development, the more 

effective the model (Chowdhury & Turin, 2020). The coffee production model based on soil and crop data is presented 

in Equation (8). 
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Y = –130136 – 56997 (K1) + 21202 (pH1) + 93777 (EC1) + 66898 (K2) – 7227 (H) + 5401 (CD) (8) 

with K is Kalium, EC is electrical conductivity, H is plant height, and CD is crown diameter. 

4. CONCLUSION  

The results of this study indicated that several variables from soil and plant data had a significant influence on coffee 

production. Therefore, efforts to increase coffee production can be enhanced through the optimization of several 

related variables, such as the Kex content in the soil and the diameter of the coffee canopy, which have a greater 

influence than other variables. In efforts to increase coffee production, this model can be widely applied in different 

locations. However, limitations in certain areas, such as data availability and differences in other factors affecting 

plant growth, must be considered. Future research is expected to provide more detailed models or methods for 

predicting the variables that can significantly contribute to coffee production. 
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