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ABSTRACT 
 

  

Shallot plant diseases can reduce yields by up to 50% of total land area. Currently, shallot 

plant disease identification relies on direct observation, which is less effective and efficient 

due to varying intensities of disease and large cultivation areas. This study aims to develop a 

predictive model for shallot disease severity using multispectral drone imagery, apply 

Artificial Neural Network (ANN) algorithm to analyze multispectral band data, and evaluate 

the model's performance. The study used ANN algorithm with multi-layer perceptron 

regressor, involving following stages such as dataset acquisition, dataset stitching, dataset 

filtering and feature extraction, model development, and model evaluation. Multispectral 

data were taken using DJI Mavic 3 Multispectral drone, resulting 696 images per bands that 

were stitched into orthophoto map. The filtering process of plant objects yielded better model 

training results compared to unfiltered data. The optimal ANN model structure was identified 

as 4-6-2-1, with R² value of 0.9194 and MAE value of 0.0618. Model testing results 

demonstrated that using four input bands (G, R, RE, NIR) provided the best performance 

with R² value of 0.9194, followed by combination of two bands (R, RE) with R² value of 

0.8883. This indicated that the R and RE bands were most strongly correlated with shallot 

disease severity. 
 

1. INTRODUCTION 

Shallot (Allium cepa L.) is a high value agricultural commodity that provides significant income both local and 

national communities in Indonesia (Amarillis et al., 2022). According to Kementerian Pertanian (2023), national 

shallot consumption is 2.96 kg/capita/year or around 825,500 tonnes in 2023. Along with population growth, shallot 

consumption is projected to increase by 1.47% annually, necessitating a corresponding increase in production. 

However, plant diseases can cause yield losses exceeding 50% of the total land area (Supyani et al., 2021). Therefore, 

effective monitoring of shallot diseases is crucial to prevent crop damage and minimize harvest losses (Sari et al., 

2017; Solahudin et al., 2015). 

Currently, most farmers rely on direct visual inspections or close-room images processed with machine vision for 

disease monitoring (Kim et al., 2020). Manalu (2023) developed a classification model for shallot diseases using the 

KNN and CNN algorithms with images taken from a smartphone camera in a closed room. Following this, Purwansya 

et al. (2024) utilized RGB drone images captured directly in shallot fields. However, these methods are less effective 

for large fields where disease intensity varies, as they are limited to individual detection. In addition to visual 

detection, plant health can be assessed based on spectral reflectance captured by multispectral sensors cameras 

(Solahudin & Mutawally, 2020). The use of multispectral camera mounted on drones allows the analysis of plant 

diseases on a wider scale. The use of multispectral cameras mounted on drones enables the analysis of plant diseases 
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over large areas. Processing multispectral data with Artificial Neural Network (ANN) algorithms has been 

demonstrated as effective (Gunardi et al., 2023). The ANN algorithm can be used for complex data processing, 

multidimensional, and can be implemented on large amounts of data. 

This study builds on previous research to analyze shallot disease severity on a grid scale for large fields. The aim is 

to develop a predictive model for shallot disease severity using multispectral drone imagery, applying an ANN 

algorithm to analyze multispectral band data and evaluate model performance. The ANN algorithm will explore which 

combination of multispectral bands has the highest correlation with shallot disease severity. Additionally, the study 

will analyze the impact of plant object filtering on model performance. A Multilayer Perceptron (MLP) model will be 

utilized for processing multispectral bands. This disease severity prediction model aims to offer a rapid and accurate 

monitoring solution for large areas, outperforming conventional methods and individual detection (Messina et al., 

2020). 

2. MATERIALS AND METHODS 

This study was conducted between March and June 2024. Dataset acquisition of shallot plants was taken at Bentak 

Village, Karangrayung District, Grobogan Regency, Central Java (-7.183272° N; 110.785313° E), as shown in Figure 

1. Dataset processing and model development were carried out at the Bioinformatics Engineering Laboratory, 

Department of Mechanical Engineering and Biosystems, IPB University. 

  

Figure 1. Location of the study area. 

Tools and materials used in this research were divided into data acquisition tools and model development tools. 

The data acquisition process used a DJI Mavic 3 Multispectral drone, gadgets, DJI Pilot 2 software, QField software, 

ground check marker rope, and Lux Meter. The device used for model development uses computer Intel® Xeon 3.50 

GHz with software including Pix4Dmapper, QGIS, Interactive Python Notebook, and Visual Studio Code. The 

flowchart of the research procedure is shown in Figure 2. 

2.1. Dataset Acquisition 

Site survey was conducted, then recorded the disease characteristics of shallot fields. Subsequently, image data 

acquisition was performed using a multi-rotor type drone DJI Mavic 3 Multispectral. Data acquisition was taken at an 

altitude of 20 m with a Ground Sampling Distance (GSD) of 0.92 cm/pixel. The resolution of multispectral camera on 

DJI Mavic 3 Multispectral is 5.0 MP with details specifications in Table 1. Dataset were taken every 2 second with 

front and side overlap between images of 80%. Data collection was carried out in the morning when the angle of 

incidence of sunlight was more than 30° under bright light conditions. In this condition, the sunlight intensity is 

effective in obtaining the best multispectral wave reflectance so that it can represent the actual condition of the plant 

(Merwe et al., 2020).  
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Figure 2. Research workflow of shallot disease prediction model development. 

Table 1. DJI Mavic 3M drone multispectral camera specifications 

Camera parameter Specification 

Resolution 5.0 megapixel 

Sensor 1/2,8-inch CMOS 

Lens 

Field of view (FOV): 73.91° (61.2° x 48.10°) 

Equivalent focal length: 25 mm 

Aperture: f/2.0 

Multispectral camera bands 

Green (G) 

Red (R) 

Red Edge (RE) 

Near-infrared (NIR) 

: 560 ± 16 nm 

: 650 ± 16 nm 

: 730 ± 16 nm 

: 860 ± 26 nm 

Observations of shallot plants infected with the disease used a grid sampling technique (Sholeh & Nurcahyanti, 

2023). Validation data collection (ground check) was carried out using QField on a gadget for data recording. The data 

recorded included the number of shallot plants populations, shallot plants disease, and coordinate location of the data 

collection point of each sample grid. The research area of 0.45 ha with 44 rectangular beds measuring 1.21 x 29.26 ± 

0.1 m, 100 grid samples were taken for training data and testing data. The size of the grid sample was adjusted to the 

width of the land bed, which was 1 × 1 m. Grid sample data are used to determine the Disease Severity Index (DSI) on 

each grid sample which is calculated using the following formula (Hersanti et al., 2023): 

DSI = (n/N) 100%       (1) 

where n is the total disease-affected plants per grid, and N is the total plant population per grid.  
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2.2. Dataset Stitching 

Multispectral image datasets taken using drones were grouped according to band data type, namely Green (G), Red 

(R), Red Edge (RE), and Near-infrared (NIR) images. Furthermore, the image data were stitched using the 

Pix4Dmapper application as shown in Figure 3. The stitching process produces multispectral orthophoto raster data for 

each bands in TIFF (Tagged Image File Format) format. An orthophoto is the combined result of a collection of aerial 

photographs that have been geometrically corrected (Swanda et al., 2021). The data were then analysed for 

multispectral band filtering and feature extraction using QGIS. 

 

Figure 3. Stitching process for multispectral image data. 

  

  

Figure 4. Filtering multispectral image data process  (images scale 1:11). (a) Singleband gray raster image; (b) Singleband 

pseudocolor raster image; (c) Polygon vector image; (d) Filtered raster image of plant object. 

 a  b 

 c  d 
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2.3. Multispectral Band Filtering and Feature Extraction 

The multispectral orthophoto raster data of each band are filtered to separate the shallot plant objects from unwanted 

objects, such as soil. Data filtering begins with changing the image display (render type) which was previously 

displayed on a gray scale (singleband gray) (Figure 4a), to a colour scale display (singleband pseudocolour) (Figure 

4b). This stage was carried out to determine the range limit between the shallot plant object and the object to be 

removed. Furthermore, the band value range on the plant object is changed to a value of 1, whereas objects other than 

plants are changed to a value of 0 using the raster calculator tool. Raster data are converted into polygon-shaped 

vector data using the raster pixels to polygons tool. Polygons with a value of 0 were removed, resulting in a polygon 

filter, as shown in Figure 4c. The polygon filter layer was used to separate the shallot plant object in original band 

layer with the clip raster using the mask layer tool available in raster extraction. The results of filtering the plant 

objects are shown in Figure 4d. 

The next stage is the extraction of multispectral band features from each filtered grid sample. The feature 

extraction process was carried out using zonal statistics tools on all the multispectral band raster data. Image 

extraction was carried out to obtain statistical values, including minimum value (min), median value (median), 

maximum value (max), and average value (mean). These values were used for the ANN model development. 

2.4. Dataset Training and Model Evaluation 

The machine learning model development was conducted using an Artificial Neural Network (ANN) algorithm. The 

disease attack rate prediction model was built using the Python programming language in the Interactive Python 

Notebook environment with a number of supporting libraries, including pandas, numpy, and scikit-learn. The ANN 

algorithm training method used is the backpropagation method using the multi-layer perceptron regressor (MLP 

Regressor) function found in the scikit-learn module. Pandas library is used to convert excel extension files to csv, 

read csv files, change table dimensions, and save training results in excel. Numpy library was used for numerical 

computation in Python with n-dimensions and various mathematical functions for each parameter. The scikit-learn 

library was used for data preprocessing, dividing data into training data and testing data, the MLP Regressor model 

learning process, and model evaluation. 

In general, an ANN is composed of input layer, hidden layer, and output layer. There are 400 multispectral band 

grid sample data (G, R, RE, NIR) as input data from multispectral image feature extraction using zonal statistics tool. 

The input datasets were transformed using “StandardScaler” from the mean and standard deviation to ensure the data 

is distributed with a mean of 0 and a standard deviation of 1. Next, the data is divided into training dataset (80%) and 

testing data (20%) as shown in Figure 5. The model's target output is the intensity of disease attacks, derived from 

ground check calculations. The normalization equation used as follows: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑡 −  𝜇

𝑠
 

(2) 

where 𝑥𝑛𝑜𝑟𝑚 is the value after normalization, 𝑥𝑡 is the value of the input data, 𝜇 is the mean (average) value of the 

feature, and 𝑠 is the standard deviation of the feature. 

The hidden layers tested in this research started from one, two, and three hidden layers. The number of neurones 

tested in each hidden layer was 1 – 21 neurones. The training process continued until it reached the highest R2 value. 

The number of hidden layers and neurones was changed to determine the optimum number of each parameter based 

on the four multispectral bands as the input layer. The sigmoid function is used as the activation function to transfer 

the input value to the output value which is in the range of 0 – 1, as in equation 3 (Supriyanto et al., 2019). 

𝜎(𝑥) =  
1

1 + 𝑒𝑥𝑝−𝑥
 

(3) 

Input layer parameter analysis was conducted to determine the optimum multispectral band combination. The 

treatment of multispectral band combinations was performed starting from a combination of two, three, and four bands 

as the input layers.  The model training process was performed using the optimum number of hidden layers and 

neurones in each hidden layer, based on the results of the previous model training. The model training results were 

evaluated using the coefficient of determination (R2) and Mean Absolute Error (MAE) values, as in equations 4 and 5, 
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Figure 5. Training data and testing data at the study area. 

and the loss curve in the model training process. The R2 value shows the correlation of how well the model predicts 

the target variable, whereas the MAE measures the average absolute error between the value predicted by the model 

and the actual target value. The model is considered to have good performance if the R2 value is close to 1, with an 

MAE value close to 0 (Satria et al., 2023).  

𝑅2 = 1 − 
∑(𝑋𝑖 − 𝑌𝑖)

2

∑(𝑌̅  − 𝑌𝑖)
2
 

(4) 

𝑀𝐴𝐸 =  
1

𝑚
 ∑|𝑋𝑖 − 𝑌𝑖| 

(5) 

where Xi is the predicted value, Yi is the actual value, Y̅ is the average of the actual value, and m is the number of data 

points (Chicco et al., 2021). 

3.   RESULTS AND DISCUSSION  

3.1. Dataset Acquisition and Stitching Result 

Observations of the plants indicated symptoms of basal stem rot disease, commonly known as Fusarium wilt. 

Fusarium wilt, often referred to as "moler", is a prevalent disease affecting shallot crops and is caused by the fungal 

pathogen Fusarium oxysporum, which can reduce yields by up to 50% of total land area (Prakoso et al., 2016). Visual 

symptoms observed in the study area included leaf discoloration from pale green to yellow, starting at the tips and 

progressing toward the base, as well as leaf curling, twisting, drooping, and sudden wilting as shown in Figure 6. 

These results are in accordance with description of Sholeh & Nurcahyanti (2023). Fusarium oxysporum rapidly 

proliferates and spreads through soil, necessitating prompt control measures to prevent infection of surrounding plants 

(Susanti et al., 2016). Advanced stages of infection may occur between 30 days after planting and the end of the 

harvest period (Supyani et al., 2021).  The plants disease severity index is known by direct observations of the total 

disease-affected plants and the total plant population per grid. The attack value on the grid sample is calculated using 

equation 1, so that the attack value is obtained in percent units. 

The results of the dataset acquisition using DJI Mavic 3M with an altitude of 20 m were 696 drone images of each 

multispectral band. Image data that are still separate are then stitched using Pix4Dmapper so that orthophoto raster 

data for each band is obtained, as shown in Figure 7. Orthophoto raster data contains information on the reflectance 

values of the G, R, RE, and NIR multispectral bands reflected by the object. Based on the image analysis results, it is 

known that healthy shallot plants, diseased shallot plants, and soil have different multispectral band reflectance values. 

Based on Figure 8, it is known that healthy plants reflect red waves lower than green, red edge, and NIR waves. This 

is because the photosynthesis process of plants is strongly influenced by the red spectrum (640 – 700 nm) and the blue  

Training data 

Testing data 
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Figure 6. Observation of shallot plants. (a) Healthy shallot plant; (b) Diseased shallot plant.  

  

  

Figure 7. Multispectral singleband gray image (images scale 1:32). (a) Green; (b) Red; (c) Red edge; (d) NIR. 

 

Figure 8. Reflectance values of G, R, RE, NIR bands in healthy shallot plants, diseased shallots, and soil. 

spectrum (425 – 490 nm) (Hamim, 2018). The red spectrum is absorbed more by plants for the formation of 

chlorophyll in the photosynthesis process, but reflects most of the non-visible light (RE and NIR) because of the 

reflective leaf structure to NIR, especially in the mesophyll layer. Diseased shallot plants reflect lower spectrum of 
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green, RE, and NIR, while exhibiting higher red reflectance compared to healthy plants, indicating reduced efficiency 

in plant organ function, particularly chlorophyll production. Soil consists of a mixture of mineral particles, organic 

matter, water, and air that tends to absorb rather than reflect light, so that it has the lowest reflectance value.  

3.2. Filtering Process Results of Multispectral Dataset 

The filtering process was carried out to remove soil objects, so that obtain only the reflectance value of the shallot 

plants. The histogram in Figure 9 shows the distribution of reflectance values from the dataset pixels in multispectral 

image before the filtering process (Figure 9a) and after the filtering process (Figure 9b). The reflectance values shown 

in Figure 9 are the original values captured by the sensor before the panel calibration and camera correction process on 

the red edge band as a sample. The results of the multispectral dataset filtering process showed that soil reflectance 

values lower than the plant reflectance values were successfully removed by the filtering method used. The plant 

reflectance value is shown by the blue box in Figure 9a and then separated from the soil reflectance value to obtain the 

plant reflectance value distribution shown in Figure 9b. 

After the dataset filtering process, model development was carried out using two types of data, unfiltered and 

filtered grid sample data. The model training process using these two types of datasets aims to determine the effect of 

the dataset filtering process on the model performance, then choose the dataset used for model development and 

analysis. Based on the results of ANN model training using four input variables (G, R, RE, and NIR), the R2 value 

increased from 0.8075 (unfiltered data) to 0.9194 (filtered data). In addition, the MAE value of the model using 

filtered data was lower (0.0618) than the model using unfiltered data (0.8075) as shown in Table 2. This indicates an 

increase in model performance with the soil filtering process. Therefore, the filtered dataset was selected for ANN 

model development. 

  
(a) 

 
(b) 

Figure 9. Distribution of reflectance values of dataset pixels in red edge multispectral imagery. (a) Before the filtering process; (b) 

After the filtering process. 

Table 2. Model training results on dataset filtering and non filtering 

Dataset R2 value MAE value 

Non filtering 0.8075 0.8075 

Filtering 0.9194 0.0618 

3.3. Model Development Results 

The ANN machine learning model was developed using the MLP Regressor function available in the scikit-learn 

module. The input layer consists of four parameters, namely the average value of the Green, Red, Red Edge, and Near-

infrared band multispectral images. The number of hidden layers (hl) is determined by testing the number of hidden 

layers starting from one, two, and three hidden layers. The number of neurons (n) tested in the process of determining 
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the number of hidden layers is 1 – 21 in each hidden layer. The output layer in the model training process is the 

intensity of the disease attack on shallot plants. 

The dataset was obtained from the results of multispectral image feature extraction on 100 grid samples. There are 

100 grid sample datasets in each multispectral band (G, R, RE, NIR), so that a total of 400 input data and 100 disease 

attack intensity data are output data. The datasets were transformed using “StandardScaler” from the mean and 

standard deviation, and then randomly divided into training datasets (80%) and testing datasets (20%) representing 

each disease attack class. The training process was performed using several model parameters to learn patterns and 

relationships from the given data. The ANN hyperparameter settings used in the model development are shown in 

Table 3. Subsequently, the model development was continued with the testing process to test the performance of the 

ANN model. The determination of hyperparameter values is intended to obtain the best model with high accuracy and 

low error. The parameter R2 and MAE values, as in equations 4 and 5, are used to measure the performance of the 

ANN model (Chicco et al., 2021). 

Table 3. Hyperparameters in the ANN training process 

Hyperparameter Value 

Hidden layer 1 – 3 

Hidden layer neurons 1 – 21 

Activation function Sigmoid (logistic) 

Solver/optimizer Adam 

Learning rate Constant (0.1) 

Momentum 0.5 

Maximum iteration 100000 

Random state 13 

Early stopping True 

Validation fraction 0.2 

Tolerance 10-15 

Table 4. Model training results on various hidden layers 

Number of Hidden Layer ANN Structure R2 value MAE value Iteration 

1 4-6-1 0.8529 0.0719 69 

2 4-6-2-1 0.9194 0.0618 340 

3 4-6-2-3-1 0.7932 0.0987 73 

Four parameters of multispectral band imagery were used to build a prediction model for the level of shallot 

disease attacks. Based on the results of model training process in one hidden layer, the best model obtained on the 

ANN structure of 4-6-1 with R2 value was 0.8529 and MAE value of 0.0719. Furthermore, the training process is 

carried out on two hidden layers which shows an increase in the highest R2 value of 0.9194 and MAE value of 0.0618. 

This result shows that the greater number of hidden layers, the higher accuracy of model. The process model training 

process is again carried out on three hidden layers to obtain the ANN structure in the best model. However, the 

training results show a decrease in the the highest R2 value which is 0.7932 and MAE value of 0.0987. Therefore, the 

ANN structure of 4-6-2-1 was selected for the next analysis as the proposed model, as shown in Figure 10. The 

training results of the model on various hidden layers are shown in Table 4. 

The ANN model with a structure of 4-6-2-1 consists of four neurons in the input layer, six neurons in the first 

hidden layer, two neurons in the second hidden layer, and one neuron in the output layer. During the forward 

propagation process, the input values are processed through each layer until reaching the output. In the first hidden 

layer, the neuron value 𝑧𝑗 is calculated using the equation 6 with weight and bias values as shown in Table 5.  
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Figure 10. Architecture of the proposed ANN model. 

Table 5. Weight and bias values from input layer process to hidden layer 1 

Input layer Type 
Neuron HL 1 

1 2 3 4 5 6 

Green weight -1.6629 -2.9260 0.4160 -1.1393 3.0346 0.0721 

Red weight -0.6734 0.6692 -0.8545 -2.8537 2.6005 -3.6426 

Red Edge weight -5.0152 7.3007 -2.3991 0.5930 -2.3764 2.5922 

NIR weight -2.5155 2.7818 2.0306 0.0423 -7.7058 -1.3772 

 
bias 1.0213 -2.5713 -3.1765 2.0970 0.2108 -2.8818 

Table 6. Weight and bias values from hidden layer 1 process to hidden layer 2 

Input neuron HL 1 Type 
Neuron HL 2 

1 2 

Neuron 1 weight 1.3418 -1.3306 

Neuron 2 weight 1.5543 -0.9156 

Neuron 3 weight -1.6840 -0.7314 

Neuron 4 weight -1.0601 -1.3997 

Neuron 5 weight 1.0763 -1.1184 

Neuron 6 weight -1.7856 -0.9713 

  bias -0.3545 -1.3791 

After calculating 𝑧𝑗, the sigmoid activation function is applied to obtain the output 𝑎𝑗. This process is repeated for 

the second hidden layer, where 𝑧𝑘 is calculated using equation 7 with weight and bias values as shown in Table 6, 

followed by the application of the sigmoid function to obtain 𝑎𝑘 value. The output layer calculates 𝑧𝑚 using equation 

8 with weight and bias values as shown in Table 7, then the final output value (𝑦) is obtained by applying the sigmoid 

function as in equation 9. Furthermore, the backpropagation process is employed to minimize the error and adjust the  
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Table 7. Weight and bias values from hidden layer 2 process to output layer 

Input neuron HL 2 Type Output layer 

Neuron 1 weight 0.8549 

Neuron 2 weight 0.3595 

  bias 0.0517 

biases, with the output error calculated from the output layer and propagated back to the hidden layers. Weights and 

biases are updated using the gradients from backpropagation, and this iterative process continues for up to 100000 

iterations, as shown in Table 3, until the model achieves the lowest possible error. 

𝑧𝑗 =  ∑ 𝑤𝑗𝑖

4

𝑖

. 𝑥𝑖 + 𝑏𝑗   ,                  𝑎𝑗 =  𝜎(𝑧𝑗) (6) 

𝑧𝑘 =  ∑ 𝑤𝑘𝑗

6

𝑘

. 𝑎𝑗 + 𝑏𝑘  ,              𝑎𝑘 =  𝜎(𝑧𝑘) (7) 

𝑧𝑚 =  ∑ 𝑤𝑚𝑘

2

𝑖

. 𝑎𝑘 + 𝑏𝑚  , 𝑎𝑚 =  𝜎(𝑧𝑚) (8) 

𝑦̂ = 𝑎𝑚 =  𝜎(𝑧𝑚) (9) 

where z is value of the neuron calculated before applying the activation function, w is weight that connects neurons 

from the previous layer to the current neuron 𝑏 is the bias added to enhance the model's flexibility 𝑎 is the output 

value after application of the sigmoid activation function, and 𝑦 is the final output value. 

The number of hidden layers that are too large is also not used in training ANN models because it can cause 

overfitting (Kesuma et al., 2023). Overfitting is a condition when the model learns the training data in too much detail, 

including noise or random fluctuations in the data or random fluctuations in the data. As a result, the model performs 

very well on the training data but performs poorly on new data that have never been seen before (testing data). This 

can occur because the model is too complex with various relative parameters; therefore, the model memorizes the 

training data rather than finding patterns from the given data. 

3.4. Analysis of Multispectral Band Input Parameters 

The training process was carried out by testing a combination of several multispectral bands in the input layer with the 

obtained ANN structure. This aims to analyze the correlation between multispectral bands and the intensity of disease 

attacks for each combination of input variables. Based on the results of the model training process, it was found that 

the four-band multispectral input layer had the highest accuracy with an R2 value of 0.9194. The combination of the 

two input band parameters R and RE gives the second-best model results with an R2 value of 0.8883. This shows that 

the Normalized Difference Red Edge (NDRE) has a strong relationship with the intensity of disease attacks on 

shallots. NDRE is a plant vegetation index used to measure plant health by comparing red with red edge spectrum 

reflectance (Davidson et al., 2022). The best combination of three input band parameters is obtained in the 

combination of bands G, R, and RE with an R2 value that is not too different from the combination of bands R and RE, 

namely 0.8828. This shows that the R and RE bands are input variables with the highest correlation with the level of 

onion disease attack. The model training results using various multispectral band input scenarios are shown in Table 8. 

The R and NIR input band variables also had a strong correlation with the intensity of the disease attack. This is 

shown in the model training results with input bands R and RE in Table 8, which have an R2 value of 0.8506 with an 

MAE of 0.0817. In addition, the next input band variable consists of R, RE, and NIR, with an R2 value of 0.8368 and 

an MAE of 0.0867. These results indicate that the Normalized Difference Vegetation Index (NDVI) has a strong 

relationship with the intensity of disease attack in shallots. This is in accordance with the theory of the photosynthesis 

process, in which plants absorb more of the red and blue light spectrum (visible light), while the RE and NIR spectrum 
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Table 8. Model training results on various multispectral band input scenarios 

Rank Variables input Variables exclude R2 value MAE value Iteration 

1 G, R, RE, NIR None 0.9194 0.0618 340 

2 R, RE G, NIR 0.8883 0.0629 41 

3 G, R, RE NIR 0.8828 0.0736 88 

4 R, NIR G, RE 0.8506 0.0817 33 

5 R, RE, NIR G 0.8368 0.0867 48 

6 G, R RE, NIR 0.8255 0.0796 83 

7 G, R, NIR RE 0.8246 0.0922 48 

8 G, RE R, NIR 0.7952 0.1011 43 

9 G, NIR R, RE 0.7823 0.0956 41 

10 G, RE, NIR R 0.7646 0.1094 71 

11 RE, NIR G, R 0.6238 0.1410 50 

(non-visible light) tend to be reflected (Hamim, 2018). Therefore, the lower the red band value and the higher the red 

edge or near-infrared band value, the healthier is the plant. 

3.5. Model Evaluation 

Model evaluation was conducted using test data obtained through a data separation process to training and testing 

dataset. The data separation consisted of 80% training data and 20% testing data from the total ground check data. The 

dataset included 100 grid samples, from which 20 test data points were randomly selected for data testing each model 

combination. The ANN model was evaluated based on the R2 value to assess accuracy in predicting disease severity 

index and MAE value to measure prediction error. According to the evaluation results, the best-performing model was 

a 4-6-2-1 ANN structure using four multispectral input bands: Green, Red, Red Edge, and NIR. The R2 value of 

0.9194, indicating very high accuracy in the model's predicted disease severity index compared to actual intensity 

levels. The MAE value of 0.0618 demonstrates a very low prediction error on the test data, as shown in Figure 11. The 

higher R2 value is to 1 and the lower MAE value, the better model performs in predict on the testing data. 

The ANN model also evaluated by observing the loss curve to determine how well the model can learn the training 

data. The loss curve is observed in the best model, namely input bands G, R, RE, NIR with the ANN structure 4-6-2-1. 

Based on the loss curve in Figure 12, it is known that the loss value in the first iteration is 0.45134, then moves down 

rapidly to 0.02666 and decreases slowly, approaching 0 at the next iteration. This indicates that the training process is 

going well. The training process has reached the convergence point at the 219th iteration with the loss value of 

0.00684, as shown by the green dot in Figure 12. If the iterations continue, the model performance does not experience 

significant changes. This means that the model learned as much as possible from the available training data and did not 

 

Figure 11. ANN results compared with the target output. 
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Figure 12. ANN model loss curve with input variables G, R, RE, and NIR. 

show significant improvements in the training process. At the converging point, the loss curve tends to decrease 

towards a stable point, and model parameters such as weights and bias have reached or are close to optimal for good 

predictions. 

Based on the loss curve pattern in Figure 12, it can be observed that the model is fit during the training process, so 

that it does not experience underfitting or overfitting. The model is said to be underfitting when the loss value is still 

high, even though the iteration continues. This can happen because the model is too simple to capture the patterns in 

the data, so it cannot learn the relationship between input parameters properly, and the model has not yet reached the 

convergent point (Kurniasari & Ammar, 2024). Model overfitting can occur when the loss value continues to increase 

during the model training process. This can happen because the model is too complex and starts to capture noise or 

irrelevant details from the training data, so that even though the model shows good performance during the training 

process, the model's performance is not good enough to predict results with new data. 

The implementation of the ANN model can be used to create a map of the level of fusarium disease attacks on 

shallot plants. The output of the model calculation in the form of disease severity index with a value of 0 – 1, then 

classified into four classes using percent values and categories referring to the research of Supyani et al. (2021) which 

is shown in Table 9. The model detection results are shown in Figure 13, which is a map representing the level of 

Fusarium disease attacks in study area. Multispectral image feature extraction was performed on the shallot fields with 

2388 detection target grids. Based on the analysis results of the model detection, it is known that the majority of 

Fusarium diseases are in the high category or class 3, with a total of 45.77% of the study area. The level of disease 

attacks in the medium category (class 2) is 25.42%, very high category (class 4) is 20.56%, and low category (class 1)  

 

Figure 13. Map of of fusarium disease severity index as a result of ANN model detection. 
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Table 9. Scale on the class of disease attack 

Class Disease severity index (%) Category 

1 1 – 25 Low 

2 26 – 50 Medium 

3 51 – 75 High 

4 76 – 100 Very high 

is 8.25%. This shows the need for immediate treatment, such as spraying pesticides on shallot fields, to minimize the 

decline in crop yields. The map resulting from the detection of disease severity index can be used to distribute 

different doses during the pesticide spraying process. 

4. CONCLUSION 

A predictive model for shallot disease severity using multispectral drone imagery has been developed to prevent 

shallot plant disease attack. The model training process using the MLP Regressor on filtered data of shallot plant 

objects showed better results compared to unfiltered data. The optimal ANN model structure was identified as 4-6-2-1, 

with four input bands (G, R, RE, NIR), followed by combinations of two bands (R, RE). This indicated that the R and 

RE bands were most strongly correlated with shallot disease severity index. The model evaluation results showed an 

R2 value of 0.9194 and an MAE of 0.0618 from the best model, indicating a high level of accuracy in predicting the 

level of disease attack in shallot plants. The loss curve in the model training process also showed that the model was 

fit, such that it did not experience underfitting or overfitting. This study suggests that it is necessary to add information 

of input variables for ultraviolet light reflectance values at various wavelengths to determine their correlation with 

plant diseases and a larger number of datasets to obtain a model with better accuracy. In addition, increasing the 

variety and number of datasets is also required to obtain a model with better accuracy. 
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