POTASIUM AND MICRO FERTILIZERS APPLICATION FOR IMPROVING CASSAVA PRODUCTION HARVESTING AT 7 AND 10 MONTH AFTER PLANTING
DOI:
https://doi.org/10.23960/ja.v19i2.4405
Abstract
ABSTRACT
The harvest of cassava usually conducted by farmers in Lampung province is around 7 months after planting (MAP). Moreover, either farmers or industry cassava rarely fertilized by using potassium (KCl) and also micro fertilizers to improve the cassava production. This condition could decrease the production both root weight and strach content. Consequently, the objective of this study was to evaluate the cassava production applied by potassium and micro fertilizers harvested at 7 and 10 MAP. Treatments were arranged by factorial (2x2) in completely randomized block design with three reps used as block. First factor were First factor was two levels of KCl, 200 and 300 kg KCl/ha. Second factor was two levels of micro nutrient, 0 and 20 kg zincmicro nutrient/ha. The result showed that there was no variation of root number and root weight due to application of potassium and micro fertilizers. This means that root number and root weight were not significantly different applied by potassium and micro fertilizers. In addition, application of potassium and micro fertilizers could significantly influence shoot growth as stem dry weight and leaf dry weight at 10 MAP.
Keywords: harvest, leaf dry weight, micro fetilizer, potassium, production, stem dry weight
ABSTRAK
Cara panen ubikayu yang biasa dilakukan di tingkat petani adalah sekitar tanaman umur 7 bulan setelah tanam (BST). Selain itu, petani maupun pihak industri sangat jarang melakukan pemupukan kalium (KCl) maupun unsur mikro untuk perbaikan produksi ubikayu. Hal ini akan menyebabkan penurunan produksi baik dari bobot ubi maupun kadar pati. Oleh karena itu, tujuan penelitian ini adalah untuk mengevaluasi produksi ubikayu akibat aplikasi pemupukan kalium (KCl) dan mikro pada umur panen 7 dan 10 BST. Perlakuan disusun secara faktorial (2x2) dalam rancangan kelompok teracak lengkap (RKTL) dengan tiga ulangan sebagai kelompok. Faktor pertama adalah aplikasi dua dosis pupuk KCL, 200 dan 300 kg KCl/ha. Faktor kedua adalah aplikasi dua dosis pupuk mikro, 0 dan 20 kg Zincmikro/ha. Hasil menunjukkan bahwa tidak ada variasi pada variabel jumlah ubi dan bobot ubi akibat pemupukan kalium dan mikro. Hal ini menggambarkan bahwa aplikasi pupuk kalium dan mikro menghasilkan jumlah ubi dan bobot ubi yang tidak berbeda. Selanjutnya, aplikasi pupuk kalium dan mikro memberikan pengaruh pada variabel pertumbuhan tajuk seperti bobot kering batang dan daun pada umur 10 BST.
Kata kunci: bobot kering batang, bobot kering daun, kalium, mikro, panen, produksi
Downloads
References
Adekayode, F and Adeola, O.F. 2009. The response of cassava to potassium fertilizer treatments. Journal of Food, Agriculture & Environment. 7 (2): 279-282
Agbaje, G. O. and T. A. Akinlosotu. 2004. Influence of NPK fertilizer on tuber yield of early and late-planted cassava in a forest alfisol of south-western Nigeria. African Journal of Biotechnology 3(10): 547-551.
Apea-Bah, F.B., I. Oduro, W.O. Ellis and O. Safo-Kantanka. 2011. Factor analysis and age at harvest effect on the quality of flour from four cassava varieties. World J. of Dairy & Food Sci. 6 (1): 43-54
Baafi E. and O.Safo-Kantanka. 2007. Effect of genotype, age, and location on cassava starch yield and quality. J. of Agron. 6 (4): 581-585
BPS. 2018. Produksi Ubikayu Menurut Provinsi (ton), 1993-2017 (https://www.bps.go.id/linkTableDinamis/view/id/880).
Chua, M.F., L.Youbee, S. Oudthachit, P. Khanthavong, E.J. Veneklaas, and A.I. Malik. 2020. Potassium fertilisation is required to sustain cassava yield and soil fertility. Agronomy (10): 2-11
Fernandes, A.M., B. Gazola, J. Geibel da Silva Nunes, E.L. Garcia and M. Leonel. 2017. Yield and nutritional requirements of cassava in response to potassium fertilizer in the second cycle. J. of Plant Nutrition. 40:1-31.
Howeler, R.and C.J. Asher. 1982. Micronutrient deficiencies and toxicities of cassava plants grown in nutrient soultion. I. Critical tissue concntrations. J. of Plant Nutrition.
ImakumbiliI, M.L.E., G. Mkamilo, E. Semu, J.M.R. Semoka, A. Abass. 2019. Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania. Plos One. 14 (5): 1-17
Kayode, G.O. 1983. Effects of various planting and harvesting times on the yield, HCN, dry-matter accumulation and starch content of four cassava varieties in a tropical rainforest region. The J. of Agric. Sci. 101 (3): 633-636
Prammanee S., K. Kamprerasart, S. Salakan, and K. Sriroth. 2010. Growth and starch content evaluation on newly released cassava cultivars, Rayong 9, Rayong 7 and Rayong 80 at different harvest times. Kasetsart J.Nat Sci. 44: 558-563.
Rosas, C., J.H. Cock, and G. Sandoval. 1976. Leaf fall in cassava. Expl Agric. 12: 395-400
Zhi Li You, Jian-Yu Zhao, San-Min Wu, Xian-Wei Fan, Xing-Lu Luo & Bao-Shan Chen. 2016. Characters related to higher starch accumulation in cassava storage roots. Scientific RepoRts | 6:19823 | DOI: 10.1038/srep19823
Zhu, F. 2014. Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers. 122: 456–480.