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However, commonly used laboratory-based analytical methods are time-consuming and costly.
Therefore, alternative approaches that are more practical and efficient are needed. This study

Keywords: aimed to develop an Artificial Neural Network (ANN)-based system for predicting soil nutrient
Artificial neural network, levels using soil physical parameters, namely pH, temperature, moisture content, and
Nitrogen, electrical resistance, as input variables. Data were collected from red-yellow podzolic soil
Phosphorus, subjected to different fertilization treatments. After normalization, the data were trained using
Potassium, an ANN model with four input nodes, two hidden layers (each consisting of five nodes), and
Soil nutrient prediction, one output node, employing the backpropagation algorithm and evaluating 27 combinations of
Soil physical parameters. activation functions. The training results showed coefficients of determination (R]) of 0.9642
for nitrogen, 1.0000 for phosphorus, and 0.9996 for potassium, with RMSE values of 0.0107,
10.5386, and 0.016457 and RRMSE values of 8.5048%, 0.79786%, and 1.581111%,
respectively. During validation, R} values of 0.7218 (nitrogen), 0.6479 (phosphorus), and
0.6137 (potassium) were obtained. Nitrogen prediction exhibited good accuracy (RMSE
Corresponding Author: 0.0222; RRMSE 15.54%), potassium prediction showed moderate accuracy (RMSE 0.2963;
D4 sr_sulistiyanti@eng.unila.ac.id RRMSE 28.46%), while phosphorus prediction resulted in relatively high errors (RMSE
(Sri Ratna Sulistiyanti) 1066.77; RRMSE 80.98%), indicating the need for further model development.

1. INTRODUCTION

Agriculture is a key sector in the Indonesian economy, with 27,368,114 farming households recorded in the 2023
Agricultural Census by Statistics Indonesia (BPS). Most are engaged in the food crops, livestock, and plantation
subsectors (Badan Pusat Statistik, 2023). One of the crucial processes in agriculture is fertilization, which serves to
meet the soil's nutrient needs, particularly macronutrients such as nitrogen (N), phosphorus (P), and potassium (K),
which play a role in plant growth, flowering, and yield formation (Triadiawarman et al., 2022).

NPK fertilizer is a widely used inorganic fertilizer because it contains three essential macronutrients for plants:
nitrogen (N), phosphorus (P), and potassium (K). However, NPK fertilizer application that is not based on actual soil
conditions has the potential to cause nutrient imbalances. Overfertilization can lead to the accumulation of certain
nutrients, increased soil acidity, decreased microbial activity, and environmental pollution. While nutrient deficiencies
can inhibit plant growth and reduce yields (Santhoshkumar et al., 2023). Inaccurate fertilizer dosages also increase
agricultural production costs due to inefficient fertilizer use without significant yield increases (Hartono et al., 2022).
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Therefore, predicting soil N, P, and K levels before fertilization is crucial for determining appropriate, efficient, and
sustainable fertilizer dosages.

The urgency of soil nutrient prediction is even greater in Red-Yellow Podzolic (PMK) soils, which generally have
low fertility, acid soil reaction, low cation exchange capacity, and limited phosphorus availability due to Al and Fe
fixation (Amar et al., 2022). These conditions cause plant response to fertilizer application to be highly dependent on
the accuracy of the dosage and type of fertilizer applied. Therefore, predicting N, P, and K levels in PMK soils is
expected to support more precise fertilization, improve cost efficiency, and maintain sustainable soil fertility.
Laboratory testing is the primary method for determining nutrient levels, but is considered inefficient in terms of cost,
time, and accessibility for farmers (Amri & Sumiharto, 2019). Alternative solutions are needed to provide fast,
efficient, and applicable nutrient level prediction methods in the field. One promising technology is artificial neural
networks (ANNSs), which are capable of modeling nonlinear relationships between soil parameters and nutrient content
(Lopez-Aguilar et al., 2020; Mohmed et al., 2023; Kujawa & Niedbata, 2021). The backpropagation method with
added momentum is used to accelerate convergence and improve network training stability (Ampelakiotis et al., 2022;
Suryadibrata & Chandra, 2019).

Several studies have developed soil nutrient measurement tools using various technological approaches. The
magnetic field induction method reportedly still has limited accuracy, especially when measuring low nutrient
concentrations (Salsabila et al., 2021), while a system based on an analog NPK sensor integrated with a Raspberry Pi
can achieve reading accuracy levels above 80% (As'ari et al., 2022). In addition to direct measurements, the
development of soil nutrient prediction tools also utilizes physical soil parameters that are closely related to nutrient
availability. Parameters such as electrical conductivity (resistance), soil moisture, pH, and temperature are known to
correlate with nutrient dynamics in the soil. Electrical conductivity reflects the amount of dissolved ions, moisture
influences the release and movement of nutrients, while temperature plays a role in increasing ion mobility and the
activity of chemical and biological processes in the soil (Sari et al., 2019; Salam, 2020).

Based on the description of the limitations of direct soil nutrient measurement methods and the potential use of soil
physical parameters as indicators of nutrient availability, this study aims to analyze the relationship between
resistance, temperature, pH, and soil moisture on the levels of macronutrients nitrogen (N), phosphorus (P), and
potassium (K). In addition, this study aims to evaluate the performance of the artificial neural network model in
predicting soil N, P, and K levels based on the coefficient of determination (R?) values at the training and validation
stages, as a basis for developing a more accurate and applicable soil nutrient prediction method.

2. MATERIALS AND METHODS
2.1. Sample Preparation

The soil samples were Red-Yellow Podzolic (PMK) soil from the root layer, which was filtered through a sieving
process and placed in transparent plastic containers with a diameter of 10 cm, with each sample weighing 500 g. In
this study, the soil samples were subjected to fertilizer treatments to vary the nutrient levels of nitrogen (N),
phosphorus (P), and potassium (K). Treatments included the addition of urea (46% N), TSP (44—46% P-0s), and KCl
(60—62% K-0) at three fertilizer concentrations: 5 g, 15 g, and 25 g, each dissolved in 200 ml of water. These fertilizer
concentrations represented low, medium, and high soil nutrient levels, respectively, and were complemented by a
control treatment without fertilizer addition.

Observation parameters included soil resistance, moisture content, pH, and temperature, measured on each sample.
N, P, and K contents were obtained through laboratory analysis at the Soil Science Laboratory, Faculty of Agriculture,
University of Lampung, and used as observational data for the study. All measurement data was then divided into 80%
training data and 20% test (validation) data for the development and evaluation of the artificial neural network model.

2.2. Design of a Nutrient Level Prediction Tool

The designed equipment to predict nutrient level was equipped with four potentiometers (A, B, C, D), each with a
specific function as an analog input device. Potentiometer A was used to input soil pH, B for moisture content (KA), C
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for soil temperature, and D for soil resistance. Each potentiometer was set within a specific range to ensure that the
input value does not exceed the limit, which could cause reading errors or unexpected spikes.

Description:

1. Liquid Crystal Display (LCD)

2. Potentiometers
a) Potentiometer 1 = Soil pH
b) Potentiometer 2 = Soil Moisture
¢) Potentiometer 3 = Soil Temperature
d) Potentiometer 4 = Resistance

3. The box contains microcontroller and other supporting components,
consisting of an Arduino Uno microcontroller as the main control
unit, a ground resistance sensor circuit, an [>)C-based LCD display
module, and a power supply as the system voltage source.

Figure 1. Design of a soil nutrient level prediction tool model (left) and its detail components (right.

2.3. Artificial Neural Network (ANN) Model Development

The ANN model was designed using an architecture with four input nodes, two hidden layers of five nodes each, and
one output layer. Activation functions play a crucial role in the network training process, so simulations were
conducted using 27 activation function combinations (Table 1) to determine the best performance.

Table 1. ANN Activation Function Combinations

No  Activation Function No  Activation Function No Activation Function

1 Logsig-logsig-logsig 10  Logsig-logsig-purelin 19 Purelin-tansig-logsig
2 Logsig-logsig-tansig 11 Tansig-logsig-purelin 20 Purelin-tansig-tansig

3 Logsig-tansig-logsig 12 Tansig-tansig-purelin 21 Purelin-purelin-purelin
4 Logsig-tansig-tansig 13 Logsig-purelin-logsig 22 Purelin-purelin-tansig
5 Tansig-logsig-logsig 14 Logsig-purelin-tansig 23 Purelin-purelin-logsig
6 Tansig-tansig-logsig 15 Tansig-purelin-logsig 24 Purelin-tansig-purelin
7 Tansig-tansig-tansig 16  Tansig-purelin-tansig 25 Purelin-logsig-purelin
8 Tansig-logsig-tansig 17 Purelin-logsig-logsig 26 Logsig-purelin-purelin
9 Logsig-tansig-purelin 18  Purelin-logsig-tansig 27 Tansig-purelin-purelin

The best activation function was selected based on the highest coefficient of determination (R?) and the lowest
Root Mean Square Error (RMSE). The combination that produced the R? closest to 1 and the smallest RMSE was
considered the best configuration. The training process was performed using the backpropagation algorithm with the
addition of momentum. The ANN model development process and its network architecture are shown in Figures 2.

2.4. Model Implementation in a Microcontroller

The mathematical model resulting from the ANN training was input into the microcontroller through program syntax.
The microcontroller processed the input data from the potentiometer and then displayed the predicted levels of
nitrogen (N), phosphorus (P), and potassium (K) on the LCD screen. The reading and prediction process ran
repeatedly as long as the system was active.

2.5.1. Data Normalization

The normalization process aims to equalize the scale of each input variable to prevent the dominance of certain
variables in the model training process. In this study, data normalization was performed by dividing each input and
output value by the maximum value, which was 0.27 for nitrogen (N), 6185.03 for phosphorus (P), and 2.46 for
potassium (K). This approach was chosen because the data used was local and limited to the PMK soil type, so the
model was developed within the scope of the available experimental data.
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Figure 2. (a) Model development process in ANN, and (b) Artificial neural network architecture

2.5.2. ANN Model Calibration

The calibration of the artificial neural network model was performed by adjusting training parameters, such as the
number of neurons in the hidden layer, the number of epochs, and the learning rate. The goal was to obtain the best
configuration that produced the lowest possible error. The calibration process was carried out in stages until optimal
model performance was achieved on the training data.

2.5.3. Model Validation

Model validation was performed to measure ability of the model to predict new, previously unknown data. The dataset
was divided into two parts: 80% training data and 20% testing data. After the model was trained using the training
data, its performance is evaluated using the test data. Model performance was evaluated using the Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE) values, which are indicators of prediction accuracy.

The Root Mean Square Error calculation in validation data testing was used to determine the magnitude of the
estimation error of the developed rapid measurement tool (Sujon et al., 2024). The RMSE was calculated according to
the following formula:
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where n is number of data samples, €; is error of the i data, defined as the difference between the predicted value and
the actual value, y; is actual value of the i data

The coefficient of determination (R?) calculation was used to measure the contribution of the independent variables
to the dependent variables, namely the calibrator data and the rapid measuring instrument data. The coefficient of
determination (R?) was calculated based on the following formula:

nExy - E0EW? ©)
[nXx? = Ex)?][nXy? — Xy)?]

R? =

where X is predicted value, y is actual value, and n is number of data samples.

3. RESULTS AND DISCUSSION
3.1. Artificial Neural Network Model Training

Prior to developing the artificial neural network (ANN) model, an analysis of the relationships between soil physical
parameters as input variables (pH, temperature, moisture, and resistance) and the macronutrient levels of nitrogen (N),
phosphorus (P), and potassium (K) as output variables was conducted. This analysis aimed to identify the direction
and strength of the relationships between the variables, thus providing a scientific basis for the relationship between
the input parameters and changes in soil nutrient levels. The analysis results showed that soil physical parameters had
varying degrees of relationships, from weak to quite strong, with N, P, and K levels, which were influenced by soil
conditions and fertilizer treatment. These findings support the use of soil physical parameters as inputs in ANN-based
nutrient prediction modeling, even though the ANN method does not require an explicit linear mathematical
relationship.

Theoretically, changes in soil pH affect nutrient availability through solubility and fixation mechanisms, where
nitrogen, phosphorus, and potassium are generally more available at near-neutral pH conditions, while their
availability tends to decrease under very alkaline or very acidic conditions (Alwi et al., 2023). Soil moisture plays a
crucial role in controlling microbial activity and nitrogen mineralization processes, thus increasing N availability
under optimal moisture conditions (Xing et al., 2019). Soil temperature influences biochemical reaction rates and
microbial activity, where increasing temperature within the optimum range can increase nutrient mineralization and
mobility (Lisa et al., 2022). Meanwhile, soil resistance is closely related to water content and the amount of dissolved
ions in the soil, thus reflecting changes in nutrient concentration, particularly in ionic form (Salsabila et al., 2021;
Salam, 2020). Thus, variations in pH, temperature, moisture, and soil resistance collectively contribute to the
dynamics of N, P, and K availability, making them relevant for use as input variables in the development of an ANN-
based soil nutrient prediction model.

The results of the analysis of the activation function combination are shown in Table 2 and indicate that the
activation function used met the R* and RMSE criteria, both during the ANN model training stage. This indicates that
the developed model is not only theoretically superior but also stable and accurate in practical applications for
predicting soil nutrient levels. Figures 3—5 show the best R? graphs for the outputs of Nitrogen, Phosphorus, and
Potassium, respectively.
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Table 2. Results of training artificial neural network models with variations in activation functions

L . R? RMSE RRMSE (%)

No Activation Function N P K N P K N P K

1 Logsig-logsig-logsig 0.9317 0.9990 0.9910 0.0168 17.3781 0.0926 11.7542 1.3187 7.3202
2 Logsig-logsig-tansig 0.9562 0.9879 0.9989 0.0135 241.2877 0.0926 9.4063 18.0058 2.4973
3 Logsig-tansig-logsig 0.9506 1.0000 0.9877 0.0148 12.4836 0.0913 10.0416 0.7999 8.7698
4 Logsig-tansig-tansig 0.9357 0.9628 0.9587 0.0137 414.4862 0.1389 10.4154 31.4602 13.5388
5 Tansig-logsig-logsig 0.9637 1.0000 0.9769 0.0125 12.3189 0.1354 8.5307 0.9350 13.5388
6  Tansig-tansig-logsig 0.8749 1.0000 0.9732 0.0127 10.5386 0.1300 15.8984 0.7979 3.9309
7  Tansig-tansig-tansig 0.9642 0.9157 0.9973 0.0107 619.1356 0.0328 8.5048 46.9961 3.6633
8  Tansig-logsig-tansig 0.9054 0.9894 0.9963 0.0198 221.9805 0.0492 13.8752 16.8855 4.9076
9 Logsig-tansig-purelin 0.9060 0.7977 0.9410 0.0197 297.8000 0.2366 13.7827 71.9611 22.7455
10 Logsig-logsig-purelin 0.9600 0.9822 0.9967 0.0121 286.9882 0.0457 8.9857 21.7873 3.4918
11 Tansig-logsig-purelin 0.8362 0.6996 0.9971 0.0258 1125.9580 0.0374 18.6932 85.4631 41.4996
12 Tansig-tansig-purelin 0.8915 0.7146 0.9996 0.0086 1100.7940 0.0165 14.8035 83.5463 1.5811
13 Logsig-purelin-logsig 0.5815 0.8521 0.8171 0.0416 858.0531 0.4309 29.0733 65.1668 41.7959
14 Logsig-purelin-tansig 0.5392 0.6498 0.6621 0.0331 1203.932 0.5012 30.5116 91.3608 48.1667
15  Tansig-purelin-logsig 0.5763 0.8952 0.6741 0.0413 727.3393 0.4880 29.4727 54.8274 46.8855
16  Tansig-purelin-tansig 0.5231 0.5474 0.6633 0.0362 1340.9670 0.4602 25.0046 101.7829 44.9479
17 Purelin-logsig-logsig 0.6901 0.8810 0.8051 0.0467 741.9108 0.5238 32.6617 31.3297 34.2333
18  Purelin-logsig-tansig 0.4719 0.4715 0.6313 0.0467 1425.2070 0.7462 32.6617 108.1770 46.2910
19  Purelin-tansig-logsig 0.5790 0.7762 0.6159 0.0420 996.9490 0.4917 29.3649 75.6710 47.2313
20  Purelin-tansig-tansig 0.5740 0.6034 0.7591 0.0420 1268.6890 0.3893 29.3649 96.2968 37.3942
21 Purelin-purelin-purelin 0.5740 0.0592 0.1321 0.0420 2091.7850 0.7388 29.3649 158.7720 70.9662
22 Purelin-purelin-tansig 0.1794 0.0606 0.1333 0.0582 158.6491 0.7382 40.7159 1317.4780 70.9549
23 Purelin-purelin-logsig 0.1241 0.0496 0.1310 0.0582 2103.5020 0.7392 40.8920 159.6614 71.0098
24 Purelin-tansig-purelin 0.1398 0.5794 0.5444 0.0402 1398.5350 0.5352 28.1749 106.1525 51.4163
25  Purelin-logsig-purelin 0.6093 0.6688 0.6234 0.0421 1241.0230 0.4775 29.4491 94.1969 45.8693
26  Logsig-purelin-purelin 0.5351 0.7853 0.6247 0.0438 999.1760 0.4883 30.6472 75.8401 46.6663
27  Tansig-purelin-purelin 0.5933 0.6147 0.7376 0.0318 1345.1400 0.4041 25.4492 102.2279 39.1949
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Figure 5. Training graph of the potassium output JST model

This research was evaluated using three main metrics: the coefficient of determination (R?), root mean square error
(RMSE), and relative root mean square error (RRMSE). The RMSE value describes the average prediction error, with
lower values indicating better accuracy. The coefficient of determination R? indicates how well the model explains the
variance of the actual data, with a value range of 0-1 (Normah et al., 2022). Based on the R? range classification, an
R? value between 0.8—1.0 is categorized as a very strong relationship (Mostafa & Amano, 2019).

Figure 4 shows the training graph of the ANN model for nitrogen output with the tansig-tansig-tansig activation
function configuration, resulting in an R? value of 0.9642, an RMSE of 0.0122, and an RRMSE of 8.5048%. A very
high R? value indicates that the model is able to explain the variability of nitrogen data, while an RRMSE value <10%
indicates very good prediction accuracy (Mostafa & Amano, 2019). Figure 5 displays the results of phosphorus
prediction with the tansig-tansig-logsig activation, obtaining an R? value of 1.0000, an RMSE of 10.5386, and an
RRMSE of 0.7999%. A perfect R? indicates that the model correctly explains all data variations, while a very low
RRMSE strengthens prediction accuracy of the model (Nurani et al., 2023). Figure 6 shows the potassium prediction
results using the tansig-tansig-purelin activation function, resulting in an R? value of 0.9996, an RMSE of 0.0165, and
an RRMSE of 1.5811%. These values indicate that the model has excellent prediction accuracy for potassium, with the
RRMSE value remaining in the very good category.

Based on the three training results, all ANN models used were categorized as very good in terms of accuracy. This
aligns with the formulation and interpretation of R?, which states that the smaller the RMSE value and the larger the
R? value, the better the prediction model is categorized (Normah et al., 2022; Mostafa & Amano, 2019).
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3.2. Mathematical Equations for Artificial Neural Network Model Development

In this study, the independent variables used as input to the artificial neural network were pH (X,), soil moisture (X»),
temperature (X3), and soil resistance (X4), all of which were normalized to their maximum values. The maximum
values used in the output normalization process were 0.27 for nitrogen (N), 6185.03 for phosphorus (P), and 2.46 for
potassium (K).

The mathematical equations used were derived from the weights and biases generated by the previously identified
best activation function. The weight and bias values recorded during the artificial neural network training process can
be converted into mathematical equations. The resulting mathematical equations are:

a. Complete mathematical equation for nitrogen (N) output

Y1 = 55.558503(X1/9.24) + 24.068107(X2/56.69) + 42.17181(X3/31.30) —4.850174(X4/31.00) — (4)
115.07083
Y, =-2.732511(X1/9.24) + 0.134934(X2/56.69) + 28.314861(X3/31.30) + 8.505593(X4/31.00) — )
30.61576
Y3 = 6.074083(X1/9.24) — 19.29866(X2/56.69) + 58.254335(X3/31.30) + 15.512534(X4/31.00) — (6)
55.581952
Y4 = 0.3306865(X1/9.24) + 38.41268(X2/56.69) + 71.398324(X3/31.30) + 13.262866(X4/31.00) — (7
114.29284
Ys =23.210712(X1/9.24) — 7.1043099(X2/56.69) — 37.74691(X3/31.30) + 9.5519219(X4/31.00) + (8)
16.783951
_ 4 (-exp(-211)) 9
Ys (1+exp(—2¥1)) 2
-1 G-exp(2¥p) 10
Y7=1 (1+exp(-2Y2)) ( )
— 1 (-exp(=2¥3)) 11
Ys=1 (1+exp(—2Y¥3)) (an
_ 4 (1—exp(-2vy)) 12
Yo=1 (1+exp(—2Y,)) (12)
_ 4 (1—exp(=2Ys)) 13
Yio=1 (1+exp(—2Y2)) (13)
Y11 =-30.4598(Ys) — 18.146365(Y7) — 2.6387668(Y5s) + 8.8448447(Yo) + 63.341346(Y 10) + (14)
42.449882
Y12 =79.338(Ys) — 43.342865(Y7) +67.101086(Ys) —34.124502(Yo) —33.897458(Y 19) +52.373471 (15)
Y13 =7.2015703(Ys) + 10.235603(Y7) + 23.728956(Ys) — 10.15598(Y0) + 23.943019(Y 10) — (16)
12.587297
Y14 =0.33641252 (Ye) + 0.40161547(Y~) + 0.77949492(Ys) — 0.68902653(Yo) — 0.27826973(Y 10) — 17
0.18369186
Y15 =1.2079812(Ys) — 7.4009066(Y7) + 4.7464049(Ys) + 2.3916046(Yo) — 0.21416861(Y 1) + (18)
1.8553997
— 1 (zexp(z2111) (19)
Yie=1 E1+expg—2Yug§
_ 1—exp(—2Yq2 (20)
Yir=1 El+expE—Zlegg
_ 1-exp(—2Yy3 (21)
Yis=1 (1+expE—2Y13g)
— 1 (-exp(=2114)) (22)
Yin=1 El+expg—2Y14£
_ 1—-exp(—2Yig (23)
Yoo = 1 rexpczne)
Ya1 =—1.4667364(Y 16) + 1.0272561(Y17) + 0.87802988(Y 15) — 2.2419515(Y 19) — 0.46389507(Y20) + (24)
2.0065998
_ 4 (1-exp(=2Y31)) (25)
Y»=1 (1+exp(-2Y21))
Y = Y,, x 0.27 (26)
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b. Complete mathematical equation for phosphorus (P) output

Yo4=25.622119(X1/9.24) + 11.844161(X2/56.69) +2.6118788(X3/31.30) — 0.80440503(X4/31.00) — 27)
34.323175
Yas =—13.85174(X1/9.24) — 8.7536118(X2/56.69) + 34.733468(X3/31.30) + 10.81572(X4/31.00) — (28)
17.516009
Ya6 =—3.3570292(X1/9.24) — 26.444851(X4/56.69) + 38.96596(X3/31.30) + 8.2434825(X4/31.00) — (39)
16.987308
Y27 =3.8207698(X1/9.24) + 16.419773(X2/56.69) + 33.194194(X5/31.30) + 1.2360114(X4/31.00) — (30)
49.483012
Yo3=10.150082(X1/9.24) + 4.4279306(X2/56.69) — 30.954689(X3/31.30) + 3.4926039(X4/31.00) + 3D
15.109523
= 1 (zexp(=2v24)) (32)
Yo 1( (1+eXF(—2Y2)4)))
_ 1-exp(—2Yz5 33
Yao =1 (1(+exp(—(zv25)))) 33
_ 1—exp(—2Yz¢ (34)
Y =1 (1+expE—ZY26g)
— 1 (-exp(=2v27) (3%5)
Y=1 E1+expE—ZY27§g
_ 1—-exp(—2Yzg (36)
Yi=1 (1+exp(-2Y;g))
Y34 =-13.549729(Y29) + 4.018987(Y30) + 6.6299286(Y31) + 2.37409679(Y32) + 8.0787264(Y33) + (37)
9.0968665
Y35 =10.529641(Y29) — 11.18177(Y30) — 9.5026158(Y31) — 7.1212939(Y32) — 10.52775(Y33) + (38)
1.5482697
Y36 =9.3645867(Y29) — 4.8295997(Y30) + 0.091569768(Y31) +4.2884311(Y32) — 5.5461665(Y33) — (39)
4.8710897
Y37 =-9.3645867(Y20) — 4.8295997(Y30) + 0.091569768(Y31) + 4.2884311(Y32) — 5.5461665(Y33) — (40)
4.8710897
Y35 =—0.59583357(Y29) — 10.824461(Y30) + 6.0863648(Y31) — 8.735249(Y32) + 5.9550104(Y33) + 41)
2.8382498
_ 1 (1—exp(-2Y¥33)) (42)
Ys=1 E1+expE—ZY33§;
_ 1-exp(—2Y34 (43)
Yo=1 E1+expE—ZY34%§
_ 1-exp(—2Y3s 44
Ya=1 (1+expE—2Y35§§ ¢4
_q (A-exp(=2Y¥36 45
Yo=1 ((1+exp((—2Y36)))) ( )
_ 1—exp(—2Y37 46
Y= b epCanm) (40
Y4 =-17.153885(Y39) — 17.493776(Y 10) — 7.544691(Y41) — 7.1198373(Y42) — 6.9536383(Y43) — 47)
13.717326
- 48
Y= Crexpraa) “5)
Yi6= Y5 X 6185.03 (49)

c¢. Complete mathematical equation for potassium (K) output

Y7 =21.316504(X1/9.24) + 12.756581(X2/56.69) + 20.239099(X/31.30) — 0.4094501(X4/31.00) — (50)
Yis = 75111..7732)26926(&/9.24) — 5.0293409(X2/56.69) + 32.325374(X3/31.30) + 6.1513156(X4/31.00) — 1)
Yio= 1151';173;69?)(1/9.24) — 22.99444(X4/56.69) + 31.274702(X3/31.30) + 6.2694253(X4/31.00) — (52)
Yso = 5%%%2%%?}(#9.24) +26.902533(X2/56.69) + 43.19557(X5/31.30) — 2.7748419(X4/31.00) — (53)
Y5 = 162?6322;%&/9.24) — 5.0237417(X/56.69) — 23.543318(X/31.30) + 4.9934595((X4/31.00) + (54)
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14.76452
_ 1 (—exp(-2Yy7)) 55
Y52 =1 (1+exp(-2Y47)) (53)
_q (1—exp(-2Ysg)) (56)
Ys3 (1(+exp(—(zy48))))
_ 1—exp(—2Yy9 57
Yo = 1 rexp(c2vso) 7
— 1 (d-exp(=2Y¥50)) (58)
Yss=1 E1+expg—2YSO%§
_ 1—exp(—2Ysq 59
Yso =1 rexparen) 9)
Ys7 = 24.278767(Ys2) + 9.1042515(Y 53) — 31.060604(Y s4) — 67.983983(Yss) + 31.799568(Y s6) + (60)
84.380561
Yss=—1.8561997(Ys2) — 4.1389079(Y's3) — 5.7828181(Ys4) — 1.0227185(Y s5) + 6.3866275(Ys6) + (61)
2.95593
Yso = 17.126712(Ys2) + 15.088561(Ys3) — 9.5451891(Ys4) + 6.0240936(Yss) + 15.691524(Ys6) + (62)
2.5028356
Yoo =—17.968137(Ys2) — 15.972004(Y s3) + 10.255106(Ys4) — 6.5273149(Y s5) — 16.864093(Y'sq) — (63)
2.484777
Y1 = —2.5519067(Ys2) — 26.355412(Y s3) — 42.192708(Ys4) + 11.507524(Yss) + 2.5877625(Y s6) + (64)
52.067797
_ 1 (—exp(-2Y¥s7)) 65
Yo = 1 rexp(c2ver) (63)
— 1 (d-exp(-2Y¥se)) (66)
Yo =1 E1+expg—2Ysggg
_ 1—exp(—2Ys9 (67)
Yeu=1 El+expE—ZY59§§
_ 1-exp(—2Ygo (68)
Yes=1 (1+exp((—2Y60)))
— 1 (-exp(=2¥61) (69)
Yoo= 1 rexpCaren)
Y1 = —0.4399902(Y62) + 0.43683859(Y3) — 21.46099(Y es) — 21.462333(Yss) — 0.43440231(Ys) + (70)
0.64037101
Y(,s = Y(,7 (71)
Yeo=Yeg X 2.46 (72)

3.3. ANN Model Validation

The designed nutrient level prediction tool is equipped with four potentiometers, each with a specific function as an
analog input device. Potentiometer A is used to input soil pH, potentiometer B for moisture content (KA),
potentiometer C for soil temperature, and potentiometer D for soil resistance. Each potentiometer is set within a
specific range to ensure that input values do not exceed limits that could cause reading errors or unexpected spikes.

The maximum range for each potentiometer is adjusted as follows: the maximum pH value is set to 16, the
maximum moisture content to 80, the maximum temperature to 50, and the maximum resistance to 50. These settings
ensure that the values read by the system remain within a controlled range and do not produce thousands of digits
when converted to digital. Technically, potentiometer A is connected to analog pin A0, potentiometer B to Al,
potentiometer C to A2, and potentiometer D to A3 on the microcontroller.

The use of potentiometers in this system is considered effective in simplifying the data input process, particularly
during initial testing and tool simulations. Furthermore, this approach provides users with the flexibility to manually
adjust input values according to the soil parameters to be tested. The tool validation process is carried out by inputting
soil parameter values into each potentiometer based on actual pH, humidity, temperature, and resistance data. The
entered values are adjusted to the predetermined ranges for each potentiometer. After these values are processed by the
system using an Artificial Neural Network (ANN)-based prediction model, the output, in the form of estimated soil
nutrient levels, namely Nitrogen (N), Phosphorus (P), and Potassium (K), is displayed on the LCD screen. The nutrient
level prediction tool display is shown in Figure 6.
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Figure 6. Display of the NPK content from the designed instrument

The predicted NPK content results are then compared with the NPK content data obtained through laboratory tests
as actual reference values to ensure the accuracy of the designed tool. The analysis of the relationship between the
predicted and actual results is presented in graphical form. These graphs, shown in Figures 7-9 show the level of
agreement between the tool results and the laboratory tests.
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Figure 9. Validation graph of the actual value of the prediction tool test on potassium output

Figure 7 presents a validation graph comparing the total nitrogen (N-total) content based on the tool test results
(actual value) with the soil nutrient content values predicted by the system. This graph illustrates the extent to which
the predicted results approximate the actual values and can be used to evaluate the system's accuracy in detecting
nitrogen content in the soil. The validation results for nitrogen showed a coefficient of determination (R?) of 0.7218,
indicating a fairly strong match between the predicted and actual values. Meanwhile, Figure 8 shows the validation
results for phosphorus (P), which also compares the actual test values with the system's predicted values. The
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coefficient of determination (R?) for phosphorus is 0.6479, indicating a fairly good correlation between the predicted
and actual values. Next, Figure 9 presents the potassium (K) values, using the same approach, comparing the actual
and predicted values. The coefficient of determination (R?) for potassium is 0.6137. This indicates that the tool tends
to produce estimates that are close to or slightly exceed the actual values, but still within acceptable tolerances.

A comparison of the predicted and actual values in Tables 3-5 indicate that the model has good ability to represent
actual soil conditions. The tendency for predicted values to be slightly higher than actual values is likely related to the
characteristics of the training data and the normalization process used. However, this difference is still within
acceptable tolerance limits, thus deeming the model suitable for use as a prediction tool. Based on the results of tool
testing on actual soil nutrient levels, different RMSE and RRMSE values were obtained for each parameter, nitrogen,
phosphorus, and potassium. This difference indicates variations in the tool's accuracy in predicting each nutrient.

Table 3. Comparison of nitrogen (N) content based on prediction using instrument test with actual values

No Actual Predicted No Actual Predicted No Actual Predicted No Actual Predicted
Value Value Value Value Value Value Value Value
1 0.22 0.22 26 0.20 0.18 51 0.14 0.16 76 0.03 0.05
2 0.22 0.22 27 0.20 0.20 52 0.14 0.17 77 0.08 0.08
3 0.22 0.23 28 0.20 0.20 53 0.14 0.14 78 0.08 0.09
4 0.22 0.22 29 0.08 0.08 54 0.14 0.14 79 0.08 0.07
5 0.18 0.15 30 0.08 0.10 55 0.14 0.14 80 0.08 0.07
6 0.18 0.18 31 0.08 0.08 56 0.14 0.14 81 0.22 0.22
7 0.18 0.18 32 0.08 0.09 57 0.15 0.15 82 0.18 0.22
8 0.18 0.18 33 0.10 0.10 58 0.15 0.14 83 0.27 0.26
9 0.27 0.26 34 0.10 0.10 59 0.15 0.15 84 0.24 0.22
10 0.27 0.26 35 0.10 0.10 60 0.15 0.15 85 0.20 0.16
11 0.27 0.26 36 0.10 0.06 61 0.14 0.14 86 0.22 0.18
12 0.27 0.27 37 0.06 0.06 62 0.14 0.14 87 0.20 0.21
13 0.24 0.25 38 0.06 0.08 63 0.14 0.14 88 0.08 0.11
14 0.24 0.24 39 0.06 0.06 64 0.14 0.10 89 0.10 0.18
15 0.24 0.24 40 0.06 0.06 65 0.10 0.10 90 0.06 0.10
16 0.24 0.22 41 0.10 0.11 66 0.10 0.11 91 0.10 0.04
17 0.20 0.20 42 0.10 0.10 67 0.10 0.10 92 0.08 0.08
18 0.20 0.20 43 0.10 0.10 68 0.10 0.10 93 0.14 0.08
19 0.20 0.20 44 0.10 0.08 69 0.13 0.14 94 0.14 0.09
20 0.20 0.23 45 0.08 0.08 70 0.13 0.13 95 0.15 0.09
21 0.22 0.21 46 0.08 0.07 71 0.13 0.14 96 0.14 0.11
22 0.22 0.22 47 0.08 0.07 72 0.13 0.11 97 0.10 0.12
23 0.22 0.22 48 0.08 0.09 73 0.03 0.03 98 0.13 0.07
24 0.22 0.21 49 0.14 0.15 74 0.03 0.04 99 0.03 0.10
25 0.20 0.20 50 0.14 0.16 75 0.03 0.05 100 0.08 0.08

For nitrogen levels, the RMSE value was 0.0222 and the RRMSE was 15.54%. The RRMSE value, which is below
20%, indicates good nitrogen prediction accuracy. This indicates that the tool is capable of detecting and predicting
soil nitrogen levels with relatively small errors compared to actual values. This agreement between predicted and
actual values is likely influenced by the relatively narrow nitrogen data range and the sensor's relatively stable
response to changes in nitrogen levels. Meanwhile, the phosphorus level test yielded an RMSE of 1066.77 and an
RRMSE of 80.98%. The high RRMSE indicates low phosphorus level prediction accuracy. This high error is due to
the wide range of phosphorus values, from low to very high, and the presence of several predictions that are zero or
significantly different from the actual value. This situation results in a large difference between the actual and
predicted values, significantly impacting the RMSE and RRMSE values. This indicates that the tool still requires
further development in predicting phosphorus levels, both in terms of the sensor and the prediction model used.

For potassium levels, the RMSE value obtained was 0.2963 with an RRMSE of 28.46%. This value indicates that
the accuracy of potassium prediction is in the moderate category. Although most of the data shows a fairly good
agreement between actual and predicted values, there are several data points with significant differences that increase
the overall error. This indicates that the tool's performance in predicting potassium is quite good, but still needs
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Table 4. Comparison of phosphorus (P) content based on prediction using instrument test with actual values

No Actual Predicted No Actual Predicted No Actual Predicted No Actual Predicted
Value Value Value Value Value Value Value Value

1 16.05 6.55 26 17.87 16.92 51 2166.79 2166.78 76 11.39 8.20

2 16.05 0.07 27 17.87 19.62 52 2166.79 2166.76 7 36.52 0.00

3 16.05 0.00 28 17.87 17.18 53 2310.67 2310.66 78 36.52 36.27
4 16.05 20.71 29 19.29 0.00 54 2310.67 2310.60 79 36.52 36.14
5 35.71 1.10 30 19.29 22.42 55 2310.67 2310.64 80 16.05 0.00

6 35.71 35.64 31 19.29 15.14 56 2310.67 2310.67 81 35.71 0.00

7 35.71 9.80 32 19.29 0.01 57 5286.59 5286.59 82 15.85 0.00

8 35.71 5.28 33 18.68 15.46 58 5286.59 5286.59 83 12.00 16.14
9 15.85 12.56 34 18.68 22.87 59 5286.59 5286.55 84 10.58 6154.96
10 15.85 0.00 35 18.68 21.12 60  5286.59 5286.61 85 9.97 6184.42
11 15.85 3.43 36 18.68 0.00 61 5056.91 5056.91 86 17.87 0.00
12 15.85 4.34 37 12.00 19.43 62 5056.91 5056.90 87 19.29 506.79
13 12.00 0.00 38 12.00 0.00 63 5056.91 5056.91 88 18.68 16.37
14 12.00 15.66 39 12.00 15.88 64  5056.91 5056.93 89 12.00 550.69
15 12.00 11.06 40 12.00 15.70 65 6185.03 6183.23 90 18.28 53.34
16 12.00 14.24 41 18.28 15.25 66 6185.03 6179.58 91 18.68 0.00
17 10.58 7.28 42 18.28 17.68 67 6185.03 6183.40 92 2166.79 44.65
18 10.58 4.72 43 18.28 18.11 68 6185.03 6181.61 93 2310.67 0.00
19 10.58 16.64 44 18.28 24.12 69 5090.69 5090.69 94 5286.59 6163.49
20 10.58 14.93 45 18.68 18.78 70  5090.69 5090.69 95 5056.91 0.00
21 9.97 8.20 46 18.68 4.72 71 5090.69 5090.67 96 6185.03 6185.03
22 9.97 9.81 47 18.68 15.31 72 5090.69 5090.68 97 5090.69 6185.03
23 9.97 19.57 48 18.68 15.18 73 11.39 12.67 98 11.39 0.02
24 9.97 15.83 49  2166.79 2166.80 74 11.39 0.00 99 36.52 0.00
25 17.87 14.07 50 2166.79 2166.50 75 11.39 12.97 100 16.05 0.00

Table 5. Comparison of potassium (K) content based on prediction using instrument test with actual values

No Actual Predicted No Actual Predicted No Actual Predicted No Actual Predicted
Value Value Value Value Value Value Value Value
1 0.47 0.47 26 1.96 1.96 51 0.77 0.77 76 0.48 0.48
2 0.47 0.47 27 1.96 1.96 52 0.77 0.77 77 0.49 0.50
3 0.47 0.50 28 1.96 1.96 53 0.51 0.51 78 0.49 0.50
4 0.47 0.47 29 1.99 1.99 54 0.51 0.51 79 0.49 0.50
5 0.49 0.50 30 1.99 1.99 55 0.51 0.49 80 0.49 0.50
6 0.49 0.50 31 1.99 1.99 56 0.51 0.50 81 0.47 212
7 0.49 0.50 32 1.99 1.99 57 0.51 0.51 82 0.49 -0.06
8 0.49 0.48 33 2.28 2.28 58 0.51 0.49 83 0.49 0.16
9 0.49 0.50 34 2.28 2.28 59 0.51 0.51 84 0.50 0.34
10 0.49 0.50 35 2.28 2.28 60 0.51 0.50 85 0.49 0.28
11 0.49 0.50 36 2.28 2.28 61 0.51 0.51 86 0.47 0.46
12 0.49 0.48 37 2.29 2.29 62 0.51 0.50 87 1.96 1.50
13 0.50 0.48 38 2.29 2.29 63 0.51 0.51 88 1.99 1.76
14 0.50 0.50 39 2.29 2.29 64 0.51 0.52 89 2.28 1.33
15 0.50 0.50 40 2.29 2.29 65 0.59 0.59 90 2.29 1.68
16 0.50 0.50 41 2.44 2.44 66 0.59 0.51 91 2.44 1.82
17 0.49 0.50 42 2.44 2.44 67 0.59 0.50 92 2.46 1.80
18 0.49 0.49 43 2.44 2.44 68 0.59 0.59 93 0.77 0.46
19 0.49 0.49 44 2.44 2.44 69 0.63 0.63 94 0.51 0.86
20 0.49 0.50 45 2.46 2.46 70 0.63 0.63 95 0.51 1.73
21 0.47 0.50 46 2.46 2.46 71 0.63 0.63 96 0.51 0.93
22 0.47 0.50 47 2.46 2.46 72 0.63 0.63 97 0.59 0.32
23 0.47 0.50 48 2.46 2.46 73 0.48 0.48 98 0.63 1.74
24 0.47 0.47 49 0.77 0.77 74 0.48 0.50 99 0.48 0.54
25 1.96 1.96 50 0.77 0.77 75 0.48 0.50 100 0.49 0.46
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improvement to match the accuracy of nitrogen predictions. Overall, the test results showed that the tool performed
best in predicting nitrogen levels, followed by potassium, while phosphorus predictions still showed a high error rate.
Therefore, system improvements are needed, particularly in the measurement and modeling of phosphorus levels, to
increase the tool's reliability in soil nutrient analysis applications.

4., CONCLUSIONS AND RECOMMENDATIONS
4.1. Conclusions

This study demonstrates that the Artificial Neural Network (ANN)-based soil nutrient prediction model is capable of
providing adequate performance in estimating nitrogen, phosphorus, and potassium levels. The combination of
activation functions used produced an R? value above 0.96 and an RRMSE below 10% during the training phase,
indicating that the model can explain data variability with a low error rate. Mathematical equations for the model have
also been formulated for each nutrient element as a reference in the computational process.

The developed prediction tool, with four analog potentiometers as input, has been tested and validated using red-
yellow podzolic soil data. The validation results showed R? values of 0.7218 for nitrogen, 0.6479 for phosphorus, and
0.6137 for potassium, respectively. This indicates that the tool's estimates have a sufficient level of agreement with
laboratory test results, making it suitable for use as an aid in monitoring soil nutrient levels in the field.

4.2. Recommendations

Further research is recommended to use data from a wider range of soil types and environmental conditions, and to
apply normalization values based on global ranges to make the model more adaptable and more widely applicable.
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