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ABSTRACT 
 

  

This study aims to optimize the biocomposites of sago pith waste (SPW) for sustainable 

packaging applications. The biocomposite was prepared using the biodegradable polymer 

polybutylene adipate-co-terephthalate (PBAT) as a matrix and methylendifenyl 

diisocyanate (MDI) as a chain extender. RSM-CCD was used to assess the impact of the 

incorporation of SPW (5-20% p/p) and MDI (1–5%) into the PBAT matrix on the tensile 

strength and elongation of biocomposites by melt mixing. The optimal formula shown by 

RSM was 5% SPW and 5% MDI, which resulted in a 5.14 MPa tensile strength and 8.14% 

elongation. The barrier properties of all treatments, including moisture content, contact 

angle, and water absorption, were checked. The optimal formula showed good barrier 

properties compared to other treatments: water content of 3.12%, contact angle of 42.84°, 

and water absorption of 0.82%. Other characterizations of SEM, FTIR, DSC, TGA, and 

biodegradability tests showed an increase in SPW-PBAT compatibility due to the use of 

MDI. MDI as a chain extender had a positive impact on the material's strength, and the 

addition of SPW accelerated the degradation process, thus improving biodegradability. 

1. INTRODUCTION 

Plastics are versatile materials that play important roles in daily life. Their widespread use is due to their lightweight, 

durability, malleability, bio-inertness, hydrophobicity, and low-cost properties (Bishop et al., 2020). In 2016, global 

plastic production was 335 million tons, which increased to 367 million tons by 2022 (Plastics Europe, 2021). Fossil-

based plastics present notable environmental challenges, as a substantial portion (approximately 40%) of this waste 

accumulates in landfills and threatens marine ecosystems, with research showing high toxicity to aquatic organisms 

(Venkatachalam & Palaniswamy, 2020). The escalating issue of plastic waste has prompted research on degradable 

materials as potential replacements for synthetic polymers, as these materials can naturally decompose into harmless 

byproducts (Guimarães et al., 2022). 

PBAT (Polybutylene Adipate Terephthalate) has a high elongation value, indicating excellent flexibility and ease of 

processing, which facilitates its widespread use (Liu et al., 2021). PBAT is biodegradable within a few weeks, making 

it an environmentally friendly alternative (Scaffaro et al., 2019). PBAT can be used in food packaging applications 

because of these properties. However, PBAT’s lackluster performance and high cost hinder its widespread adoption in 

packaging (Cai et al., 2018; Moustafa et al., 2017).  

Vol. 14, No. 3 (2025): 979 - 990 http://dx.doi.org/10.23960/jtep-l.v14i3.979-990  

http://dx.doi.org/10.23960/jtep-l.v14i3.978-990


Jurnal Teknik Pertanian Lampung Vol. 14, No. 3 (2025): 979 - 990 

 

980 
 

Natural fibers have gained significant interest as replacements for synthetic counterparts in engineering applications 

(Gapsari et al., 2021). Research suggests the potential of SPW (Sago Pith Waste) as a novel biocomposite filler (Azura 

et al., 2017). Sago starch production generates SPW as a by-product with SPW produced around 15% of total wet weight 

(Istikowati et al., 2021; Siruru et al., 2019). Current practices often involve discharging this waste into rivers, leading 

to environmental pollution of waterways and the surrounding ecosystems (Rashid et al., 2018). Despite its waste 

designation, SPW retains a significant amount of lignocellulose fibers (23-40% cellulose, 9.2-14.5% hemicellulose, and 

3.9-7.5% lignin) (Fauziah et al., 2020; Siruru et al., 2019). This high lignocellulosic content makes SPW a promising 

candidate for development as a biocomposite filler. The application of SPW as a reinforcing filler in PVA-based 

biocomposites has been investigated. Toh et al. (2011) demonstrated that the dry mixing method yielded biocomposites 

with the most favorable mechanical properties (tensile strength of 4.85 MPa) but compromised water resistance.  

MDI (Methylendifenly Diisocyanate) is commonly used to enhance the compatibility of many materials. High reacti-

vity with carboxyl and hydroxyl groups is imparted by its molecular structure, which is characterized by two isocyanate 

functional groups (Pan et al., 2018). Tensile strength and elongation break improved by 1.9 and 6.8 times, respectively, 

when 2% compatibilizer was added to bamboo flour (BF)/PBAT composites (Xie et al., 2020). According to Li et al. 

(2021), tensile strength increased significantly from 4.55 MPa to 6.52 MPa when 1% MDI was added to starch/PBAT.  

RSM is a common practice in the pursuit of optimal results, in which the influence of different independent variables 

is analyzed to inform the design of an optimal solution (Albooyeh et al., 2022). The application of RSM offers several 

advantages, particularly in terms of reducing the number of planned experiments and rapidly identifying the optimal 

parameters including those about the interaction of each variable (Belaadi et al., 2020; Benzannache et al., 2021).  

As far as author aware, no study has been conducted to assess the potential benefits of SPW/PBAT with MDI couplers 

in the production of biodegradable materials. This study aimed to optimize the mass ratio of SPW, PBAT, and MDI 

through melt-mixing to achieve enhanced tensile strength and elongation at break. The resulting biocomposite barrier 

characteristics, such as moisture content, contact angle, and water absorption were also assessed. SEM, FTIR, DSC, 

TGA, and biodegradability tests were used to further characterize the neat polymer, low, and optimal formulation. 

2. MATERIALS AND METHODS 

2.1. Materials 

SPW was sourced from PT. Bangka Asindo Agri, Bangka Belitung. PBAT was obtained from Shijiazhuang Tuya 

Technology (China). MDI was obtained from BASF (NCO content 31%, Germany). 

2.2. Experimental Design and Optimization for SPW and MDI-Based Biocomposite 

The focus was on optimizing two key variables: the sago pith waste concentration (% w/w) and MDI concentration (% 

w/w). Meanwhile, the PBAT concentration (% w/w) was adjusted by keeping the total percentage concentration of the 

mixture three components at 100% for each run. Tensile strength and elongation were chosen as the response variables 

for optimization within the RSM-CCD model. Table 1 presents a detailed overview of the model variables, including 

their coded and actual values and Table 2 presents the run code and composition of each run. 

2.3. Methods 

SPW (size 60 mesh), PBAT, and MDI were melt-mixed using a HAAKE Polylab OS system Rheomix at 120°C and 80 

rpm for 10 minutes, according to RSM ratios. Table 2 outlines the specific compositions of the prepared biocomposites. 

The resulting biocomposite chunks were molded on a YASUDA brand mini test press at 120°C, resulting in the 

production of sago pith waste biocomposite sheets. 

Table 1. The actual values and coding levels of the central composite design that correspond to the design 

Variable 
Range and Levels 

-1 0 1 

X1-Sago pith waste (%) 5.00 12.50 20.00 

X2-MDI (%) 1.00 3.00 5.00 
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Table 2. Run code and composition of three variables in each run 

Run Sago Pith Waste (% w/w) MDI (% w/w) PBAT (% w/w) 

1 5.00 5.00 90.00 

2 12.50 3.00 84.50 

3 1.89 3.00 95.11 

4 12.50 3.00 84.50 

5 12.50 0.17 87.33 

6 12.50 3.00 84.50 

7 5.00 1.00 94.00 

8 12.50 5.83 81.67 

9 12.50 3.00 84.50 

10 12.50 3.00 84.50 

11 20.00 5.00 75.00 

12 20.00 1.00 79.00 

13 23.11 3.00 73.89 

 

2.4. Characterization of the Biocomposites 

2.4.1. Mechanical Properties (Tensile Strength and Elongation) 

The biocomposite sample tensile strength and elongation were measured in compliance with ASTM D3039. Using a die 

cutter, dumbbell-shaped specimens were prepared, and micrometers were used to quantify their thicknesses. A Universal 

Testing Machine (UCT-5 T, Orientec Co. Ltd, Japan) was used for mechanical testing. 

2.4.2. Barrier properties  

Moisture content was analyzed using a moisture analyzer (KERN & Sohn, Germany). The method used to calculate the 

water absorption capacity was ASTM D570-22. Water absorption capacity was calculated using Equation 1. 

𝑊𝑎𝑡𝑒𝑟 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  
𝑊𝑡−𝑊𝑜

𝑊𝑜
× 100    (1) 

where Wo represent the initial weight and Wt represent the final weight of the sample. 

The contact angle was measured using ±5 µL of water droplets on the biocomposite surface. The static contact angle 

was calculated by taking measurements at three separate spots on the surface biocomposite. The contact angle was then 

captured using a mobile phone and processed with ImageJ software. 

2.4.3. Characterization of RSM Low and Optimal Condition  

Further testing was conducted on RSM Low and Optimal conditions. These conditions are based on the highest and 

lowest elongation values in the RSM treatment. A scanning electron microscope (Merk Jeol) was used for Morphological 

investigation. Samples were photographed at 500x magnification under a 10 kV electron beam voltage. It was recorded 

as an example of projection on the monitor screen.  

The functional group's spectra were collected using the FTIR (Fourier Transform Infrared Spectroscopy) 4000 

spectrometer (Perkin Elmer., Waltham, MA, USA) with 64 scans in the spectral range from 4000 to 280 cm–1. 

A DSC Polyma instrument is used for DSC (Differential Scanning Calorimetry) analysis. Heated at a rate 20 mL/min 

under nitrogen atmosphere, with a heating rate of 20°C/min and the temperature range is 20°C to 300°C. PerkinElmer 

TGA equipment is used to assess samples' thermal stability through TGA (Thermogravimetric Analysis). Mass loss was 

monitored as the temperature increased from 40 to 600°C at a heating rate of 10°C/min. 

A modified ASTM G21 standard was used to assess biodegradability and salt agar (SA) medium was used by Nissa 

et al. (2019). Using ImageJ software, the amount of fungal growth on the samples was evaluated after the 21-day 

incubation period. 
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3. RESULTS AND DISCUSSION  

3.1. Model Data Adequacy Assessment 

To validate the mathematical model created by RSM-CCD, Table 2 compares predicted response values to actual 

experimental data. The model’s statistical significance was determined using analysis of variance (ANOVA). 

The RSM model predicted and actual tensile strength and elongation values are compared in Figure 1. The diagonal 

line’s close clustering of data points suggests a good connection between actual and predicted responses, corroborating 

the accuracy of the model. This alignment supports the validity of the RSM technique and is in line with Dixit & Yadav 

(2019) findings. 

Table 3. Design and experiment results utilizing RSM based on actual and predicted values 

Range of Actual Variable Actual and Predicted Value of Response 

Run 
Sago Pith 

Waste (% b/b) 

MDI (% 

b/b) 

Tensile Strength (MPa) Elongation (%) 

Predicted Value Actual Value Predicted Value Actual Value 

1 5.00 5.00 5.26 5.14 8.30 8.14 

2 12.50 3.00 4.63 4.78 4.61 4.31 

3 1.89 3.00 4.13 3.89 8.17 8.58 

4 12.50 3.00 4.88 4.63 4.61 4.89 

5 12.50 0.17 3.00 3.50 2.69 2.87 

6 12.50 3.00 4.63 4.87 4.61 5.00 

7 5.00 1.00 2.95 2.94 4.92 4.50 

8 12.50 5.83 6.26 5.87 5.34 5.15 

9 12.50 3.00 4.68 4.63 4.61 4.57 

10 12.50 3.00 4.63 4.45 4.61 4.26 

11 20.00 5.00 6.31 6.56 3.26 3.68 

12 20.00 1.00 4.01 4.01 2.90 3.07 

13 23.11 3.00 5.38 5.14 3.18 2.76 

 

         

  (a)                 (b) 

Figure 1. Relationship between actual and predicted values of the model (a) tensile strength; (b) elongation 

Tensile Strength (MPa) Elongation (%) 
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3.2. RSM and Anova Analysis for SPW Biocomposite 

3.2.1. Effect of variables on tensile strength 

To evaluate each variable’s impact on the response, a linear model was constructed using the data shown in Table 3. 

Equation 2 describes the RSM model developed for biocomposite tensile strength.  

Y = 2.03 + 0.07 x1 + 0.58 x2     (2) 

where x1 represents SPW and x2 represents MDI, the ANOVA findings in Table 4 show a p-value is less than 0.05, this 

indicates the coefficients of the statistical significance, confirming that both SPW and MDI have a significant impact on 

tensile strength. As such, the relationship between these factors and the response is well captured by the RSM model.  

ANOVA validated the RSM model’s reliability. A high regression coefficient (R²=0.94) and the minimal difference 

between adjusted and predicted R² (<0.2) indicate a strong correlation between predicted and observed tensile strength. 

The relationship between the tensile strength of the resultant biocomposite and the concentration of MDI and SPW is 

shown in Figure 2. The plot shows a positive association between MDI concentration and tensile strength, implying that 

increasing MDI content results in higher tensile strength. On the other hand, there was a negative relationship between 

tensile strength and SPW concentration. Adding lignocellulosic fillers like SPW to the thermoplastic matrix (PBAT) 

may not always increase the biocomposite tensile strength (Hejna et al., 2020). MDI can potentially prevent crack 

formation during tensile strength testing, thereby leading to improved mechanical properties (Xie et al., 2020). 

Table 4. Tensile Strength of SPW/PBAT/MDI Biocomposites from the CCD Model: An ANOVA Analysis 

Source Sum of Squares df Mean Square F-value p-value  

Model 12.85 2 6.43 74.86 < 0.0001 significant 

X1-Sago Pith Waste 2.21 1 2.21 25.79 0.0005  

X2-MDI 10.64 1 10.64 123.94 < 0.0001  

Residual 0.86 10 0.09    

Lack of Fit 0.73 6 0.12 3.89 0.1 not significant 

Pure Error 0.13 4 0.03    

Cor Total 13.71 12     

Std.Dev 0.29  R² 0.94   

Mean 4.63  Adjusted R² 0.92   

C.V % 6.32  Predicted R² 0.87   

  Adequate precision 23.86   

 

         

Figure 2. Two variable effects on tensile strength: (a) Contour plot, and (b) Three-dimensional response surface 

(a) (b) 
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3.2.2. Effect of variables on elongation 

Based on the data in Table 4, multiple regression analysis was used to create a second-order quadratic model. The 

biocomposite elongation RSM model is represented by Equation 3. 

Y = 5.07 – 0.32 x1 + 1.54 x2 – 0.05 x1x2 + 0.01 x1
2 – 0.07x2

2   (3) 

The interaction terms in the equation are denoted by x1x2, while the squared terms are represented by x1
2 and x2

2. 

According to the ANOVA results, every coefficient has a statistically significant (p<0.05). 

The ANOVA analysis (Table 5) showed a significant model (p<0.05) with a high F-value (41.23), indicating a good 

fit for predicting elongation values. The strong regression correlation coefficient (R2 = 0.97) supported this. A three-

dimensional plot of the independent factors and the biocomposite elongation value is shown in Figure 3. The elongation 

value decreased with increasing SPW concentration and the elongation value increased with increasing MDI 

concentration. The decrease in the elongation value that occurs with increasing SPW concentration is due to the 

lignocellulose content in SPW. Biocomposite may exhibit brittle fracture behavior if the filler content is increased 

without sufficient adhesion modification (Barczewski et al., 2018). 

Table 5. Elongation of SPW/PBAT/MDI Biocomposites from the CCD Model: An ANOVA Analysis 

Source Sum of Squares df Mean Square F-value p-value  

Model 37.13 5 7.43 41.23 < 0.0001 significant 

X1-Sago Pith Waste 24.92 1 24.92 138.36 < 0.0001  

X2-MDI 6.98 1 6.98 38.77 0.0004  

X1X2 2.30 1 2.30 12.74 0.0091  

X1² 1.98 1 1.98 11.01 0.0128  

X2² 0.6100 1 0.6100 3.39 0.1083  

Residual 1.26 7 0.18    

Lack of Fit 0.82 3 0.27 2.45 0.20 not significant 

Pure Error 0.44 4 0.11    

Cor. Total 38.39 12     

Std. Dev 0.42  R2 0.97   

Mean 4.75  Adjusted R2 0.94   

C.V % 8.93  Predicted R2 0.83   

   Adeq Precision 19.45   

 

     

Figure 3. Two variable effects on elongation: (a) Contour plot, and (b) Three-dimensional response surface 

(a) (b) 
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3.3. Optimization of the RSM-CCD Model 

CCD model’s predictive capabilities, an experiment was conducted using the optimized concentrations of SPW and 

MDI (both 5%). The model predicted a tensile strength of 5.26 MPa and elongation of 8.30%. Tensile strength and 

elongation of the optimized biocomposite by experimental results were 5.14 MPa and 8.14, respectively. A comparison 

between the actual and predicted results for both responses showed a nearly linear relationship, indicating the accuracy 

of the model fit (Song et al., 2011). 

3.4. Barrier Properties  

The investigation into the barrier properties of biocomposites was conducted on all RSM treatments, yet it was not 

incorporated into the RSM response. The test encompassed the assessment of water content, contact angle, and water 

absorption. The rationale behind this investigation was to ascertain the capacity of biocomposites to impede moisture 

absorption (ALP, 2020). 

3.4.1. Moisture and contact angle test  

Figure 4a shows the moisture contents and contact angles of the biocomposite samples. The biocomposite samples’ 

moisture content and contact angle changed between the RSM treatments (3.10 – 4.00% moisture content, 18 – 43° 

contact angle). Treatment 5 (RSM Low) exhibited the highest moisture content (3.98%) and the lowest contact angle 

(18.37%), whereas treatment 1 (RSM optimal) displayed the lowest moisture content (3.12%) and the highest contact 

angle (42.84°). This indicates that a negative correlation between the moisture content and contact angle-lower moisture 

content corresponds to a higher contact angle, and vice versa.  

The contact angle of all treatments was lower than that of neat PBAT (70°) (Rasyida et al., 2017), which was likely 

due to the addition of SPW. The moisture content measurements revealed an increase. The inclusion of MDI increased 

contact angle, consistent with prior research where MDI-modified biocomposites displayed higher contact angles 

compared to those with HDI or TDI hexamethylene diisocyanate (HDI) and toluene diisocyanate (TDI) (Hejna et al., 

2023) owing to reduced polarity. 

        

 (a)  (b) 

Figure 4. (a) Moisture content and contact angle, (b) Absorption of the sample 

3.4.2. Water absorption test 

The water absorption of the 13 RSM treatments is shown in Figure 4b, which exhibited varying levels of water 

absorption. Treatments 3 and 1 (RSM optimum) had the lowest water absorption value with values of 0.050 and 0.82%, 

respectively. In contrast, treatment 13 containing the highest SPW content of 23.11%, exhibited the highest water 
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absorption at 9.26%. This is due to the fact that SPW is a semi-crystalline polymer with low crystallinity and is sensitive 

to moisture (Yee et al., 2011). Increasing SPW concentration also causes the free –OH groups in the cellulose and 

hemicellulose structure to absorb water through hydrogen bonds formed between water molecules and OH groups 

(Fabian et al., 2023). This causes high water absorption in treatments with high SPW concentration. 

3.5. Characterization of the Optimized Sago Pith Waste Biocomposite 

3.5.1. SEM 

Figure 5 shows the cross section of neat PBAT, RSM low, and RSM optimal. The surface of the neat PBAT appeared 

relatively smooth and lacked visible defects, indicating a good surface structure. RSM optimal exhibited a homogeneous 

and smooth surface, indicating a more even distribution of SPW particles within the PBAT matrix. Furthermore, the 5% 

MDI in RSM optimal improved adhesion between SPW and PBAT, as evidenced by fewer gaps. This suggests a stronger 

bonding between the filler and PBAT matrix. Conversely, RSM low shows more voids in the biocomposite, potentially 

explaining its lower mechanical properties compared to RSM optimal. Reinforcing this notion, Lai et al. (2014) observed 

voids in biocomposites with high SPW content, attributing it to low compatibility and resulting in poor tensile properties. 

These findings suggest that reducing SPW concentrations while increasing MDI concentrations improves the interaction 

between filler and matrix, leading to a smoother surface and enhanced mechanical properties of the biocomposites. The 

urethane bond resulting from the reaction of isocyanate groups forming MDI can increase the interfacial bond between 

SPW and PBAT polymer matrix (Seo et al., 2020). Thus, with increasing MDI concentration the interfacial bond between 

SPW and PBAT polymer matrix can be improved. 

   

           (a)            (b)             (c) 

Figure 5. Cross-section morphology at 500x magnification (a) Neat PBAT; (b) RSM Optimal; (c) RSM Low 

3.5.2. FTIR 

Figure 6a shows the FTIR spectra used to study the molecular structures of neat PBAT, RSM Low, and RSM optimal. 

The presence of carbonyl ester groups in neat PBAT spectra at 1708 cm–1 (C=O stretching) and 1240 cm–1, respectively 

(Mahata et al., 2020). The peak at 2960 cm–1 indicated PBAT contains methyl and methylene bonds (Almond et al., 

2020). The introduction of SPW and MDI into the RSM treatments led to additional peaks and spectral changes. RSM 

optimal spectrum shows a new peak at 3276 cm–1 indicating hydrogen bonding between SPW and PBAT matrix. Further-

more, a new peak at 2158 cm–1, corresponding to isocyanate linkages (N=C=O), which usually appears at 2100-2275 

cm–1 (Khazabi & Sain, 2014). In contrast, RSM low exhibits weaker interactions or fewer hydrogen bonds, as evidenced 

by the absence of the new peak observed in RSM optimal and minimal changes around 3411 cm–1 (characteristic of 

hydroxyl groups). Both RSM low and optimal spectra show the presence of hydroxyl groups (~3300 cm–1), indicating 

polysaccharides (cellulose and hemicellulose) from SPW, which are absent in neat PBAT (Hejna et al., 2023).  

3.5.3. DSC 

The DSC thermogram in Figure 6b shows the melting behavior of neat PBAT and RSM modified biocomposites. Neat 

PBAT exhibits a melting point (Tm) of 120°C, while the RSM treatments (low and optimal) display higher Tm values 

of 129.5°C and 131.4°C, respectively. This increase in Tm for the RSM modified samples indicates enhanced thermal  

voids 

50 µm 50 µm 
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 (a)  (b) 

Figure 6. (a) FTIR of polymeric biocomposite, (b) DSC of polymeric biocomposites 

stability compared to neat PBAT. Additionally, RSM optimal shows a higher heat flow, signifying a more pronounced 

endothermic process compared to the other samples. The lower endothermic peak observed in RSM low compared to 

the optimal RSM suggesting a less significant thermal event. 

3.5.4. TGA and DTG 

Figure 7 shows the TGA and DTG curves. The curves can be divided into four sections, corresponding to the 

decomposition of different material components at various temperatures. All treatments exhibited minimal weight loss 

(1-3%) between 100-300°C, indicating thermal stability. This initial weight loss is likely due to moisture evaporation 

from the natural fiber (SPW) (Rajeshkumar et al., 2021). Neat PBAT starts significant weight loss around 300°C, 

followed by RSM low at a slightly higher temperature. RSM optimal treatments exhibit the latest degradation onset, 

indicating improved thermal stability. During the decomposition phase (400-500°C), neat PBAT experienced the fastest 

weight loss, while RSM optimal decomposed gradually and retained more weight compared with RSM low. The residual 

weight after 500°C suggests incomplete decomposition, with RSM optimal showing the highest value. This could be 

explained by the homogeneous distribution of SPW in the RSM optimal PBAT matrix, which is consistent with Dixit & 

Yadav (2019) that better adhesion between BPSF and the polymer matrix can result in better thermal stability. 

 
 

 (a)  (b) 

Figure 7. (a) TGA, and (b) DTG of polymer biocomposites 
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Table 6. The biodegradable test by A.niger at day 0 and day 10  

Sample Neat PBAT RSM Low RSM Optimal 

0 day 

   

10 day 

   

3.5.5. Biodegradability Test 

The biodegradation test results (Table 6) showed that the biocomposites from RSM low and optimal treatments exhibited 

higher degradation values than neat PBAT. RSM low treatment (51.80% degradation) was more readily degraded by 

A.niger fungus than RSM optimal (45.65%). This can be attributed to the higher concentration of SPW, which 

accelerated the degradation process of the resulting composite. Furthermore, the lower MDI concentration in RSM low 

compared optimal might also contribute to its faster degradation rate. Overall, both RSM low and optimal treatments 

showed higher degradation rates than neat PBAT. This aligns with previous research showing that the addition of 

lignocellulosic materials can improve the biodegradation of PBAT-based composites. The research conducted by Xu et 

al. (2024) and Giri et al. (2019), who used reed fiber (RF) and MCC in their PBAT composites.  

4. CONCLUSIONS 

The formulation of SPW/MDI biocomposites using a PBAT matrix was successfully optimized by the use of RSM. The 

RSM identified 5% (b/b) SPW and 5% (b/b) MDI as the optimal concentrations for achieving the desired properties. 

Experimental results show that tensile strength and elongation optimal concentration are 5.14 MPa and 8.14%, 

respectively. A higher SPW content resulted in decreased barrier properties, while an increased MDI concentration led 

to enhanced barrier performance. SEM micrographs revealed the presence of more voids in the RSM low sample than 

optimal. FTIR analysis suggested stronger interactions between components in the RSM optimal than RSM low. The 

DSC and TGA results indicated superior thermal stability for RSM optimal. Finally, a biodegradability Test confirmed 

that SPW incorporation accelerated the degradation rate. In conclusion, the potential of SPW as a filler in PBAT-based 

biocomposites for environmentally sustainable packaging applications. 
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