The Use of the Normalized Difference Red Edge (NDRE) Vegetation Index from Multispectral Cameras Mounted on Unmanned Aerial Vehicle to Estimate the Nutrient Content in Oil Palm Leaves

Badi Hariadi, Hermantoro Sastrohartono, Andreas Wahyu Krisdiarto, Sukarman Sukarman, Tri Haryo Sagoro, Septa Primananda, Arief Rahmad Maulana Akbar, Arief Ika Uktoro

Abstract


This study aimed to develop a prediction model for the nutrient content of N, P, K, Mg, and Ca in oil palm leaves using the Normalized Difference RedEdge (NDRE) vegetation index derived from multispectral camera data. Data acquisition was carried out by an unmanned aerial vehicle (UAV), which was correlated to leaf sample analysis of the 17th frond number. Results showed that simple regression analysis successfully represented nutrient content (N, P, K, Mg, and Ca) based on NDRE values. Based on the MAPE and Correctness values, the nutrient content prediction model for N and P yields reliable results, while for K, Mg, and Ca, they are considered good, with Correctness values of 95.5%, 96.6%, 88.8%, 87.3%, and 90.0% for N, P, K, Mg, and Ca, respectively. The study found that the NDRE vegetation index can be used to predict the nutrient content of oil palm leaves with  reliable results in accuracy for N and P, and good accuracy for K, Mg, and Ca. This is a promising finding, as it could lead to the development of a non-destructive and rapid method for monitoring the nutrient status of oil palm trees, with the validation models for N, P, K, Mg, and Ca are yN = 1.1089x - 0.2497, yP = 0.99x + 0.002, yK = 1.204x - 0.1576, yMg = 0.9149x + 0.0183, and yCa = 1.0418x - 0.0218.

 

Keywords: Multispectral Cameras, Oil Palm, Leaf Nutrient Contents, Prediction.


Full Text:

PDF

References


Afandi, F.N., Siswanto, B., & Nuraini, Y. (2017). Pengaruh pemberian berbagai jenis bahan organik terhadap sifat kimia tanah pada pertumbuhan dan produksi tanaman ubi jalar di Entisol Ngrangkah Pawon, Kediri. Jurnal Tanah dan Sumberdaya Lahan, 2(2), 237–244. https://jtsl.ub.ac.id/index.php/jtsl/article/view/134.

Albari, J., Supijatno., & Sudradjat. (2018). Peranan pupuk nitrogen dan fosfor pada tanaman kelapa sawit (Elaeis guineensis Jacq.) belum menghasilkan umur tiga tahun. Buletin Agrohorti, 6(1), 42–49. https://doi.org/10.29244/agrob.v6i1.16822.

Al-Rajab, J.M. (2021). Chapter 2 - Solar radiation and its role in plant growth. Lecture note on Agro-Hydrometeorology. Al-Mustansiriyah University, Baghdad-Iraq: 8 pp.

Hadi, B.S. (2019). Penginderaan Jauh Pengantar ke Arah Pembelajaran Berpikir Spasial, Fisrt. Yogyakarta: UNY Press.

Barnes, E., Clarke, T.R., Richards, S.E., Colaizzi, P., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., & Thompson, T.L. (2000). Coincident detection of crop water stress, nitrogen status, and canopy density using ground based multispectral data. 5th International Conference on Precision Agriculture, Bloomington, 16-19 July 2000, 1-15.

Boiarskii, B., & Hasegawa2, H. (2019). Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. Journal of Mechanics of Continua and Mathematical Sciences, spl1(4). https://doi.org/10.26782/jmcms.spl.4/2019.11.00003.

BPS (Badan Pusat Statistik). (2022). Statistik Kelapa Sawit Indonesia 2021 – Indonesian Oil Palm Statistics 2021. Badan Pusat Statistik, Jakarta: 139 pp.

Broeshart, H. (1955). The Application of Foliar Analysis in Oil Palm Cultivation. [Thesis], Wageningen University.

Budiman, R., Seminar, K.B., & Sudradjat. (2022). The estimation of nutrient content using multispectral image analysis in palm oil (Elaeis guineensis Jacq). IOP Conference Series: Earth and Environmental Science, 974(1), 012062. https://doi.org/10.1088/1755-1315/974/1/012062.

Chicco, D., Warrens, M.J., & Jurman, G. (2021). The coefficient of determination r-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623.

Cotrozzi, L. (2022). Spectroscopic detection of forest diseases: a review (1970–2020). Journal of Forestry Research, 33(1), 21–38. https://doi.org/10.1007/s11676-021-01378-w.

CPOPC. (2022). Palm Oil Supply and Demand Outlook Report 2022.

Donough, C., Witt, C., & Fairhurst, T. (2010). Yield Intensification In Oil Palm Using Bmp As A Management Tool. International Plant Nutrition Institute (IPNI) Southeast Asia Program, Penang.

Fairhurst, T.H., & Griffiths, W. (2014). Oil Palm: Best Management Practices for Yield Intensification. International Plant Nutrition Institute (IPNI), Singapore.

Fairhurst, T., & Mutert, E. (1999). Interpretation and management of oil palm leaf analysis data. Better Crops International, 13(1), 48-51.

Goh, K. (2004). Fertilizer recommendation systems for oil palm: Estimating the fertilizer rates. Proceedings of MOSTA Best Practices Workshops: Agronomy and Crop Management, Malaysian Oil Scientists and Technologies Association, Kuala Lampur, 235-268.

Gregory, M. (2022). Palm Oil Production, Consumption and Trade Patterns: The Outlook From an EMU Perspective. Fern. 1C Fosseway Business Centre, Stratford Road, Moreton in Marsh, GL56 9NQ, UK.

Griffiths, W., & Fairhurst, T. (2003). Implementation of best management practices in an oil palm rehabilitation project. Better Crops International, 17.

Jayaselan, H., Nawi, N., Ismail, W., Shariff, A., Rajah, V., & Arulandoo, X. (2017). Application of spectroscopy for nutrient prediction of oil palm. Journal of Experimental Agriculture International, 15(3), 1–9. https://doi.org/10.9734/JEAI/2017/31502.

Kok, Z.H., Shariff, A.R.B.M., Bejo, S.K., Kim, H.T., Ahamed, T., Cheah, S.S., & Wahid, S.A.A. (2021). Plot-based classification of macronutrient levels in oil palm trees with landsat-8 images and machine learning. Remote Sensing, 13(11), 2029. https://doi.org/10.3390/rs13112029.

Marzukhi, F., Elahami, A.L., & Bohari, S.N. (2016). Detecting nutrients deficiencies of oil palm trees using remotely sensed data. IOP Conference Series: Earth and Environmental Science, 37, 012040. https://doi.org/10.1088/1755-1315/37/1/012040.

Moreno, J.J.M., Pol, A.P., Abad, A.S., & Blasco, B.C. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25(4), 500–506. https://doi.org/10.7334/psicothema2013.23.

Mróz, M., & Sobieraj-Żłobińska, A. (2004). Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification. Agricultural Crops, 7, 39–66.

Munir, S., Seminar, K.B., Sudradjat, Sukoco, H., & Buono, A. (2022). The use of random forest regression for estimating leaf nitrogen content of oil palm based on sentinel 1-a imagery. Information, 14(1), 10. https://doi.org/10.3390/info14010010

Nurhayati, D.R. (2021). Introduction to Plant Nutrition. UNISI Press.

Prabowo, N.E. (2005). Penggunaan diagnosa daun untuk rekomendasi pemupukan kelapa sawit. Prosiding Pertemuan Teknis Kelapa Sawit 2005: Peningkatan Produktivitas Kelapa Sawit Melalui Pemupukan dan Pemanfaatan Limbah PKS. Medan, 19-20 April 2025.

Rendana, M., Rahim, S.A., Idris, W., Lihan, T., & Ali Rahman, Z. (2015). A review of methods for detecting nutrient stress of oil palm in Malaysia. Journal of Applied Environmental and Biological Sciences, 5, 60–64.

Santoso, H., & Winarna, W. (2021). The Exploration of The Oil Palm Leaf Nutrients Content Using Unmanned Aerial Vehicle and Multispectral Camera. Jurnal Penelitian Kelapa Sawit, 29(1), 49-62. https://doi.org/10.22302/iopri.jur.jpks.v29i1.145.

Sarstedt, M., & Mooi, E. (2014). Regression Analysis In A Concise Guide To Market Research (pp. 193–233). https://doi.org/10.1007/978-3-642-53965-7_7.

Sastrohartono, H., Suparyanto, T., Sudigyo, D., & Pardamean, B. (2021). Prediction of Soil Organic Matter Levels with Image Processing 2 and Artificial Neural Networks Using Mobile Phones.

Suyuthi, M., Seminar, K., & Sudradjat. (2019). Estimation of calcium, magnesium and sulfur content in oil palm using multispectral imagery based UAV. Proceedings of the 2nd SEAFAST International Seminar, 127–134. https://doi.org/10.5220/0009978701270134

Von Uexkull, H.R. ; F.T.H. (1991). The Oil Palm: Fertilizing for High Yield and Quality. International Potash Institute.

Woittiez, L.S., van Wijk, M.T., Slingerland, M., van Noordwijk, M., & Giller, K.E. (2017). Yield Gaps in Oil Palm: A Quantitative Review of Contributing Factors. European Journal of Agronomy, 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002

Xie, K., Cakmak, I., Wang, S., Zhang, F., & Guo, S. (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9(2), 249–256. https://doi.org/10.1016/j.cj.2020.10.005.

Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors, 2017(1), 1–17. https://doi.org/10.1155/2017/1353691.

Yadegari, M., Shamshiri, R.R., Shariff, A.R.M., Balasundram, S.K., & Mahns, B. (2020). Using SPOT-7 for Nitrogen Fertilizer Management in Oil Palm. Agriculture, 10(4), 133. https://doi.org/10.3390/agriculture10040133.




DOI: http://dx.doi.org/10.23960/jtep-l.v13i4.1051-1063

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Badi Hariadi, Hermantoro Sastrohartono, Andreas Wahyu Krisdiarto, Sukarman Sukarman, Tri Haryo Sagoro, Septa Primananda, Arief Rahmad Maulana Akbar, Arief Ika Uktoro

Web
Analytics JTEP Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.