SYMBIOTIC ASSOCIATIONS IN MARINE SPONGES
DOI:
https://doi.org/10.23960/aqs.v13i2.p%25p
Abstract View: 266
Abstract
The characteristics of the sponge structure, homogenous, flexible, and simple, but pervaded by canals and their ability for filter-feeding, may facilitate development of intimate associations with other organisms. This study reviewed the described symbiotic associations between marine sponges and other organisms as well as among marine sponge species. Associations in marine sponges show a wide range of relationships with their symbionts. These can range from mutually beneficial, to commensal, to parasitic or pathogenic. Sponge species also vary in the types of symbionts they host from facultative sponge associates that also live in other sheltered habitats, to obligate sponge associates that occupy a variety of sponge species, to obligate specialists on particular sponge species. The associations can cause the morphological alteration of the symbionts and other adaptive behaviour. Observations of new and unique associations were also discussed.
Downloads
References
Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M., & de Goeij, J. M. (2021). A Deep-Sea Sponge Loop? Sponges Transfer Dissolved and Particulate Organic Carbon and Nitrogen to Associated Fauna. Frontiers in Marine Science, 8(March), 1–12. https://doi.org/10.3389/fmars.2021.604879
Becerro, M. A. (2008). Quantitative trends in sponge ecology research. Marine Ecology, 29(2), 167–177. https://doi.org/10.1111/j.1439-0485.2008.00234.x
Björk, J. R., Díez-Vives, C., Coma, R., Ribes, M., & Montoya, J. M. (2013). Specificity and temporal dynamics of complex bacteria–sponge symbiotic interactions. Ecology, 94(12), 2781–2791.
Boero, F., J., B., & Kubota, S. (1997). The medusae of some species of Hebella Allman, 1888, and Anthohebella gen. nov (Cnidaria, Hydrozoa, Lafoeidae), with a world synopsis of species. Zoologische Verhandelingen Leiden, 310.
Brusca, R. C., & Brusca, G. J. (2003). Invertebrates (2nd ed.). Sinaeur Assoc., Inc.
Burgsdorf, I., Sizikov, S., Squatrito, V., Britstein, M., Slaby, B. M., Cerrano, C., ..., & Steindler, L. (2022). Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. The ISME Journal, 16(4), 1163–1175.
Calcinai, B., Bavestrello, G., & Cerrano, C. (2004). Dispersal and association of two alien species in the Indonesian coral reefs: The octocoral Carijoa riisei and the demosponge Desmapsamma anchorata. Journal of the Marine Biological Association of the United Kingdom, 84(5), 937–941. https://doi.org/10.1017/S0025315404010227h
Calcinai, B., Bertolino, M., Pica, D., Cerrano, C., Bavestrello, G., & Wagner, D. (2013). Sponges associated with octocorals in the Indo-Pacific, with the description of four new species. In Zootaxa (Vol. 3617, Issue 1).
Carrier, T. J., Maldonado, M., Schmittmann, L., Pita, L., Bosch, T. C. G., & Hentschel, U. (2022). Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biology, 20(1), 1–19. https://doi.org/10.1186/s12915-022-01291-6
Chak, S. T. C., Duffy, J. E., Hultgren, K. M., & Rubenstein, D. R. (2017). Evolutionary transitions towards eusociality in snapping shrimps. Nature Ecology and Evolution, 1(4), 1–7. https://doi.org/10.1038/s41559-017-0096
Chak, S. T. C., Harris, S. E., Hultgren, K. M., Jeffery, N. W., & Rubenstein, D. R. (2021). Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proceedings of the National Academy of Sciences of the United States of America, 118(24), 1–10. https://doi.org/10.1073/pnas.2025051118
Chin, Y. Y., Prince, J., Kendrick, G., & Abdul Wahab, M. A. (2020). Sponges in shallow tropical and temperate reefs are important habitats for marine invertebrate biodiversity. Marine Biology, 167(11), 1–20. https://doi.org/10.1007/s00227-020-03771-1
Corriero, G., Pronzato, R., & Sarà, M. (1991). The sponge fauna associated with Arca noae L.(Mollusca, Bivalvia). In Fossil and recent sponges (pp. 395–403). Springer Berlin Heidelberg.
de Goeij, J. M., van Oevelen, D., Vermeij, M. J., Osinga, R., Middelburg, J. J., de Goeij, A. F., & Admiraal, W. (2013). Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science, 342(6154), 108–110.
Diaz, M. C., & Ward, B. B. (1997). Sponge-mediated nitrification in tropical benthic communities. Marine Ecology Progress Series, 156, 97–107.
Duffy, J. E. (1996). Eusociality in a coral-reef shrimp. In Nature (Vol. 381, Issue 6582, pp. 512–514). https://doi.org/10.1038/381512a0
Duffy, J. E., & Macdonald, K. S. (2010). Kin structure, ecology and the evolution of social organization in shrimp: A comparative analysis. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 575–584. https://doi.org/10.1098/rspb.2009.1483
Egan, S., & Thomas, T. (2015). Editorial for: Microbial symbiosis of marine sessile hosts- diversity and function. Frontiers in Microbiology, 6(585). https://doi.org/10.1038/nrmicro1752
Ellison, A. M., & Farnsworth, E. J. (1990). The ecology of Belizean mangrove-root fouling communities. I. Epibenthic fauna are barriers to isopod attack of red mangrove roots. Journal of Experimental Marine Biology and Ecology, 142(1–2), 91–104.
Ellison, A. M., Farnsworth, E. J., & Twilley, R. R. (1996). Facultative mutualism between red mangroves and root-fouling sponges in belizean mangal. Ecology, 77(8), 2431–2444. https://doi.org/10.2307/2265744
Engel, S., & Pawlik, J. R. (2005). Interactions among Florida sponges. II. Mangrove habitats. Marine Ecology Progress Series, 303, 145–152.
Enrique-Navarro, A., Huertas, E., Flander-Putrle, V., Bartual, A., Navarro, G., Ruiz, J., Malej, A., & Prieto, L. (2022). Living Inside a Jellyfish: The Symbiosis Case Study of Host-Specialized Dinoflagellates, “Zooxanthellae”, and the Scyphozoan Cotylorhiza tuberculata. Frontiers in Marine Science, 9(March), 1–16. https://doi.org/10.3389/fmars.2022.817312
Farren, H. M., & Donovan, D. A. (2007). Effects of sponge and barnacle encrustation on survival of the scallop Chlamys hastata. Hydrobiologia, 592(1), 225–234. https://doi.org/10.1007/s10750-007-0743-1
Fell, P. E., & Lewandrowski, K. B. (1981). Population dynamics of the estuarine sponge, Halichondria sp., within a New England eelgrass community. Journal of Experimental Marine Biology and Ecology, 55(1), 49–63. https://doi.org/10.1016/0022-0981(81)90092-7
Forester, A. J. (1979). The association between the sponge Halichondria panicea (Pallas) and scallop Chlamys varia (L.): A commensal-protective mutualism. Journal of Experimental Marine Biology and Ecology, 36, 1–10. https://doi.org/10.1016/0022-0981(82)90132-0
Garritano, A. N., Majzoub, M. E., Ribeiro, B., Damasceno, T., Modolon, F., Messias, C., ..., & Thomas, T. (2023). Species-specific relationships between deep sea sponges and their symbiotic Nitrosopumilaceae. The ISME Journal, 17(9), 1517–1519.
Glasby, C. J., Schroeder, P. C., & Aguado, M. T. (2012). Branching out: a remarkable new branching syllid (Annelida) living in a Petrosia sponge (Porifera: Demospongiae). Zoological Journal of the Linnean Society, 164(3), 481–497. https://doi.org/10.1111/j.1096-3642.2011.00800.x
Gobbato, J., Magrini, A., García-Hernández, J. E., Virdis, F., Galli, P., Seveso, D., & Montano, S. (2022). Spatial Ecology of the Association between Demosponges and Nemalecium lighti at Bonaire, Dutch Caribbean. Diversity, 14(8). https://doi.org/10.3390/d14080607
Goren, L., Idan, T., Shefer, S., & Ilan, M. (2021). Sponge-Associated Polychaetes: Not a Random Assemblage. Frontiers in Marine Science, 8(May), 1–9. https://doi.org/10.3389/fmars.2021.695163
Haber, M., Burgsdorf, I., Handley, K. M., Rubin-Blum, M., & Steindler, L. (2021). Genomic insights into the lifestyles of Thaumarchaeota inside sponges. Frontiers in Microbiology, 11(622824).
Harmelin, J. G., Boury-Esnault, N., & Vacelet, J. (1994). A bryozoan-sponge symbiosis: the association between Smittina cervicornis and Halisarca cf. dujardini in the Mediterranean. Biology and Palaeobiology of Bryozoans, 69–74.
Hendler, G. (1984). The Association of Ophiothrix lineata and Callyspongia vaginalis: A Brittlestar‐Sponge Cleaning Symbiosis? Marine Ecology, 5(1), 9–27. https://doi.org/10.1111/j.1439-0485.1984.tb00304.x
Henkel, T. P., & Pawlik, J. R. (2005). Habitat use by sponge-dwelling brittlestars. Marine Biology, 146(2), 301–313. https://doi.org/10.1007/s00227-004-1448-x
Hunting, E. R., van der Geest, H. G., Krieg, A. J., van Mierlo, M. B. L., & van Soest, R. W. M. (2010). Mangrove-sponge associations: A possible role for tannins. Aquatic Ecology, 44(4), 679–684. https://doi.org/10.1007/s10452-009-9306-z
Jiménez, E., & Ribes, M. (2007). Sponges as a source of dissolved inorganic nitrogen: Nitrification mediated by temperate sponges. Limnology and Oceanography, 52(3), 948–958. https://doi.org/10.4319/lo.2007.52.3.0948
Kiran, G. S., Sekar, S., Ramasamy, P., Thinesh, T., Hassan, S., Lipton, A. N., Ninawe, A. S., & Selvin, J. (2018). Marine sponge microbial association: Towards disclosing unique symbiotic interactions. Marine Environmental Research, 140, 169–179. https://doi.org/10.1016/j.marenvres.2018.04.017
Lewis, S. M. (1982). Sponge-zoanthid associations. Functional interactions. Smithsonian Contributions to the Marine Sciences, 12, 465–474.
Leys, S. P., & Hill, A. (2012). The physiology and molecular biology of sponge tissues. Advances in Marine Biology, 62, 1–56.
Loh, T. L., & Pawlik, J. R. (2014). Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proceedings of the National Academy of Sciences, 111(11), 4151–4156.
Lohr, J. E., Chen, F., & Hill, R. T. (2005). Genomic analysis of bacteriophage ΦJL001: insights into its interaction with a sponge-associated alpha-proteobacterium. Applied and Environmental Microbiology, 71(3), 1598–1609.
López, E., Britayev, T. A., Martin, D., & Martín, G. S. (2001). New symbiotic associations involving Syllidae (Annelida: Polychaeta), with taxonomic and biological remarks on Pionosyllis magnifica and Syllis cf. armillaris. Journal of the Marine Biological Association of the United Kingdom, 81(3), 399–409. https://doi.org/10.1017/s0025315401004015
Macdonald, K. S., Ríos, R., & Duffy, J. E. (2006). Biodiversity, host specificity, and dominance by eusocial species among sponge-dwelling alpheid shrimp on the Belize Barrier Reef. Diversity and Distributions, 12(2), 165–178. https://doi.org/10.1111/j.1366-9516.2005.00213.x
Marin, A., & Belluga, M. D. L. (2005). Sponge coating decreases predation on the bivalve Arca noae. Journal of Molluscan Studies, 71(1), 1–6. https://doi.org/10.1093/mollus/eyh045
Meroz, E., & Ilan, M. (1995). Cohabitation of a coral reef sponge and a colonial scyphozoan. Marine Biology, 124, 453–459.
Myers, A. A., & George, A. M. (2017). Amphipoda living in sponges on the great barrier reef, Australia (Crustacea, Amphipoda). Zootaxa, 4365(5), 571–584. https://doi.org/10.11646/zootaxa.4365.5.4
Pawlik, J. R. (1983). A Sponge‐Eating Worm from Bermuda: Branchiosyllis oculata (Polychaeta, Syllidae),. Marine Ecology, 4(1), 65–79. https://doi.org/10.1111/j.1439-0485.1983.tb00288.x
Pawlik, J. R., Chanas, B., Toonen, R. J., & Fenical, W. (1995). Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Marine Ecology Progress Series, 127, 183–194.
Pawlik, J. R., McMurray, S. E., Erwin, P., & Zea, S. (2015). A review of evidence for food limitation of sponges on Caribbean reefs. Marine Ecology Progress Series, 519, 265–283.
Pita, L., Fraune, S., & Hentschel, U. (2016). Emerging sponge models of animal-microbe symbioses. Frontiers in Microbiology, 7(2102).
Pitcher, C. R., & Butler, A. J. (1987). Predation by asteroids, escape response, and morphometrics of scallops with epizoic sponges. Journal of Experimental Marine Biology and Ecology, 112(3), 233–249. https://doi.org/10.1016/0022-0981(87)90071-2
Puce, S., Calcinai, B., Bavestrello, G., Cerrano, C., Gravili, C., & Boero, F. (2005). Hydrozoa (Cnidaria) symbiotic with Porifera: a review. Marine Ecology, 26(2), 73–81.
Ribeiro, S. M., Omena, E. P., & Muricy, G. (2003). Macrofauna associated to Mycale microsigmatosa (Porifera, Demospongiae) in Rio de Janeiro State, SE Brazil. Estuar. Coast. Shelf Sci, 57, 951–959.
Rix, L., De Goeij, J. M., Mueller, C. E., Struck, U., Middelburg, J. J., Van Duyl, F. C., Al-Horani, F. A., Wild, C., Naumann, M. S., & Van Oevelen, D. (2016). Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Scientific Reports, 6(January), 1–11. https://doi.org/10.1038/srep18715
Rützler, K., & Muzik, K. M. (1993). Terpios hoshinota, a new cyanobacteriosponge threatening Pacific reefs. Recent advances in systematics and ecology of sponges. Scientia Marina, 57(4), 395–403.
Rützler, K. (1970). Spatial competition among Porifera: solution by epizoism. Oecologia, 5(2), 85–95.
Sacristán-Soriano, O., Pérez Criado, N., & Avila, C. (2020). Host Species Determines Symbiotic Community Composition in Antarctic Sponges (Porifera: Demospongiae). Frontiers in Marine Science, 7(June), 1–11. https://doi.org/10.3389/fmars.2020.00474
Saito, T., Uchida, I., & Takeda, M. (2002). Skeletal growth of the deep-sea hexactinellid sponge Euplectella oweni, and host selection by the symbiotic shrimp Spongicola japonica (Crustacea: Decapoda: Spongicolidae). Journal of Zoology, 258(4), 521–529.
Sandford, F. (1995). Sponge/ Shell Switching by Hermit Crabs, Pagurus impressus. Invertebrate Biology, 114(1), 73–78.
Schejter, L., & Spivak, E. (2005). Morphometry, sexual maturity, fecundity and epibiosis of the South American spider crab Libidoclaea granaria (Brachyura: Majoidea). Journal of the Marine Biological Association of the United Kingdom, 85(4), 857–863. https://doi.org/10.1017/S0025315405011811
Singh, A., & Thakur, N. L. (2018). Influence of spatial competitor on asexual reproduction of the marine sponge Cinachyrella cf. cavernosa (Porifera, Demospongiae). Hydrobiologia, 809(1), 247–263. https://doi.org/10.1007/s10750-017-3470-2
Singh, A., & Thakur, N. L. (2021). Allelopathic interaction among rocky intertidal invertebrates: sponge Cinachyrella cf. cavernosa and Zooxanthellate zoanthids Zoanthus sansibaricus. Hydrobiologia, 848(19), 4647–4659. https://doi.org/10.1007/s10750-021-04667-x
Stachowicz, J. J., & Hay, M. E. (2000). Geographic variation in camouflage specialization by a decorator crab. The American Naturalist, 156(1), 59–71.
Subramoniam, T. (2023). Sexual Biology and Mating Behaviour in Decapod Crustaceans: A Case Study with Coral Reef Dwelling Caridean Shrimps. Journal of Endocrinology and Reproduction, 27(1), 01–14.
Swain, T. D., & Wulff, J. L. (2007). Diversity and specificity of Caribbean sponge–zoanthid symbioses: a foundation for understanding the adaptive significance of symbioses and generating hypotheses about higher-order systematics. Biological Journal of the Linnean Society, 92(4), 695–711.
Swain, T. D. (2010). Evolution of host associations in symbiotic zoanthidea. The Florida State University.
Tavares, M. D. C. M., Volkmer-Ribeiro, C., & Hermany, G. (2005). Seasonal abundance in a sponge assembly at a southern neotropical inner delta. Journal of Coastal Research, 21(SPEC. ISS. 42), 335–342.
Taylor, M. W., Radax, R., Steger, D., & Wagner, M. (2007). Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiology and Molecular Biology Reviews, 71(2), 295–347. https://doi.org/10.1128/mmbr.00040-06
Thiel, V., & Imhoff, J. F. (2003). Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomolecular Engineeringx, 20, 421–423.
Thomas, T., Moitinho-Silva, L., Lurgi, M., Björk, J. R., Easson, C., & Astudillo-García, C., ... Webster, N. S. (2016). Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications, 7(1), 11870.
Uriz, M. J., Rosell, D., & Maldonado, M. (1992). Parasitism, commensalism or mutualism? The case of Scyphozoa (Coronatae) and horny sponges. Marine Ecology Progress Series, 81, 247–255.
Usher, K. M. (2008). The ecology and phylogeny of cyanobacterial symbionts in sponges. Marine Ecology, 29(2), 178–192. https://doi.org/10.1111/j.1439-0485.2008.00245.x
Webster, N. S., & Thomas, T. (2016). The sponge hologenome. MBio, 7(2). https://doi.org/10.1128/mBio.00135-16
West, D. A. (1976). Aposematic coloration and mutualism in sponge-dwelling tropical zoanthids. In G. O. Mackie (Ed.), Coelenterate biology and behavior (pp. 443–452). Plenum Press.
Wulff, J. L. (1997). Mutualisms among species of coral reef sponges. Ecology, 78(1), 146–159. https://doi.org/10.1890/0012-9658(1997)078[0146:MASOCR]2.0.CO;2
Wulff, J. L. (2006). Ecological interactions of marine sponges. Canadian Journal of Zoology, 84(2), 146–166.
Wulff, J. L. (2008). Life-history differences among coral reef sponges promote mutualism or exploitation of mutualism by influencing partner fidelity feedback. The American Naturalist, 171(5), 597–609.
Yu, M. C., Kolbasov, G. A., Høeg, J. T., & Chan, B. K. K. (2019). Crustacean-sponge symbiosis: Collecting and maintaining sponge-inhabiting barnacles (Cirripedia: Thoracica: Acastinae) for studies on host specificity and larval biology. Journal of Crustacean Biology, 39(4), 522–532. https://doi.org/10.1093/jcbiol/ruz025
Downloads
Published
How to Cite
Issue
Section
License
License for Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- When the article is accepted for publication, its copyright is transferred to Aquasains Journal. The copyright transfer convers the exclusive right to reproduce and distribute the article, including offprint, translation, photographic reproduction, microfilm, electronic material, (offline or online) or any other reproduction of similar nature.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- The Author warrant that this article is original and that the author has full power to publish. The author sign for and accepts responsibility for releasing this material on behalf os any and all-author. If the article based on or part os student’s thesis, the student needs to sign as his/her agreement that his/her works is going published.
License for Regular Users
Other regular users who want to cite, distribute, remix, tweak, and build upon author’s works, even for commercial purposes, should acknowledge the work’s authorship and initial publication in this journal, licensed under a Creative Commons Attribution License.
This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
This work is licensed under a Creative Commons Attribution 4.0 International License.Copyright Transfer Statement can be downloaded here

.png)





