

e-Jurnal Rekayasa dan Teknologi Budidaya Perairan

Volume III No 1 Oktober 2014

ISSN: 2302-3600

PENGARUH SUBSTITUSI TEPUNG IKAN DENGAN TEPUNG DAGING DAN TULANG TERHADAP PERTUMBUHAN PATIN (*Pangasius* sp.)

Cory Pravita Widaksi*†, Limin Santoso‡ dan Siti Hudaidah‡

ABSTRAK

Tepung daging dan tulang (TDT) merupakan hasil dari limbah pabrik pengolahan daging ayam yang berpotensi menjadi bahan baku alternatif pakan ikan. Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan TDT sebagai bahan baku pakan terhadap pertumbuhan patin (Pangasius sp.). Metode percobaan menggunakan rancangan acak lengkap (RAL) dengan 5 perlakuan berupa substitusi tepung ikan (TI) dan TDT dalam beberapa proporsi dan setiap perlakuan diulang 3 kali. Pakan A (25% TI + 5% TDT), pakan B (20% TI + 10% TDT), pakan C (15% TI + 15% TDT), pakan D (10% TI + 20% TDT) dan pakan E (5% TI + 25% TDT). Pakan diujikan pada patin dengan bobot rata-rata $1,2 \pm 0,2$ g yang dipelihara dalam akuarium ukuran 60 x 40 x 40 cm dengan kepadatan 15 ekor/akuarium. Patin dipelihara selama 40 hari dengan feeding rate 5% dan frekuensi pemberian pakan 2 kali sehari. Hasil penelitian menunjukkan bahwa penggunaan TDT tidak berpengaruh terhadap pertumbuhan patin (P<0.05). Pertumbuhan patin terbaik dihasilkan pada pakan uji B dengan proporsi 20% tepung ikan dan 10% tepung daging dan tulang, dengan pertumbuhan mutlak 1,67±0,93 g, laju pertumbuhan harian 0.04 ± 0.0023 g/hari dan konversi pakan 2.8 ± 2 .

Kata kunci : substitusi, limbah ayam, budidaya ikan, proksimat, bahan lokal

Pendahuluan

Patin (*Pangasius* sp.) merupakan salah satu jenis ikan air tawar yang telah dibudidayakan di Indonesia. Patin memiliki prospek yang cerah untuk dikembangkan sebagai produk ekspor, baik dalam keadaan hidup ataupun dalam bentuk potongan daging tanpa tulang (*fillet*) (Suwarsito dkk., 2005). Daging patin memiliki rasa yang lezat dan mengandung kalori dan protein yang cukup tinggi.

Harga patin produksi dalam negeri Rp.17.000/kilogram, mencapai sementara Vietnam mampu menjualnya Rp.9000/kilogram. dengan harga Tingginya harga jual patin disebabkan oleh produksi pakan dalam negeri yang masih bergantung pada beberapa bahan baku impor seperti tepung ikan yang mengakibatkan biaya produksi ikut meningkat (Suwarsito dkk., 2005). Tepung ikan (TI) merupakan sumber protein yang banyak digunakan dalam pakan buatan karena memiliki

^{*} Mahasiswa Jurusan Budidaya Perairan Universitas Lampung

[†] Surel korespondensi: corypravita@gmail.com

Dosen Jurusan Budidaya Perairan Universitas Lampung
 Alamat: Jalan Prof. Soemantri Brodjonegoro No. 1 Gedong Meneng Bandar Lampung

kandungan protein sebesar 64 % (Thomas et al., 2005). Tepung ikan adalah sumber bahan baku yang terbatas dan mahal. Ketersediaan tepung ikan yang masih bergantung pada komponen impor menyebabkan harga pelet ikan semakin tinggi, sehingga biaya produksi pemasaran juga dan meningkat (Sullivan, 2008). Oleh karena itu diperlukan adanya sumber protein dari bahan baku alternatif sebagai solusi untuk menurunkan biaya pakan. Namun tidak semua spesies budidaya mampu beradaptasi dengan pakan diberikan. Masing-masing memiliki jumlah penggunaan sumber batas alternatif yang digunakan protein tepung sebagai pengganti ikan (Sullivan, 2008). Salah satu sumber protein hewani alternatif adalah tepung daging dan tulang (TDT).

Tepung daging dan tulang memiliki kandungan protein yang cukup tinggi namun harganya relatif lebih rendah dibandingkan tepung ikan impor (Yang et al., 2004). Pemanfaatan dengan tepung ikan sebagai bahan substitusi dalam pakan untuk beberapa jenis ikan. TDT Namun, memiliki beberapa keterbatasan dalam komposisi asam amino, terutama untuk metionin dan lisin, serta kadar abu yang tinggi sehingga berpengaruh terhadap kurangnya tingkat kecernaan pakan ikan (Xue et al., 2004). Berdasarkan hal tersebut, maka penelitian ini diharapkan mampu memberikan informasi tentang pengaruh pakan ikan yang terbuat dari TDT sebagai sumber protein hewani dengan proporsi berbeda terhadap pertumbuhan patin.

Bahan dan Metode

Penelitian diawali dengan pembuatan pakan uji yang terdiri dari campuran TDT, tepung ikan, tepung kedelai, tepung jagung, tepung tapioka, minyak ikan, minyak jagung dan premiks (Tabel 1).

Wadah pemeliharaan berupa 15 buah akuarium berukuran 60 x 40 x 40 cm, diisi air tandon dengan ketinggian 20 cm dan diaerasi selama 3 hari. Ikan uji berupa patin berukuran 4-5 cm dengan bobot 1,1-1,4 gr/ekor dimasukkan ke dalam akuarium sebanyak ekor/akuarium. Patin diaklimatisasi selama 5 hari sebelum perlakuan. Proses pembuatan tepung daging dan tulang mengacu pada prosedur penelitian yang dilakukan oleh Selviani dkk. (2013) dan Abdiguna dkk. (2013).

Penelitian menggunakan rancangan acak lengkap (RAL), terdiri dari 5 perlakuan dan 3 kali ulangan, yaitu pemberian pakan A (25% TI + 5% TDT), pakan B (20% TI + 10% TDT), pakan C (15% TI + 15% TDT), pakan D (10% TI + 20% TDT) dan pakan E (5% TI + 25% TDT). Patin dipelihara selama 40 hari dengan pemberian pakan uji sebanyak 2 kali sehari dengan feeding rate 5%. Pengambilan sampel untuk pertumbuhan dan pH dilakukan setiap 10 hari sekali. Sedangkan pengukuran parameter suhu dilakukan setiap pagi dan sore hari. Pengaruh pemberian pakan dengan substitusi tepung ikan dengan tepung daging dan tulang dianalisis dengan menggunakan analisis sidik ragam (ANOVA). Hasil uji antar perlakuan yang berbeda nyata di uji lanjut dengan uji beda nyata terkecil pada selang kepercayaan 95% (Walpole *et al.*, 2007).

Tabel 1. Formulasi pakan uji substitusi tepung ikan dengan tepung daging dan tulang

D 1 D 1	Komposisi Bahan (g)						
Bahan Pakan	A	В	C	D 207,75 415,5 623,25 28,35 120 45	E		
Tepung ikan (TI)	519,3	415,5	311,625	207,75	103,95		
Tepung daging dan tulang (TDT)	103,95	207,75	311,625	415,5	519,3		
Tepung kedelai	623,25	623,25	623,25	623,25	623,25		
Tepung jagung	28,35	28,35	28,35	28,35	28,35		
Tepung tapioka	120	120	120	120	120		
Minyak ikan	45	45	45	45	45		
Premiks	30	30	30	30	30		
Minyak Jagung	30	30	30	30	30		
Jumlah Total	1500	1500	1500	1500	1500		

Hasil dan Pembahasan

Tepung daging dan tulang sebagai bahan substitusi memiliki kandungan protein yang lebih tinggi dibandingkan tepung ikan (Tabel 2).

Menurut Manurung (2011), kandungan protein tepung ikan impor berkisar antara 60% sampai 80%. Namun, tepung ikan yang digunakan dalam penelitian ini adalah tepung ikan lokal hanya mengandung protein 31,55%. Seliviani dkk. (2013) dan Abdiguna dkk. (2013) juga menemukan bahwa TDT yang dibuat memiliki kandungan protein sebesar 49,19%. Dibandingkan dengan hasil penelitian Selviani (2013) dan Abdiguna dkk. (2013), maka kadar protein TDT dalam penelitian ini lebih rendah karena mengandung protein 35,15%. Proses pembuatan tepung daging dan tulang dengan pemanasan pada suhu 70-80°C selama 24 jam diduga menyebabkan kandungan protein TDT pada penelitian berbeda dengan penelitian sebelumnya. Pemanasan dengan suhu di atas 70°C dalam waktu yang lama dapat menyebabkan denaturasi pada protein. Denaturasi adalah perubahan formasi rantai polipeptida yang tidak mempengaruhi struktur primernya 2008). (Gusrina, Denaturasi menyebabkan rusaknya kondisi fisik protein sehingga sifat alamiahnya berubah. Protein akan mudah terdenaturasi jika proses pengeringan suatu bahan menggunakan kondisi panas yang tidak sesuai (Romadhon dkk., 2013).

Kandungan protein dalam pakan uji substitusi tepung ikan dengan tepung daging dan tulang (Tabel 3). Pakan uji dengan kandungan protein dari yang tertinggi sampai terendah berturut-turut pada pakan-pakan uji: E (32,37%), D (30,67%), C (22,04%), B (20,94%) dan A (20,21%).

Tabel 2. Hasil uji proksimat bahan baku pakan

No	Nama Sampel	Air	Abu	Protein	Lemak	Serat Kasar	Karbohidrat
		(%)					
1	Tepung Ikan	9,59	22,47	31,55	10,99	6,32	19,08
2	TDT	6,94	20,43	35,15	21,74	10,03	5,71
3	Tepung Kedelai	11,67	4,59	30,55	19,02	2,50	31,67
4	Tepung Jagung	16,03	4,67	10,33	6,43	5,15	57,39

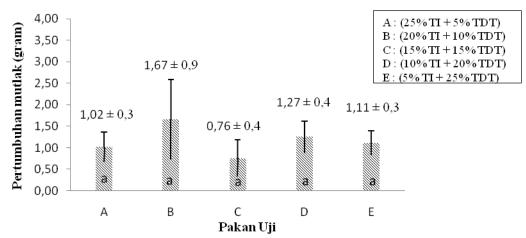
		Air	Abu	Protein	Lemak	Serat	Karbohidrat
No	Nama Sampel			1100 1100011		Kasar	
					(%)		
1	Pakan A	6,18	16,14	20,21	15,55	5,49	36,42
2	Pakan B	6,31	15,97	20,94	15,35	6,15	35,26
3	Pakan C	6,05	12,79	22,04	15,53	2,86	40,71
4	Pakan D	5,5	15,85	30,67	13,71	2,93	31,34
5	Pakan E	5,86	12,77	32,37	16,82	1,88	30,30

Tabel 3. Hasil uji proksimat pakan perlakuan untuk substitusi tepung ikan dengan tepung tulang dan daging.

Kandungan protein seluruh pakan uji mengalami peningkatan dengan semakin meningkatnya proporsi TDT yang mengandung protein lebih tinggi dibandingkan tepung ikan. Kandungan protein pakan patin yang ditetapkan Standar Nasional Indonesia (SNI) 7548:2009 adalah minimal 30%. Sedangkan menurut Wardhani (2011) kebutuhan protein patin pada stadia benih adalah 30-36%. Berdasarkan SNI 7548:2009 dan Wardhani (2011)tersebut, maka pakan uji D dan E memenuhi standar mutu pakan patin. Sedangkan pakan uji A, B dan C tidak memenuhi standar mutu karena memiliki nilai protein yang rendah. Protein merupakan sumber energi utama yang berguna bagi pertumbuhan ikan. Pakan dengan kandungan protein yang tidak sesuai dengan kebutuhan protein ikan dapat mengakibatkan menurunnya laju pertumbuhan ikan tersebut.

Kandungan lemak seluruh pakan uji memenuhi standar ketetapan SNI 7548:2009 vaitu lebih dari 5%. Sedangkan menurut Wardhani (2011), kebutuhan lemak patin untuk stadia benih adalah 12-18%. Kandungan lemak dalam pakan uji dari yang tertinggi sampai terendah adalah pakan uji: E (16,82%), A (15,55%), C (15,53%), B (15,35%) dan D (13,71%). Kandungan karbohidrat pakan uji dari yang tertinggi sampai terendah adalah pakan uji: C (40,71%), A (36,42%), B (35,26%), D (31,34%) dan E (30,3%). dibandingkan Jika dengan hasil penelitian Wardhani (2011),maka seluruh pakan uji memiliki nilai karbohidrat yang jauh tinggi dibandingkan kebutuhan normalnya yaitu 30-35%. Kandungan karbohidrat pakan yang melebihi kebutuhan ikan menyebabkan terhambatnya dapat pertumbuhan, karena semakin tinggi kandungan karbohidrat maka jumlah kandungan nutrisi penting lainnya seperti protein akan menurun.

Seluruh pakan uji memenuhi syarat kadar air dalam pakan patin menurut SNI 7548:2009, yaitu kurang dari 12%. Kadar air dalam pakan dibutuhkan sebagai pengencer nutrien, membantu proses metabolisme dan sebagai pembentuk cairan tubuh (Gusrina, 2008).

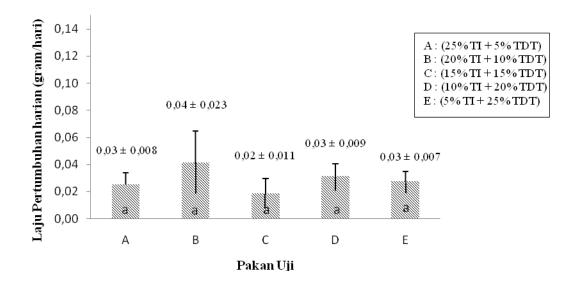

Kandungan abu dalam seluruh pakan uji tidak memenuhi syarat SNI 7548:2009, yaitu kurang dari 12%. Kandungan abu dalam pakan uji dari yang tertinggi sampai terendah adalah pakan uji: A (16,14%), B (15,97%), D (15,85%), C

(12,79%) dan E (12,77%). Semakin tinggi kadar abu dalam pakan, maka semakin tinggi pula kadar mineral dalam pakan. Hal tersebut dapat menghambat pertumbuhan ikan, karena ikan hanya membutuhkan mineral dalam jumlah yang sedikit.

Kandungan serat kasar seluruh pakan uji memenuhi standar SNI 7548:2009, yaitu kurang dari 8%. Kandungan serat kasar pakan uji dari yang tertinggi sampai terendah adalah pakan uji: B (6,15%), A (5,49%), D (2,93%), C (2,86%) dan E (1,88%). Namun menurut Wardhani (2011) kebutuhan

serat dalam pakan untuk stadia benih patin adalah 4-6%. Dengan demikian hanya pakan uji A yang memenuhi kebutuhan pakan patin. Kandungan serat kasar yang tinggi menyebabkan pakan tidak tercerna dengan baik, sehingga terjadi penurunan efisiensi pakan (Gusrina, 2008).

Pertumbuhan mutlak patin (Gambar 1) selama penelitian dari yang tertinggi sampai terendah adalah: pakan uji B (1,67 gr), pakan uji D (1,27 gr), pakan uji E (1,11 gr), pakan uji A (1,02 gr) dan pakan uji C (0,76 gr).

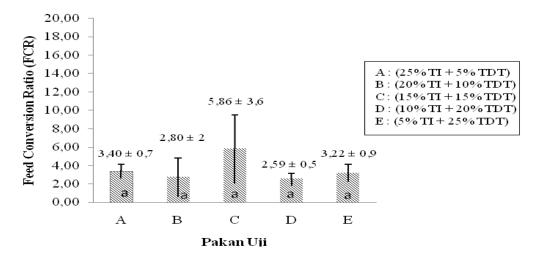


Gambar 1. Pertumbuhan mutlak berat patin (*Pangasius* sp.) pada substitusi tepung ikan (TI) dengan tepung daging dan tulang (TDT)

Berdasarkan analisis statistik, **TDT** sebagai penambahan bahan substitusi tepung ikan dalam pakan berpengaruh nyata terhadap pertumbuhan berat mutlak patin. Pakan uji B dengan kadar protein 20,94% pertumbuhan menghasilkan tertinggi, yaitu 1,67 gr. Sedangkan pakan uji C dengan kadar protein menghasilkan pertumbuhan 22,04% mutlak terendah yaitu 0,76 gr. Dibandingkan dengan penelitian Setiawati (2013) berupa pemberian pakan berkadar protein 35,66% pada patin yang mendapatkan pertumbuhan berat mutlak patin sebesar 2,93 gr, maka pakan uji E dengan kadar protein 32,37% pada penelitian ini memberikan hasil yang lebih rendah terhadap pertumbuhan patin, karena hanya menghasilkan pertumbuhan mutlak sebesar 1,11 gr.

Menurut Effendie (1997) kesukaan organisme terhadap pakan diberikan dipengaruhi oleh beberapa faktor, yaitu: padat tebar organisme, ketersediaan pakan, faktor pilihan ikan dan faktor fisik yang mempengaruhi Rendahnya perairan. pertumbuhan mutlak diduga akibat pakan uji yang tenggelam karena terbatasnya waktu ikan untuk mengambil pakan permukaan air. Komposisi pakan uji vang berbeda dan tidak seimbang mengakibatkan pertumbuhan yang tidak optimal. Pakan dengan keseimbangan energi-protein dan jumlah pemberian yang tepat akan menghasilkan pertumbuhan dan konversi pakan yang tinggi (Adelina dkk., 2000).

Laju pertumbuhan harian patin selama penelitian (Gambar 2) dari yang tertinggi sampai terendah adalah: pakan uji B (0,04 gr/hari), pakan uji A, D, dan E (0,03 gr/hari) serta pakan uji C (0,02 gr/hari).



Gambar 2. Laju pertumbuhan harian patin (*Pangasius* sp.) pada substitusi tepung ikan (TI) dengan tepung daging dan tulang (TDT)

Analisis statistik pemberian **TDT** sebagai bahan substitusi tepung ikan dalam pakan tidak berpengaruh nyata terhadap laju pertumbuhan berat harian patin.Pakan uji B dengan kadar protein 20.94% menghasilkan laiu pertumbuhan harian paling optimal yaitu 0,04 gr/hari. Sedangkan pakan uji dengan kadar protein 22,04% menghasilkan laju pertumbuhan harian terendah vaitu 0,02 gr/hari. Dibandingkan dengan penelitian Setiawati (2013) berupa pemberian pakan berkadar protein 35,66% pada patin yang menghasilkan laju pertumbuhan harian 0,24 gram/hari, maka pakan uji E dengan kadar protein 32,37% pada penelitian ini tidak memberikan hasil optimal terhadap pertumbuhan patin, karena hanya menghasilkan laju pertumbuhan harian sebesar 0,03 gr/hari.

Feed Conversion Ratio (FCR) atau konversi pakan (Gambar 3) selama

penelitian dari yang tertinggi sampai terendah adalah pakan uji: D (2,59); B (2,8); E (3,22); A (3,4) dan C (5,86).

Gambar 3. *Feed Convention Ratio* (FCR) patin (*Pangasius* sp.) pada substitusi tepung ikan (TI) dengan tepung daging dan tulang (TDT)

FCR dihitung untuk menentukan berapa banyak pakan yang dibutuhkan untuk menaikkan 1 gram bobot ikan. Makin sedikit pakan yang diberikan, maka nilai FCR semakin kecil sehingga semakin efisien dan berkualitas tinggi pakan yang digunakan (Gusrina, 2008). Nilai FCR pakan uji yang jauh dari angka satu (1) menandakan kualitas pakan uji tersebut rendah. Hal tersebut diduga akibat nutrisi yang tidak seimbang karena komposisi nutrisi pakan uji yang tidak sesuai dengan kebutuhan patin, berpengaruh sehingga terhadap lambatnya pertumbuhan. Nilai FCR dipengaruhi oleh spesies, ukuran dan umur ikan, kebiasaan makan, ukuran, kualitas air dan pakan yang diberikan. Kesukaan organisme terhadap makanan dipengaruhi oleh penyebaran organisme, ketersedian bahan pakan, faktor pilihan ikan dan faktor fisik yang

mempengaruhi perairan (Effendie, 1997).

Tingkat kelangsungan hidup patin selama pemeliharaan adalah 100%. Hal tersebut berarti bahwa patin mampu beradaptasi dengan lingkungan dan pakan yang diberikan. Benih patin yang sehat menjadi syarat utama hewan uji dalam sebuah penelitian. Manajemen kualitas air serta pemberian pakan yang cukup dan kualitas baik dapat menunjang kegiatan budidaya patin.

Kesimpulan

Substitusi tepung ikan dengan tepung daging dan tulang dalam pakan tidak memberikan pengaruh terhadap pertumbuhan patin. Pertumbuhan yang paling optimal dihasilkan dari pakan uji B dengan subtitusi 20% tepung ikan dan 10% tepung daging dan tulang.

Daftar Pustaka

- Abdiguna A., Santoso, L., Wardiyanto, dan Suparmono. 2013. Penggunaan tepung daging dan tulang sebagai alternatif sumber protein hewani pada ikan nila merah (*Oreochromis niloticus*). e-JRTBP 2: 191-196.
- Adelina, Mokoginta, I., Affandie, R., dan Jusadi, D. 2000. Pengaruh kadar protein dan rasio energi protein pakan berbeda terhadap kinerja pertumbuhan benih ikan bawal air tawar (*Colossoma macropomum*). J. Pert. Indo. 9: 31-36.
- Effendie, M.I. 1997. Biologi Perikanan. Yayasan Pustaka Nusantara. Yogyakarta. 92-132 hal.
- Gusrina. 2008. Budidaya Ikan. Direktorat Pembinaan Sekolah Menengah Kejuruan. Jakarta. 499 hal
- Manurung, L.D.I. 2011. Efektifitas pengurangan tepung ikan pada kadar protein yang berbeda dalam pakan Ikan lele (*Clarias* sp.). Tesis. Institut Pertanian Bogor. Bogor. 82 hal.
- Romadhon, I.K., Komar, N., dan Yulianingsih, R. 2013. Desain optimal pengolahan sludge padat biogas sebagai bahan baku pelet pakan ikan lele. J. Bioproses Komoditas Tropi. 1: 26-35.
- Selviani Y., Santoso, L., dan Hudaidah, S. 2013. Subtitusi tepung ikan dengan tepung daging dan tulang untuk pertumbuhan lobster air tawar (*Cherax quadricarinatus*). e-JRTBP 2: 179-184.
- Setiawati, J.E., Tarsim, Adiputra, Y.T., dan Hudaidah S. 2013. Pengaruh penambahan probiotik pada pakan

- dengan dosis berbeda terhadap pertumbuhan, kelulushidupan, efisiensi pakan dan retensi protein ikan patin (*Pangasius hypophthalmus*). e-JRTBP 1: 151-162.
- SNI (Standar Nasional Indonesia). 2009. Pakan Buatan untuk Ikan Patin (*Pangasius* sp.). SNI 7548:2009. ICS 65.120.
- Sullivan, K.B.,. 2008. Replacement Of Fish Meal By Alternative Protein Sources In Diets For Juvenile Black Sea Bass. Thesis. University of North Carolina Wilmington. 85 p.
- Suwarsito, Mokoginta, I., Muluk, C., dan Jusadi, D., 2005. Pengaruh L-Karnitin terhadap pertumbuhan ikan patin. J. Perikanan, 7: 11-18.
- Thomas, A., Gandara, F.D.L., Gomez, A.G., Perez, L., & Jover, M. 2005. Utilization of soybean meal as an alternative protein source in the Mediterranean yellowtail, *Seriola dumerili*. Aquaculture Nutrition 11: 333-340.
- Walpole, R.E., Myers, R.H., Myers, S.L., and Ye, K. 2007.
 Probability and Statistics for Engineers and Scientists. 8th edition. Pearson Education Inc. 823 p.
- Wardhani, K.L., Safrizal, M., dan Chairi. 2011. **Optimasi** A. Komposisi Bahan Pakan Ikan Air Tawar Menggunakan Metode Multi-Objective Genetic Algorithm. Prosiding Seminar Nasional Aplikasi Teknologi Informasi, 112-117.
- Xue M., Xie S., and Yibo C. 2004. Effect Of A Feeding Stimulant On Feeding Adaption Of Gibel Carp

Carassius auratus gibelio (Bloch), Fed Diets with Replacement of Fish Meal by Meat And Bone Meal. Aquaculture Research, 35: 473-482.

Yang, Y., Xie, S., Cui, Y., Lei, W., Zhu, X., Yang, Y., and Yu, Y., 2004. Effect Of Replacement Of Dietary Fish Meal By Meat And Bone Meal And Poultry By-Product Meal On Growth and Feed Utilization of Gibel Carp, Carassius auratus gibelio. Aquaculture Nutrition 10: 289-294.