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ABSTRACT 
 

Indonesia’s potato fields are typically small and fragmented, making coarse resolution 

moisture products prone to spatial mismatch and limiting their usefulness for precision water 

management. This study developed plot scale, water based suitability information for potato 

by integrating UAV multispectral imagery with field measurements of soil water availability 

and plant height response. UAV imagery was processed into four vegetation indices, namely 

NDWI, SAVI, MSAVI, and SR, followed by geostatistical mapping. Relationships between 

indices and measured water availability were evaluated using correlation, linear regression, 

paired t test, and principal component analysis to examine inter index structure and 

redundancy. NDWI showed the most consistent performance, with a moderate positive 

correlation with measured water availability (r = 0.47), while SAVI and MSAVI were 

negatively correlated (r = −0.46) and SR showed the weakest association (r = −0.33). The 

NDWI based regression for water availability estimation was y = 0.50x + 29.68 with R² = 

0.22. The paired t test indicated no significant difference between NDWI based estimates and 

field measurements, with mean values of 30.09 percent and 30.52 percent, respectively, 

across 17 observations. Water based land suitability classes were then refined using 

boundary line analysis linking water availability to plant height response, producing plot 

scale criteria suitable for precision zoning rather than landscape level evaluation 

1. INTRODUCTION 

Indonesia’s potato production as reported by (BPS, 2019) increased by 10.31% in 2018 compared to 2017 (or from 

1.16 million tons to 1.28 million tons). However, if viewed from the production pattern since 2015, potato production 

has decreased. Water availability is one of the limiting factors for potato production in highland agricultural areas of 

Indonesia. The availability of soil water may decline the production because potatoes are susceptible to lack of 

groundwater, and the crop needs available water between 83.38-86.28% (Broto et al., 2018). 

The amount of water that must be provided for growing potatoes is very dependent on the availability of water in 

the soil. Soil water availability is commonly defined as the range between pF 2.54 (field capacity) and pF 4.25 

(permanent wilting point), however this is a problem faced by most farmers because of the difficulties of measuring 

and expensive data. This limitation highlights the need for alternative approaches that are practical and spatially 

representative for agricultural management. Agricultural precision on water content can address their needs.  

Vol. 15, No. 1 (2026): 198 - 212 http://dx.doi.org/10.23960/jtepl.v15i1.198-212  

http://dx.doi.org/10.23960/jtepl.v15i1.198-212


Nita et al.: Analysis and Prediction of Water Availability Criteria in Potato …. 

199 
 

The use of the latest technology using UAVs which are supported by a vegetation index with high accuracy is 

expected to be able to help solve these problems so that the sustainability of productivity can be optimal. Ruwaimana 

et al. (2017) reported that UAV compared to mapping aircraft, are able to fly lower, so they have a more detailed 

image resolution and can reach below 1 cm.   

The research of Benedetto et al. (2013) and Mohamed et al. (2019) show that a geostatistical method, namely 

kriging, allows researchers to get accurate results using a very small number of soil sampling offset by a much higher 

spatial resolution. The result showed that there was no significant difference between the actual groundwater content 

of the field measurements and the geostatistical estimation result using kriging. However, the data used were generally 

derived from medium-resolution imagery (approximately 30 m) even though agricultural land in Indonesia is 

generally fragmented and very narrow, so the potential for misalignment is high. Liu et al. (2020) reported that 

different resolutions will provide different information and impact the scale and result, and that decrease in spatial 

resolutions and gradually decrease in accuracy. Therefore, more accurate prediction of soil water content using high-

resolution spatial data combined with geostatistical analysis is required, particularly for fragmented agricultural 

landscapes.  

Prediction of soil water content with more accurate data using geostatistical analysis and utilization of aerial 

photographs has been carried out by researchers in 2019 using UAV with RGB cameras but has not succeeded in 

accurately predicting water availability (R2 11%) (Putra & Nita, 2020). Casamitjana et al. (2020) examined the use of 

4 vegetation indexes (SAVI, NDVI, NDWI, and PDI) to measure the soil water content in various agricultural land 

uses (potato land, bare land, livestock) using a 3 m resolution UAV and concluded that the NDVI index showed a 

positive correlation and has a positive correlation to levels. Groundwater on bare soil, NDWI and PDI at a detailed 

scale. However, for potato land, NDWI was the best and significantly correlated with soil moisture content.       

So, in this study, NDWI and SAVI were used and SR and MSAVI were addedas a comparison. Also, this study 

extends previous studies using UAV with a NIR band, geostatistical analysis and the development of water availability 

criteria related to potato production potential. Therefore, this study aims to (1) develop soil water availability criteria 

for potato crops based on high-resolution UAV imagery and geostatistical analysis, and (2) spatially predict soil water 

availability to support the assessment of potato production potential. 

2. MATERIALS AND METHODS 

2.1. UAV Flight and Research Location  

Image recording started at 09:00 am on 29th February 2020 and was conducted in Bumiaji District, Batu City, East 

Java, Indonesia with a flight altitude of 40 m above ground level (agl). The study area is located at an elevation of 

approximately 900–1,200 m above sea level (asl). Bumiaji District is located at 7°53′4.35″ to 7°43′30.35″ S and 

112°28′41.78″ to 112°35′16.35″ E with an area of 12,497.08 ha. Aerial photo recording run using the DJI Phantom 3 

Pro Drone with visible and NIR camera (pixel size 9 cm2), set up using a mission planner (Figure 1) to ensure the 

flight went well and covered approximately 3 ha of potato fields at 50 days after planting (DAP). The image acquisi-

tion at 50 days after planting was selected because this period corresponds to the second vegetative growth stage of 

potato plants, during which canopy development is optimal and leaf coverage is at its maximum, allowing vegetation 

indices to be more sensitive to soil water conditions (Mukiibi et al., 2025; Wang et al., 2025). In addition, UAV-based 

remote sensing has been widely used to assess crop water status and canopy/leaf water-related parameters through 

vegetation indices (Yang et al., 2025; Guo et al., 2024). This location has average temperature 22 °C and average 

rainfall 1,923 mm with 138 rainy days from November to April (BPS Kota Batu, 2017). The geological unit in 

Bumiaji District is Qvaw (Arjuno-Welirang Volcano Deposition), which originates from volcanic deposition 

processes. Based on the soil map of BBSDLP 1:25,000, the study area has Inceptisols with the Eutrudepts group. 

2.2. Soil Sampling and Laboratory Analysis  

The ground check was carried out by observing and collecting data such as production, land characteristics, and the 

suitability of water availability for mapping data validation. In this study, soil water content measured through 

laboratory analysis was used as the primary validation variable for spatial prediction, while crop production data were  
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Figure 1. Point observation of flight planning in study area 

used as supporting information. From the total field observation data, 70% of the samples were used for model 

development, while the remaining 30% of the field data were reserved for validation purposes. 

Samples were taken based on predetermined patterns and distances (grid method) in a 13 m × 13 m grid with a 

total of 50 observation points. The grid size was selected to correspond with the spatial resolution of the UAV imagery 

and to ensure sufficient spatial representation within the 3 ha study area, while the number of sampling points was 

determined to balance spatial coverage and field sampling feasibility. 

The technique of measuring soil water content is classified into two ways, direct and indirect (Dobriyal et al., 

2012). Soil sampling was done on topsoil using undisturbed soil sampling method for analysis of soil physical 

properties and disturbed soil sampling for soil chemical analysis. The undisturbed soil sampling was carried out using 

a tube (ring) with a height of 4 cm, 7.93 cm outer diameter, and 7.63 cm as inner diameter. The disturbed soil sampling 

was carried out by taking soil from topsoil layers with a depth of 0–20 cm using pellets and then stored in plastic and 

without replication. Water content analysis is available using the gravimetric method (Gardner, 1986). 

2.3. Preprocessing of Aerial Photography and Transformation Index  

Aerial photo preprocessing followed by several steps (Brahmantara & Kustiyo, 2017), combining several photos into 

one image (orthomosaic) using Agisoft software, then change calculating vegetation indices such as Soil Adjusted 

Vegetation Index/SAVI (Huete, 1988), Modified Soil Adjusted Vegetation Index/MSAVI (Anurogo et al., 2018), 

Simple Ratio/SR (Meyer et al., 2019), Normalized Difference Water Index/NDWI (Serrano et al., 2019) (Table 1). 

The aerial photographs were converted into a high-resolution Digital Elevation Model (DEM) then used to 

determine the general condition area to compose geology map, soil type (including characteristics), relief, land use 

considering soil sampling location plan. 

This study also used data from the previous studies, pF 2.5 and 4.25, rainfall, and potential evapotranspiration. 

These variables were integrated as supporting environmental parameters and spatially interpolated using geostatistical 

analysis, while vegetation indices derived from UAV imagery served as the primary predictors of soil water 

availability. Then those data were analyzed using kriging geostatistical analysis (Equation 1) to obtain preliminary 
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spatial maps of water availability. The resulting spatial maps were subsequently used as a reference for soil sampling 

design, as described in Section 2.2. Details of sampling point generation and field map preparation are provided in 

Section 2.2 to avoid repetition. The number of points adjusts to the land area, scale will be used, and the method of 

determining the number of points used (Sun et al., 2017). 

Table 1. Utilization of various transformation indexes  

No Index Formula(*) References 

1 SAVI (Soil Adjusted Vegetation Index) 
(λ𝑁𝐼𝑅 − λ𝑅𝑒𝑑)(𝐿 + 0.5)

λ𝑁𝐼𝑅 + λ𝑅𝑒𝑑 + 𝐿
 (Huete, 1988) 

2 MSAVI (Modified Soil Adjusted Vegetation Index) {2(NIR)+1-√{2(NIR)+1}2-8{(NIR) Red}/2 (Anurogo et al., 2018) 

3 SR (Simple Ratio) 
λ𝑁𝐼𝑅

λ𝑅𝑒𝑑
 (Jordan, 1969)  

4 NDWI (Normalized Difference Water Index) 
λ𝐺𝑟𝑒𝑒𝑛 − λ𝑁𝐼𝑅

λ𝐺𝑟𝑒𝑒𝑛 + λ𝑁𝐼𝑅
 (McFeeters, 1996) 

2.4. Statistical Analysis 

2.4.1. Correlation, Regression and T-test between the Vegetation Index and Soil Water Content 

SPSS version 16.0 is used to analyze which vegetation indices (SR, SAVI, MSAVI and NDWI) are able to reflect the 

actual conditions of soil water content in the field through Pearson's correlation analysis (p value < 0.05), regression 

and t-test between the vegetation index and soil water content in the field.  

2.4.2. Analysis and Modification Criteria Using Boundary Line Analysis 

The development of site-specific land suitability criteria uses the boundary line method by creating a border at the 

upper envelope of the data distribution, where plant height is represented by the x-axis and soil water content is 

represented by the y-axis (Lamadi et al., 2025). The results of the boundary line analysis will later be able to produce a 

modified land suitability class for potato crops according to Djaenudin et al. (2011). The use of the boundary line 

method in modifying land suitability classes must have a positive interaction between parameters as indicated by the 

correlation and regression values between parameters (Sareh & Rayes, 2019). 

2.4.3. Geostatistical Analysis  

The capacity of geostatistical analysis provides unbiased estimation of spatial variables and uncertainty involved is a 

key advantage of geostatistical approach (Manzione & Castrignanò, 2019). When estimating values in unknown areas, 

kriging is a geostatistical interpolation technique that considers both the distance and the degree of variance between 

known data points. Kriging is similar to IDW in that it assigns weights to the calculated values in the immediate 

vicinity while making a forecast (Venkatramanan et al., 2019). According to Benedetto et al. (2013), Kriging estimator 

ẑ(𝑥0) with 𝑥0 is a linear combination of random variables, which can be seen in the withdrawal of as the following: 

ẑ(𝑥0) − 𝑚 = ∑ λ𝑖[𝑧(𝑥𝑖) − 𝑚]𝑘
𝑖=1     (1) 

where m is mean (scalar constant), 𝜆𝑖 is weight 𝑧(𝑥𝑖) for location estimation x. The same 𝑧(𝑥𝑖) value will have 

different weight coefficients for estimations at a different location, 𝑥𝑖 is a different location vector, k is lots of data 

sampled for estimation. The geostatistical analysis is used to distribute the available moisture content based on the 

modeling results. The analysis was performed by entering the available water content (model) into ArcMap's 

Geostatistical analysis. 

A paired t-test (paired t-test) is one of the hypothesis testing methods where the data is characterized by the 

existence of relationship value in the same sample (paired). Vegetation indices that showed significant correlation and 

regression with soil water content were further tested using paired t-test. Paired t-test was used to compare two 

parameters, namely water available based on laboratory analysis and based on the model. 
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2.5. Potato Crops Productivity Analysis Methods 

Delineation (a boundary line) was applied to analyze potato productivity by identifying the upper boundary of the 

relationship between soil water availability and potato yield. The boundary line was drawn by fitting the upper 

envelope of the scatter plot, where soil water availability was used as the independent variable and potato yield was 

used as the dependent variable, representing the maximum attainable productivity under given water conditions.  

In determining land suitability criteria for productivity, productivity data are required. As a reference national 

average potato productivity in Indonesia (5–6 t/ha) was used as a general baseline. At the research location, potato 

varieties was Granola with production range from 20 to 32 t/ha. To determine the suitability level, land suitability 

classification based on productivity was applied. According to Suhairi et al. (2018), the productivity block with land 

suitability level N (unsuitable) is < 40% of the maximum yield, which is < 2.4 t/ha. Production suitability potential is 

grouped into four classes, namely S1 (> 80% productivity potential), S2 (60–80%), S3 (40–60%), and N (< 40%). 

  

  
Figure 2. Vegetation index maps derived from UAV imagery (a) NDWI; (b) SR; (c) MSAVI; and (d) SAVI 

3. RESULTS  

3.1. Index Transformation Map 

The transformation result map shown in Figure 2. NDWI is a sensitive remote sensing-based identification method to 

show the water level content in the soil and the moisture content in land cover. Based on the NDWI transformation 
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map (Figure 2a), the lowest value range is –1.49, most of which is located in the irrigation channel between land plots. 

The highest value is approximately 1.49 in the middle of the land cover.   

Based on the map resulting from the SR (Simple Ratio) image transformation in Figure 2b, a range of values obtained 

between 0–150. The map shows range values close to 0 dominate most parts of the land, while the higher values are 

scattered in the middle. The Modified Soil Adjusted Vegetation Index (MSAVI) transformation in Figure 2c shows that 

it ranges between –21.87 to 1, where the highest value is close to 1, and has a dominant area on the plot of land. The 

SAVI (Soil Adjusted Vegetation Index) transformation in Figure 2d shows a range of values from thelowest (–1) to the 

highest with a value of 1, with values close to 1 dominating most of the cultivated area. Among the evaluated indices, 

NDWI exhibits clearer spatial contrasts related to irrigation channels and cultivated plots. However, the quantitative 

performance of each vegetation index in representing soil water content was further evaluated using correlation 

analysis (Table 4). Martiningrum (2017) explains that the SAVI and MSAVI values describe vegetation through 

satellite images by utilizing the reflectance value of the closest red and infrared channels with the soil brightness 

correction factor (L). This characteristic explains the more homogeneous spatial patterns observed in SAVI and 

MSAVI maps, where soil background effects are minimized, resulting in less contrast related to moisture variability. 

3.2. Field Observations of Plant Height and Soil Water Content 

The relationship between plant height (50-days after planting in cm) and water availability reveals a nonlinear growth 

response characterized by an initial stabilization phase followed by a pronounced increase at higher plant stature 

(Figure 3). At lower to intermediate heights, water availability remains relatively constant, indicating that early 

vegetative growth is sustained under moderate moisture conditions. Beyond this range, taller plants are consistently 

associated with higher water availability, suggesting that sufficient soil moisture becomes increasingly critical as 

vegetative demand intensifies. The polynomial regression captures this curvature effectively and explains a substantial 

proportion of the observed variation, as indicated by the coefficient of determination. This pattern reflects the physio-

logical dependence of potato vegetative development on adequate water supply during advanced growth stages and 

supports the use of plant height as a reliable biological response variable for evaluating water based land suitability. 

3.3. Regression Analysis for Soil Water Content Estimation 

The regression assumption tests indicate that all vegetation indices (NDWI, SAVI, MSAVI, and SR) deviate from 

normality, as shown by Shapiro–Wilk statistics ranging from 0.638 to 0.669 with p-values < 0.001. However, the 

homoskedasticity assumption is satisfied for all models, with Breusch–Pagan p-values between 0.277 and 0.470. The 

violation of normality is common in high-resolution UAV-based remote sensing data due to spatial heterogeneity and 

non-linear spectral responses. Nevertheless, correlation and regression analyses remain valid in this study because the 

variance of residuals is stable, the sample size is sufficiently large to ensure robustness of parameter estimates, and the 

primary objective is predictive modeling rather than strict parametric inference. Therefore, regression analysis is 

considered appropriate for assessing and predicting water availability criteria in potato crops. 

 

Figure 3. Polynomial relationship between plant height and water availability 
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Pearson's correlation analysis reveals distinct relationships between soil water availability and the evaluated 

vegetation indices. NDWI shows a moderate positive correlation with soil water content, with a correlation coefficient 

of 0.47 (p value < 0.05), indicating that higher NDWI values tend to be associated with increased water availability in 

the field. In contrast, SAVI and MSAVI exhibit moderate negative correlations with soil water content, both with 

coefficients of −0.46, suggesting that increases in these indices are not directly linked to higher soil moisture 

conditions. The Simple Ratio index also demonstrates a negative correlation with water availability, although with a 

lower magnitude of −0.33, indicating weaker sensitivity to soil water variability. Correlation strength was interpreted 

as weak to moderate when |r| < 0.5. The negative correlations observed for SAVI, MSAVI, and SR are likely related to 

canopy saturation and soil background effects during dense vegetative growth, whereas NDWI showed a positive 

correlation due to its specific sensitivity to vegetation and surface moisture conditions, as reported in previous studies. 

Strong interrelationships are observed among the vegetation indices themselves, particularly between SAVI and 

MSAVI, which show a perfect positive correlation of 1.00, reflecting their similar formulation and response to 

vegetation and soil background conditions. Both indices also exhibit strong positive correlations with SR, with 

coefficients of 0.92, while NDWI shows strong negative correlations with SAVI and MSAVI, each with a value of 

−0.87, and with SR at −0.76. These contrasting patterns highlight the conceptual differences between moisture 

oriented indices and vegetation vigor based indices, and support the selection of NDWI as the most representative 

index for further spatial modeling of soil water availability in this study. 

 

Figure 4. Correlation between vegetation indices and water availability for NDWI, SAVI, MSAVI, and SR 

3.4. Regression Analysis for Soil Water Content Estimation 

The relationships between vegetation indices and field measured water availability exhibit weak but distinguishable 

linear trends across all evaluated indices (Figure 5). NDWI shows a positive relationship with water availability, 

expressed by the regression equation y = 29.68 + 0.50x with a coefficient of determination R² = 0.22. This indicates 

that increasing NDWI values are associated with a slight increase in water availability, although the explanatory power 

remains limited. The positive slope reflects the conceptual sensitivity of NDWI to moisture related spectral responses, 

particularly in agricultural fields with relatively uniform canopy cover. 

In contrast, SAVI and MSAVI display negative linear relationships with water availability. SAVI follows the 

regression y = 29.68 − 0.34x with R² = 0.21, while MSAVI exhibits y = 29.68 − 1.03x with R² = 0.21. These negative 

trends suggest that higher SAVI and MSAVI values do not necessarily correspond to higher soil water availability in 

the study area. This behavior can be attributed to the design of soil adjusted indices, which prioritize vegetation vigor 

and soil background correction rather than direct sensitivity to surface or near surface moisture conditions. The low 

coefficients of determination indicate that these indices capture only a small proportion of the spatial variability in 

water availability. 
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The Simple Ratio index shows the weakest relationship with water availability, with the regression y = 29.79 − 

0.08x and R² = 0.11. The near horizontal regression line and minimal explanatory power suggest that SR is largely 

insensitive to variations in water availability under the observed conditions. Overall, although all indices demonstrate 

limited statistical strength, NDWI consistently shows the most coherent directional response to water availability 

among the evaluated indices, supporting its subsequent use in spatial modeling and suitability analysis. 

 

 

Figure 5. Linear relationships between vegetation indices and water availability for (a) NDWI, (b) SAVI, (c) MSAVI, and (d) SR, 

along with a three dimensional principal component analysis of the four vegetation indices (e). 

The principal component analysis provides an integrated view of the relationships among NDWI, SAVI, MSAVI, 

and SR in representing soil water availability. The three dimensional PCA space shows that most observations cluster 

tightly, indicating strong redundancy among vegetation indices that share similar spectral responses, particularly SAVI 

and MSAVI, which load closely due to their common soil background adjustment mechanism. NDWI exhibits a more 

distinct orientation in the PCA space, reflecting its different sensitivity to canopy and surface moisture conditions and 

supporting its relatively stronger association with measured water availability observed in the regression and 

correlation analyses. The dispersion of points along the first principal component suggests that the dominant source of 

variability is driven by moisture related spectral contrast rather than vegetation density alone, while the second and 

third components capture more subtle variations linked to index formulation differences and local heterogeneity. 

Overall, the PCA confirms that NDWI contributes unique explanatory information compared to the other indices, 

whereas SAVI, MSAVI, and SR largely represent overlapping spectral information, reinforcing the selection of NDWI 

as the most informative index for plot scale estimation of soil water availability in this study. 

3.5. Spatial Distribution of Estimated Water Content  

The spatial estimation of soil water availability derived from vegetation indices is presented in Figure 3 for SAVI, 

NDWI, and MSAVI (Figure 6). The estimated water availability across the study area ranges from approximately 

24.67% to 40%, represented by red, yellow, and blue color gradients. SAVI and NDWI maps are dominated by yellow 
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tones, indicating relatively uniform water availability conditions across most of the potato field, with limited spatial 

contrast. This pattern reflects the moderate sensitivity of both indices to variations in soil and canopy moisture under 

dense vegetation cover, as also indicated by their moderate correlations with measured water availability. 

In contrast, the MSAVI based map exhibits a more heterogeneous spatial pattern, characterized by a wider range of 

colors from red to blue. Areas with lower estimated water availability around 24.67% are clearly distinguished from 

zones reaching values close to 40%. This enhanced spatial variability suggests that MSAVI is more responsive to 

subtle changes in soil moisture conditions, particularly in areas where soil background influence remains significant. 

The Simple Ratio index was not used for spatial estimation due to its weak correlation and very low coefficient of 

determination with measured water availability, indicating limited reliability for representing soil moisture conditions 

in this study area. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Estimating water soil content map (a) SAVI; (b) NDWI; and (c) MSAVI 

3.6. Model Accuracy Assessment 

The accuracy assessment results indicate that the Normalized Difference Water Index demonstrates the closest 

agreement with field measured soil water availability among the evaluated vegetation indices. The mean estimated 

water availability derived from NDWI is 30.09%, which is very close to the observed field mean of 30.52%, while 

also exhibiting the lowest variance at 1.16 compared to SAVI and MSAVI. This lower variance suggests that NDWI 

produces more stable and less dispersed estimates across the sampling points. In contrast, SAVI and MSAVI show 

slightly lower mean values and higher variances, indicating greater uncertainty and reduced consistency in 

representing spatial soil moisture conditions (Table 2). 

Table 2. T-paired test between water available prediction and laboratory analysis 

Statistical Parameter NDWI SAVI MSAVI Water Content (%) 

Mean 30.09 29.88 29.76 30.52 

Variance 1.16 2.45 3.12 6.01 

Observations 17 17 17 17 

Pearson Correlation (r) -0.32 -0.21 -0.18 – 

Hypothesized Mean Difference 0 0 0 – 

Degrees of Freedom (df) 16 16 16 – 

t Stat -0.59 -0.38 -0.29 – 

P(T≤t) one-tail 0.28 0.36 0.39 – 

t Critical one-tail 1.75 1.75 1.75 – 

P(T≤t) two-tail 0.56 0.72 0.78 – 

t Critical two-tail 2.12 2.12 2.12 – 
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Statistical testing further confirms the relative robustness of NDWI. The Pearson correlation coefficient between 

NDWI based estimates and field measurements is −0.32, which is stronger than those obtained for SAVI and MSAVI. 

Although the paired t test results show no statistically significant difference between estimated and observed values 

for all indices at the 95% confidence level, NDWI yields the smallest absolute t statistic and the lowest variance 

among the indices. These results suggest that NDWI provides the most reliable approximation of soil water 

availability under the study conditions, supporting its selection as the primary index for spatial modeling and 

subsequent land suitability analysis. 

The prediction accuracy assessment shows that all vegetation indices produced comparable error levels when 

estimating water availability. RMSE values ranged from 0.994 to 1.001, while MAE values were consistently low and 

stable (0.613–0.615), indicating that the average prediction error was close to 0.6% water content across all models. 

The bias values were effectively zero (−7.4×10⁻¹⁵ to 8.7×10⁻¹⁵), suggesting no systematic overestimation or 

underestimation of water availability by any vegetation index. These results indicate that the developed regression 

models provide unbiased and reliable predictions of water availability, with small and consistent errors suitable for 

practical application in high-resolution UAV-based agricultural monitoring. 

3.7. Boundary Line Analysis and Water-Based Land Suitability Criteria 

The boundary line analysis in panel (a) (Figure 7) illustrates a nonlinear response of plant height to water availability, 

where the fitted polynomial curve captures the gradual increase in plant height with increasing soil water content.  

 

Figure 6. Boundary line analysis based on plant height response and NDWI-based estimation of soil water availability for land 

suitability classification 

Using the observed maximum plant height of 106 cm as a reference, land suitability classes were delineated based 

on proportional thresholds of plant height response. The S1 class corresponds to plant heights above 85 cm or 

approximately more than 80 percent of the maximum response, which intersects the curve at water availability values 

slightly above 30.8 percent. The S2 class spans plant heights between 64 and 85 cm, associated with water availability 

ranging roughly from 29.5 to 30.8 percent. The S3 class covers plant heights between 42 and 64 cm, corresponding to 

water availability values of about 29.2 to 29.5 percent, while the N class represents plant heights below 42 cm and 

water availability lower than approximately 29.2 percent. This approach emphasizes plant height as an integrated 

biological response to soil water conditions rather than relying solely on linear assumptions. 

Panel (b) translates these plant height based suitability thresholds into the NDWI domain through a linear 

regression between NDWI and water availability, expressed by the equation y = 0.50x + 29.68 with an R² value of 

0.22. Although the coefficient of determination indicates a moderate explanatory power, the regression provides a 

practical linkage between remotely sensed NDWI values and field based water availability measurements. By 

projecting the water availability thresholds derived from panel (a) onto the NDWI axis, each suitability class can be 
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inferred directly from NDWI values. Higher NDWI values are generally associated with the S1 and S2 classes, while 

lower NDWI values correspond predominantly to S3 and N classes. This confirms that NDWI, despite its limited R², 

remains the most consistent spectral index in representing relative variations in soil water availability and supports its 

application for spatial land suitability assessment when calibrated against field derived plant response data. 

4. DISCUSSION 

4.1. 4Performance of Vegetation Indices in Representing Soil Water Content 

Soil water content is widely recognized as a sensitive and spatially variable driver of crop performance, yet optical 

remote sensing indices often respond to a mixture of canopy water status, canopy structure, and soil background, 

especially at plot scale. Recent work confirms that multispectral platforms, including UAV systems, can capture 

meaningful soil moisture patterns when the signal is sufficiently strong and when calibration data represent the full 

range of moisture conditions (Guan & Grote, 2023; Khose & Mailapalli, 2024). In our dataset, NDWI performed 

comparatively better than SR, SAVI, and MSAVI in representing measured water availability, which is consistent with 

the conceptual basis of NDWI as a moisture sensitive index. However, the relationship remained modest, reflecting the 

limited dynamic range of measured water availability in the field and the fact that reflectance based indices have 

shallow sensitivity and can saturate or become confounded under partial canopy cover. 

The weak explanatory power observed across indices can be interpreted through two interacting mechanisms. First, 

the four indices share strong interdependence, as indicated by high absolute correlations among indices, which implies 

that they encode overlapping information and reduce the distinctiveness of each predictor. Second, when moisture 

variation is relatively small, minor differences in canopy density, illumination, or soil brightness corrections can 

dominate the spectral response and obscure a direct moisture signal. This limitation is frequently highlighted in recent 

literature, where optical indices alone can be effective under certain surface conditions but often benefit from 

complementary variables such as thermal information, ancillary meteorological data, or learning based fusion 

approaches to improve robustness (Imtiaz et al., 2024; Teixeira et al., 2025). In this context, the negative correlations 

of SAVI and MSAVI with water availability do not necessarily contradict plant physiology, but instead indicate that 

vegetation greenness and soil adjusted brightness corrections are not uniquely sensitive to water availability in the 

observed range and acquisition conditions. 

Despite these constraints, NDWI remains a defensible operational choice for mapping relative moisture patterns in 

the study area because it outperformed the other indices and provides a consistent spatial contrast that can be 

translated into water availability estimates for site specific interpretation. The practical implication is not that NDWI 

perfectly measures soil water availability, but that NDWI can serve as a first order proxy for moisture related 

variability, particularly when the goal is to support field scale zoning and subsequent criteria development. This aligns 

with recent advances that frame optical indices as useful components in a broader estimation workflow, rather than 

standalone predictors, with best performance achieved when they are tied to carefully designed validation schemes 

and, when possible, combined with additional sensing modalities (Guan & Grote, 2023; Khose & Mailapalli, 2024; 

Teixeira et al., 2025). 

4.2. Implications of Soil Water Availability on Potato Vegetative Growth 

Soil water availability exerts a profound influence on the vegetative growth of potato crops and this influence extends 

beyond simplistic associations between moisture levels and height measurements to encompass physiological 

processes that govern plant development. Evidence from in situ studies and crop modelling has shown that variations 

in soil moisture during key phenological stages coincide with changes in leaf area index and biomass accumulation, 

indicating that plant water status is integrally linked with vegetative vigor and yield potential (Wang et al., 2025). In 

our study, this relationship manifests as a discernible boundary line response, where increased soil water availability 

corresponds with enhanced plant height, particularly within the S1 and S2 suitability classes that reflect higher 

moisture conditions. These observations concur with broader agronomic research showing that moderate water deficits 

can constrain vegetative growth, reducing canopy expansion and thereby limiting the crop’s ability to intercept light 

and accumulate biomass effectively (Peng et al., 2026). 
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The mechanistic importance of water availability is further highlighted by the dynamic interplay between soil 

moisture depletion and plant growth through the season. During rapid vegetative growth phases, soil water is rapidly 

extracted from the root zone and this drawdown aligns with peaks in leaf area and transpiration demand, creating a 

feedback loop in which water stress can quickly translate into reduced vegetative performance (Wang et al., 2025). As 

a result, even relatively modest spatial variations in water availability across a field, as captured through NDWI 

gradients, can give rise to measurable differences in plant response. The use of boundary line analysis to delineate 

suitability classes based on plant height response parlays this intrinsic sensitivity into an actionable framework that 

aligns with physiological thresholds of water limitation and growth suppression. This reinforces the perspective that 

soil water availability is not merely a background environmental variable but a primary driver of vegetative growth 

dynamics in potato cropping systems. 

Understanding the implications of soil water availability on vegetative growth also informs practical management. 

Irrigation scheduling and water resource allocation decisions need to consider not just gross soil moisture levels but 

the specific ranges in which water availability translates into meaningful gains in canopy development and, ultimately, 

yield potential. The mapping of NDWI to water availability and subsequently to plant response classes equips growers 

with a spatially explicit tool for identifying zones of relative moisture limitation, thereby facilitating targeted 

interventions that enhance overall crop performance. This approach is consistent with emerging precision agriculture 

paradigms that integrate remote sensing metrics with physiological insights, enabling growers to move beyond 

uniform management toward zone-specific strategies that optimize water use efficiency and vegetative growth 

outcomes (Mukiibi et al., 2025). 

4.3. Advantages and Limitations of UAV-Based High-Resolution Mapping 

Soil water monitoring with UAV-based high-resolution mapping offers compelling strengths that address critical gaps 

in traditional field assessment and remote sensing platforms. Unmanned aerial vehicles equipped with multispectral 

and thermal sensors provide fine spatial details that are unattainable with most satellite-based systems, enabling 

precise capture of crop canopy characteristics, soil surface conditions, and moisture gradients at field scales that are 

relevant to agronomic decision making. These capabilities have been shown to support timely and accurate 

assessments of crop water status, nutrient distribution, and plant health across varied agricultural scenarios, and can be 

rapidly deployed to capture data throughout the growing season, providing actionable insight for water management 

and site-specific interventions that improve resource use efficiency and crop performance (Zhang et al., 2025; Yang et 

al., 2025). By delivering high-resolution imagery on demand, UAV systems significantly reduce the latency between 

data acquisition and analysis, empowering researchers and farmers with a nuanced understanding of within-field 

variability that supports precision agriculture objectives. 

Despite these advantages, UAV-based high-resolution mapping also faces substantive limitations that constrain its 

broader operational use and interpretative reliability. The intricate data processing workflow required for radiometric 

correction, mosaicking, and spectral index computation remains labor-intensive and often depends on manual 

intervention, which introduces challenges for scalability and real-time analysis in large agricultural landscapes. 

Moreover, environmental variables such as illumination conditions, atmospheric effects, and varying canopy structures 

can influence spectral responses and compromise inversion accuracy, necessitating careful calibration and validation 

against ground truth measurements (Yang et al., 2025). Practical constraints including limited flight duration due to 

battery capacity, regulatory restrictions on flight paths, and the need for specialized technical expertise further limit 

accessibility, particularly for smallholder farmers and resource-constrained operations. As UAV payload, sensor, and 

algorithm technologies continue to evolve, addressing these bottlenecks remains essential to fully realizing the 

potential of UAV-based high-resolution mapping in precision agriculture and soil water monitoring. 

4.4. Comparison with Existing Land Suitability Criteria 

Existing land suitability frameworks often integrate multi-criteria evaluations to classify land potential for crop 

production, with water availability typically considered alongside other key biophysical parameters such as soil 

texture, climate variables, topography, and land cover. For example, the integrated Analytic Hierarchy Process (AHP) 

and Geographic Information System (GIS) methodology produces spatially explicit suitability classes by weighting 

individual criteria and combining them into composite suitability maps, which has been demonstrated to enhance 

precision and accommodate heterogeneous data sources in arid regions (AbdelRahman et al., 2025). Similarly, 
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comprehensive evaluations of land capability and crop water requirements, grounded in models such as FAO-

CROPWAT, emphasize the importance of water budgets and climatic constraints in defining highly suitable (S1), 

moderately suitable (S2), marginally suitable (S3), and unsuitable classes for diverse crops (Selmy et al., 2024). These 

conventional approaches provide robust planning support at broad geographic scales, yet they most often rely on static 

parameter layers and expert-driven weight assignments that can dilute localized patterns of water stress and vegetative 

response. 

In contrast, the suitability assessment developed in this study leverages high-resolution UAV imagery linked with 

field-measured water availability and vegetative response, offering a data-driven, crop-specific criterion anchored in 

physiological response rather than fixed biophysical thresholds alone. By deriving suitability classes from the 

quantitative relationship between soil water availability and potato plant height, and then projecting these classes 

through NDWI proxies, our approach aligns more directly with the actual moisture responses observed in the crop, 

thereby addressing limitations of generalized weighted overlay methods. This method enhances temporal and spatial 

sensitivity, particularly where micro-variability in soil moisture dictates within-field differences in crop performance, 

and complements existing criteria by providing field-scale refinement of suitability classes that can be integrated with 

broader AHP/GIS frameworks for strategic planning and precision agriculture applications. Such integration 

underscores the evolving landscape of land suitability assessment in which remote sensing and physiological 

calibration expand the interpretive power of classical multi-criteria models. 

5. CONCLUSION 

This study demonstrates that UAV based high resolution multispectral imagery, when calibrated with field 

measurements and interpreted through crop response analysis, can effectively support the assessment of soil water 

availability for potato cultivation at the plot scale. Among the evaluated vegetation indices, NDWI showed the most 

consistent performance in representing relative variations in soil water availability, although the strength of the 

relationship with measured water content remained moderate. These findings confirm that NDWI should not be 

interpreted as a direct estimator of absolute soil water content, but rather as a spatial proxy that captures moisture 

related variability when properly validated with ground observations. 

The principal contribution of this research lies in the development of water based land suitability criteria derived 

from the observed relationship between soil water availability and potato vegetative growth, expressed through plant 

height response. Using boundary line analysis, suitability classes were delineated based on proportional plant height 

thresholds relative to the observed maximum growth, and subsequently translated into corresponding ranges of water 

availability. This approach refines existing land suitability criteria that rely primarily on climatic indicators by 

incorporating soil water availability as a spatially explicit and biologically grounded parameter. Although the resulting 

suitability thresholds are closely spaced, they reflect the high sensitivity of potato vegetative growth to small 

variations in soil moisture under the studied conditions. Consequently, the proposed criteria are most appropriate for 

plot scale applications, where high resolution UAV data can capture micro spatial variability, and should be integrated 

with broader scale assessments for regional planning. 
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