Prediction of Block Production in Oil Palm Plantation Based on Canopy Cover Area and Vegetation Index Using Multispectral Aerial Photographs
Abstract
This study aims to develop an empirical estimation model of oil palm production through the canopy cover area approach and oil palm vegetation index with multispectral camera technology. The oil palm production estimation method was carried out by comparing the NDVI and NDRE index transformation algorithms. The basis for estimation an area of ± 0.3 ha. The results showed that there is relatively strong relationship between canopy cover area and FFB production (kg) with a coefficient of determination R² = 0.573. The results also revealed that NDVI value and the number of FFB have a fairly strong relationship with R² of 0.488. The NDRE value correlated to the number of FFB at a strong relationship with R² of 0.605. 4) the results of the analysis between NDVI Value and FFB Production (kg) have a strong relationship (r = 0.704) with a coefficient of determination of R² = 0.496; 5) the results of the analysis between NDRE Value and FFB Production (kg) have a strong relationship (r = 0.797) with a coefficient of determination of R² = 0.635; 6) The NDRE value is the independent variable that provides the best response, both to the Number of FFB and FFB Production (kg); 7) the best regression equation obtained for FFB production (kg) is Y(FFB Production (kg)) = 1153.8– (3621.9*NDRE); and 8) the best regression equation obtained for the number of FFB is Y(Number of FFB) = 113.98 – (379.53*NDRE).
Keywords: Canopy cover area, Multispectral camera, NDRE, NDVI, Oil palm production.
Full Text:
PDFReferences
Balasundram, S.K., Memarian, H., & Khosla, R. (2013). Estimating oil palm yields using vegetation indices derived from quickbird. Life Science Journal, 10(4), 851–862.
Barnes, E.M., Clarke, T.R., & Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M., Choi, C., Riley, E., Thompson, T., Lascano, R.J., Li, H., & Moran, M.S. (2000). Coincident Detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. Proceeding of 5th International Conference on Precision Agriculture Agriculture, Bloomington, Minnesota, USA, 16-19 July, 2000: 1-15.
BPS. (2021). Statistik Kelapa Sawit Indonesia 2021. Badan Pusat Statistik.
Darmawan, S., Takeuchi, W., Haryati, A., Najib, A.M.R., & Na’aim, M. (2016). An investigation of age and yield of fresh fruit bunches of oil palm based on Alos Palsar 2. IOP Conference Series: Earth and Environmental Science, 37, 012037. https://doi.org/10.1088/1755-1315/37/1/012037
Diana, S.R., Sutrisnanto, A., Purnama, S.M., Perwitasari, I., Yudha, G.D., & Farida, F. (2019). Estimation the amount of oil palm production using artificial neural network and NDVI SPOT-6 imagery. International Journal of Innovative Science and Research Technology, 4(11), 548-554.
Duffy, J.P., Pratt, L., Anderson, K., Land, P.E., & Shutler, J.D. (2018). Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone. Estuarine, Coastal and Shelf Science, 200, 169–180. https://doi.org/10.1016/j.ecss.2017.11.001
Fairhurst, T.H., & Griffiths, W. (2014). Oil Palm: Best Management Practices for Yield Intensification. International Plant Nutrition Institute (IPNI), Malaysia: 180 pp.
Hardon, J.J., Williams, C.N., & Watson, I. (2008). Leaf area and yield in the oil palm in Malaya. Experimental Agriculture, 5(1), 25–32. https://doi.org/10.1017/S0014479700009935
Hashimoto, N., Saito, Y., Yamamoto, S., Ishibashi, T., Ito, R., Maki, M., & Homma, K. (2023). Relationship between leaf area index and yield components in farmers’ paddy fields. AgriEngineering, 5(4), 1754–1765. https://doi.org/10.3390/agriengineering5040108
Khamis, A., Ismail, Z., Haron, K., & Mohammed, A.T. (2005). Nonlinear growth models for modeling oil palm yield growth. Journal of Mathematics and Statistics, 1(3).
Kim, D.-W., Yun, H. S., Jeong, S.-J., Kwon, Y.-S., Kim, S.-G., Lee, W.S., & Kim, H.-J. (2018). Modeling and testing of growth status for chinese cabbage and white radish with UAV-Based RGB imagery. Remote Sensing, 10(4). https://doi.org/10.3390/rs10040563
Macedo, F.L., Nóbrega, H., de Freitas, J.G.R., Ragonezi, C., Pinto, L., Rosa, J., de Carvalho, M.A.A.P. (2023). Estimation of productivity and above-ground biomass for corn (Zea mays) via vegetation indices in Madeira Island. Agriculture, 13(6), 1115. https://doi.org/10.3390/agriculture13061115
MicaSense Series. (2023). RedEdge-P. https://ageagle.com/wp-content/uploads/2022/08/AgEagle-RedEdge-P-Brochure-EN.pdf
Mirzaeinia, A., Hassanalian, M., Lee, K., & Mirzaeinia, M. (2019). Energy conservation of V-shaped swarming fixed-wing drones through position reconfiguration. Aerospace Science and Technology, 94, 105398–105404. https://doi.org/10.1016/j.ast.2019.105398
Nurmalasari, I., & Santosa, S.H.M.B. (2018). Pemanfaatan citra sentinel-2A untuk estimasi produksi pucuk teh di sebagian Kabupaten Karanganyar. Jurnal Bumi Indonesia, 152(3), 28.
O’Driscoll, J. (2018). Landscape applications of photogrammetry using unmanned aerial vehicles. Journal of Archaeological Science: Reports, 22, 32–44. https://doi.org/10.1016/j.jasrep.2018.09.010
Pahan, I. (2015). Panduan Teknis Budidaya Kelapa Sawit. Penebar Swadaya Grup.
Parker, G. G. (2020). Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 477, 118496. https://doi.org/10.1016/j.foreco.2020.118496
Räsänen, A., Juutinen, S., Kalacska, M., Aurela, M., Heikkinen, P., Mäenpää, K., Rimali, A. & Virtanen, T. (2020). Peatland leaf-area index and biomass estimation with ultra-high resolution remote sensing. GIScience & Remote Sensing, 57(7). https://doi.org/10.1080/15481603.2020.1829377
Rimpika., Anushi., Manasa, S., Anusha, K.N., Sharma, S., Thakur, A., Shilpa., & Sood, A. (2023). An overview of precision farming. International Journal of Environment and Climate Change, 13(12). https://doi.org/10.9734/ijecc/2023/v13i123701
Romero, H.M., Guataquira, S., & Forero, D. (2022). Light interception, photosynthetic performance, and yield of oil palm interspecific OxG hybrid (Elaeis oleifera (Kunth) Cortés x Elaeis guineensis Jacq.) under three planting densities. Plants, 11(9), 1166. https://doi.org/10.3390/plants11091166
Sandoval, A.P., Acoltzi, S.X., Calzada, R.T., de los Santos, G.G., Vázquez, P.Á., & Ávila, J.G.A. (2024). Índice de área foliar e indicadores de productividad forrajera de Lotus corniculatus L. en diferentes contenidos de humedad del suelo y estaciones del año. Revista Mexicana De Ciencias Pecuarias;15(1),17-31. https://doi.org/10.22319/rmcp.v15i1.6472
Sarwono, J. (2006). Metode Penelitian Kuantitatif & Kualitatif. Graha Ilmu.
Setyowati, H.A., Murti, B.S.S.H., & Widyatmanti, W. (2016). Yield estimation comparison of oil palm based on plant density coefficient variation index using spot-6 imagery in part of Riau. IOP Conference Series: Earth and Environmental Science, 37, 012038. https://doi.org/10.1088/1755-1315/37/1/012038
Squire, G.R. (1984b). Light Interception, Productivity and Yield of Oil Palm. Palm Oil Institute of Malaysia, Kuala Lumpur, 72 pp
Sukarman, Saidy, A.R., Rusmayadi, G., Adriani, D.E., Primananda, S., Suwardi., Wirinata, H., & Fitriana, C.D.A. (2022). Effect of water deficit of ultisols, entisols, spodosols, and histosols on oil palm productivity in Central Kalimantan. Sains Tanah – Journal of Soil Science and Agroclimatology, 19(2), 180-191. https://dx.doi.org/10.20961/stjssa.v19i2.6545
Taufik, V.V., Sukmono, A., & Firdaus, H.S. (2021). Estimasi produktivitas kelapa sawit menggunakan metode NDVI (normalized differnce vegetation index) dan ARVI (atmospherically resistant vegetation index) dengan citra sentinel-2A (Studi kasus : beberapa wilayah di Provinsi Riau). Jurnal Geodesi Undip, 10(1), 153–162.
Wibowo, A. E. (2012). Aplikasi Praktis SPSS Dalam Penelitian (Vol. 1). Gaya Media.
Woittiez, L.S., van Wijk, M.T., Slingerland, M., van Noordwijk, M., & Giller, K.E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002
DOI: http://dx.doi.org/10.23960/jtep-l.v13i4.1216-1225
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Tri Haryo Sagoro, Andreas Wahyu Krisdiarto, Hermantoro Hermantoro
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.