Performance Analysis of Disc Mill Type FFC-15 Grinder for Making Charcoal Husk Flour
Abstract
This study is motivated by the great potential of rice husk as a waste material that has not yet been optimally utilized. The focus of this research is to evaluate the performance of the FFC-15 disc mill machine in producing flour from rice husk charcoal at three different moisture contents. The variations in the moisture content of rice husk charcoal studied were 10%, 15%, and 20%, with the goal of determining the optimal conditions in the production process of rice husk charcoal flour. The methodology used is experimental with repeated testing to produce data on machine capacity, electrical power consumption, flour yield, flour quality (moisture content, ash content, and mineral content), and the physical parameters of the charcoal. The results show that moisture content significantly affects the milling efficiency and quality of the flour produced, with optimal conditions achieved at a moisture content of 10%. Adjusting the moisture content before the milling process can enhance the operational efficiency of the machine and the quality of the final product. These findings are expected to provide benefits for follow-up by a group or industry that wants to optimize the utilization of rice husk charcoal.
Keywords: Disc mill FFC-15, Flour quality, Husk charcoal, Milling efficiency, Moisture content.
Full Text:
PDFReferences
Akam, N.G., Diboma, B.S., Mfomo, J.Z., Ndiwe, B., Bôt, B.V., & Biwôlé, A.B. (2024). Physicochemical characterization of fuel briquette produced from cocoa pod husk of Cameroon. Energy Reports, 11, 1580-1589. https://doi.org/10.1016/j.egyr.2024.01.029.
Akolgo, G.A., Awafo, E.A., Essandoh, E.O., Owusu, P.A., Uba, F., & Adu-Poku, K.A. (2021). Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: Using water boiling and user acceptability tests. Scientific African, 12, e00789. https://doi.org/10.1016/j.sciaf.2021.e00789.
AOAC International. (2019). Official Methods of Analysis of AOAC International (21st Edition). Gaithersburg, MD: AOAC International.
Ariwibowo, D. (2016). Karakteristik alat penepung disc mill FFC-XX untuk penepungan tongkol jagung kering. Rotasi, 18(3), 69–75.
Astika, I.M., Winaya, I.N.S., Subagia, I.D.G.A., & Wirawan, I.K.G. (2023). Mechanical and thermal properties of beef tallow/rice husk charcoal-based plaster for building applications. Eureka: Physics and Engineering, 133–147. https://doi.org/10.21303/2461-4262.2023.002798.
Boonanuntanasarn, S., Khaomek, P., Pitaksong, T., & Hua, Y. (2014). The effects of the supplementation of activated charcoal on the growth, health status and fillet composition-odor of Nile tilapia (Oreochromis niloticus) before harvesting. Aquaculture International, 22(4), 1417–1436. https://doi.org/10.1007/s10499-014-9756-8.
de la Guardia, M.D.L., & Garrigues, S. (2015). Handbook of Mineral Elements in Food. John Wiley & Sons, Chichester, UK: 766 pp.
Givi, A.N., Rashid, S.A., Nora, F., Aziz, F.A., Amran, M., & Salleh, A. (2010). Contribution of rice husk ash to the properties of mortar and concrete: A review. Journal of American Science, 6(3), 157–165.
Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – A review. Biology and Fertility of Soils, 35, 219–230. https://doi.org/10.1007/s00374-002-0466-4.
Gómez, A.R., Gallego, E., Fuentes, J., Montellano, C.G., & Ayuga, F. (2014). Values for particle-scale properties of biomass briquettes made from agroforestry residues. Particuology, 12, 100–106. https://doi.org/10.1016/j.partic.2013.05.007.
Grote, K.-H., & Hefazi, H. (2021). Springer Handbook of Mechanical Engineering. Springer Nature, Switzerland: 1310 pp.
Grover, P.D., & Mishra, S.K. (1996). Biomass Briquetting Technology and Practices (Document No. 46). FAO-UNO, Rome.
Hafeez, A., & Rana, Y.P.S., (2023). Hammer & mill ball mill. In Preliminary Pharmaceutics (1st ed.). Kaav Publications: 120-128. https://doi.org/10.52458/9788196830045.2023.eb.ch-20.
Higashitani, K., Makino, H., & Matsusaka, S. (2019). Powder Technology Handbook (4th edition). CRC Press, Boca Raton, FL, USA: 679 pp.
Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A.R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872. https://doi.org/10.1016/j.biortech.2010.06.088.
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4), 990–1000. https://doi.org/10.2134/jeq2011.0070.
Kong, H.W. (1996). Wood and charcoal briquetting in Malaysia. In Proceedings of International Workshop on Biomass Briquetting (Editor: Grover, P.D., & Mishra, S.K.), Regional Wood Energy Development Programme, Bangkok: 68–74.
Kumar, J.A., Kumar, K.V., Petchimuthu, M., Iyahraja, S., & Kumar, D.V. (2021). Comparative analysis of briquettes obtained from biomass and charcoal. Materials Today: Proceedings, 45(2), 857–861. https://doi.org/10.1016/j.matpr.2020.02.918.
Kusumah, B.R., Jaya, A.K., Siskandar, R., & Rahim, F.F. (2022). E-Ox level: Sustainability test of data storage system and performance test on closed system fish pond. Aquacultura Indonesiana, 23(1), 1–8.
Kusumah, B.R., Kostajaya, A., Supriadi, D., Nugraha, E.H., & Siskandar, R. (2020). Engineering of automatically controlled energy aeration systems for fisheries cultivation pools. Aquacultura Indonesiana, 21(2), 74–81.
Lehmann, J., & Joseph, S. (Ed.). (2015). Biochar for Environmental Management: Science, Technology and Implementation (2nd edition). Earthscan, Sterling, VA, USA: 976 pp.
Lim, J.S., Zainuddin, A.M., Sharifah Rafidah Wan Alwi, S.R.W.A., & Haslenda, H. (2012). A review on utilization of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16, 3084–3094. https://doi.org/10.1016/j.rser.2012.02.051.
Lisa, S.A., Nugroho, A.A., Mudiarti, E., Lumbantobing, F.G.P., & Ismail, L. (2023). Pemanfaatan limbah sekam padi dalam pembuatan sekam bakar dan briket di Pendahara Kecamatan Tewang Sangalang Garing Kabupaten Katingan. Diteksi: Jurnal Manajemen Pendidikan dan Ilmu Sosial, 1(2), 116-122. http://dx.doi.org/10.36873/diteksi.v1i2.11396
Lubis, M.I.A., & Andasuryani, A. (2023). Uji teknis pengecilan partikel gula tebu menggunakan disk mill tipe FFC-15. Jurnal Keteknikan Pertanian, 11(2), 138–152. https://doi.org/10.19028/jtep.011.2.138-152.
Misra, M.K., Raghuvanshi, S.P., & Srivastava, S. (2009). Optimization of the milling process for agricultural residues. Agricultural Engineering International: CIGR Journal, 11(2), 100–109.
Mohan, D., Sarswat, A., Ok, Y.S., & Pittman, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low-cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, 191–202. https://doi.org/10.1016/j.biortech.2014.01.120.
Moon, J.H., & Yoon, W.B. (2018). Effect of moisture content and particle size on grinding kinetics and flowability of balloon flower (Platycodon grandiflorum). Food science and biotechnology, 27, 641-650. https://doi.org/10.1007/s10068-017-0291-z
Orge, R.F., & Abon, J.E.O. (2012). Design improvement of the PhilRice continuous-type rice hull carbonizer for biochar production towards sustainable agriculture. International Journal of Sustainable Development, 5(8), 83-96.
Phonphuak, N., & Thiansem, S. (2011). Effects of charcoal on physical and mechanical properties of fired test briquettes. ScienceAsia, 37(2), 120–124. https://doi.org/10.2306/scienceasia1513-1874.2011.37.120.
Promdan, S., Panananda, N., Munsin, R., Chaichana, S., Yeunyongkul, P., & Khrabunma, S. (2023). Optimum design of hammer mill for grinding leonardite. Journal of Technical Education, 74, 41–55. https://doi.org/10.54644/jte.74.2023.1335.
Raczkiewicz, M., Mašek, O., Ok, Y.S., & Oleszczuk, P. (2024). Size reduction of biochar to nanoscale decreases polycyclic aromatic hydrocarbons (PAHs) and metals content and bioavailability in nanobiochar. Science of The Total Environment, 937, 173372. https://doi.org/10.1016/j.scitotenv.2024.173372.
Rangkuti, P.A., Hasbullah, R., & Sumariana, K.S.U. (2012). Uji performansi mesin penepung tipe disc (Disc Mill) untuk penepungan juwawut (Setaria italica (L.) P. Beauvois). Agritech, 32(1). https://doi.org/10.22146/agritech.9658.
Sandra, E., & Meiselo, A. F. (2020). Analisa performansi mesin pembuat tepung beras tipe disc mill FFC 15. Teknika: Jurnal Teknik, 6(2), 257–265. https://doi.org/10.35449/teknika.v6i2.119.
Sebastine, A.B., Michael, A., & Kumaden, I. (2023). Evaluation of the combustion characteristics of rice husk and coconut shell briquettes. Journal of Engineering Research and Reports, 25(6), 1–9. https://doi.org/10.9734/jerr/2023/v25i6917.
Siskandar, R., Santosa, S.H., Wiyoto, W., Kusumah, B.R., & Hidayat, A.P. (2022). Control and automation: INSMOAF (Integrated Smart Modern Agriculture and Fisheries) on the greenhouse model. Jurnal Ilmu Pertanian Indonesia, 27(1), 141–152. https://doi.org/10.18343/jipi.27.1.141.
Siskandar, R., Wiyoto, W., Santosa, S.H., Hidayat, A.P., & Kusumah, B.R. (2023). Prediction of freshwater fish disease severity based on fuzzy logic approach, Arduino IDE and Proteus ISIS. Universal Journal of Agricultural Research, 11(6), 1089–1101. https://doi.org/10.13189/ujar.2023.110616.
Sunnu, A., Adu-Poku, K.A., & Ayetor, G. (2021). Production and characterization of charred briquettes from various agricultural waste. Combustion Science and Technology, 195(5), 1000–1021. https://doi.org/10.1080/00102202.2021.1977803.
Suryaningsih, S., Nurhilal, O., Yuliah, Y., & Mulyana, C. (2017). Combustion quality analysis of briquettes from variety of agricultural waste as source of alternative fuels. IOP Conference Series: Earth and Environmental Science, 65, 012012. https://doi.org/10.1088/1755-1315/65/1/012012.
Tesfaye, A., Workie, F., & Kumar, V. S. (2022). Production and characterization of coffee husk fuel briquettes as an alternative energy source. Advances in Materials Science and Engineering, 1–13. https://doi.org/10.1155/2022/9139766.
Titin, S., & Nurul, H. B. (2021). Inorganic fertilizers covered by active rice husk charcoal promote growth and yield of shallot in dryland. Russian Journal of Agricultural and Socio-Economic Sciences, 117(9), 159–166. https://doi.org/10.18551/rjoas.2021-09.18.
Wachira, E., Nthakanio, P.N., & Yegon, R. (2024). Rice husk biochar for carbon sequestration, soil fertility and plant health improvement: A review. African Phytosanitary Journal, 4(2), 54–84. https://doi.org/10.52855/hkzc5394.
Yuliah, Y., Kartawidjaja, M., Suryaningsih, S., & Ulfi, K. (2017). Fabrication and characterization of rice husk and coconut shell charcoal-based bio-briquettes as alternative energy source. IOP Conference Series: Earth and Environmental Science, 65, 012021. https://doi.org/10.1088/1755-1315/65/1/012021.
DOI: http://dx.doi.org/10.23960/jtep-l.v13i4.1121-1131
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ridwan Siskandar, Billi Rifa Kusumah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.