Pengaruh Durasi Penekanan dan Ukuran Partikel terhadap Kualitas Pelet Serbuk Gergaji

Authors

  • Fajar Agustus Simanjuntak Universitas Lampung
  • Febrian Kusuma Wisnu Universitas Lampung
  • Mareli Telaumbanua Universitas Lampung
  • Agus Haryanto Universitas Lampung

DOI:

https://doi.org/10.23960/jabe.v1i3.6331
Abstract View: 634

Abstract

This study aims to determine the effect of pressing duration and particle size on the pellet characteristics of sawdust. The study was conducted in a factorial completely randomized design using two factors. The first factor is the duration of the suppression which consists of four levels, namely 60, 120, 180, and 240 seconds. The second factor is particle size which consists of 40 mesh (fine), 30 mesh (medium), 20 mesh (coarse), and mixed. Sawdust is taken from a furniture industry in Bandar Lampung, then dried in the sun to a moisture content of about 12%, then sieved. Pellet molding was carried out with a mass of about 3 grams of material using a hydraulic press with a mold diameter of 12 mm. Sawdust is fed into the mould, then pressed by a hydraulic system at a pressure of 2 tons (172 Mpa). Parameters observed included density, moisture content, water absorption, pellet strength, pellet color, ash content and durability index. Each measurement was carried out with three replications. The results showed that the pressing duration and particle size affected the pellet characteristics. Biomass pellet made from sawdust had characteristics such as density of 0.813-0.856 g/cm3, moisture content of 8.19-12.15 %, maximum water absorption of 7.06-9.32 %, drop resistance of 99.41-99.66 %, and ash content of 1.087-2.082 %.

 

Keywords: Density, Durability Index, Duration of Compression, Particle Size, Moisture Content.

Downloads

Download data is not yet available.

References

Bazargan, A., Rough, S.L., & McKay, G. (2014). Compaction of palm kernel shell biochars for application as solid fuel. Biomass and Bioenergy, 70, 489–497.

BP (British Petroleum). 2021. BP Statistical Review of World Energy. Tersedia di http://www.bp.com/statisticalreview.

BSN (Badan Standardisasi Nasional). (2018). SNI 8675-2018: Pelet Biomassa Untuk Energi. Badan Standardisasi Nasional.

Contreras-Trejo, J.C., Vega-Nieva, D.J., Heya, M.N., Prieto-Ruíz, J.A., Nava-Berúmen, C.A., & Carrillo-Parra, A. (2022). Sintering and fusibility risks of pellet ash from different sources at different combustion temperatures. Energies, 15(14), 5026.

Dhamodaran, A., & Afzal, M.T. (2012). Compression and springback properties of hardwood and softwood pellets. BioResources, 7(3), 4362–4376.

Grover, P.D., & Mishra, S.K. (1996). Biomass Briquetting: Technology and Practices. Regional Wood Energy Development Programme in Asia, Food and Agriculture Organization.

Handayani, S. (2010). Kualitas batu bata merah dengan penambahan serbuk gergaji. Jurnal Teknik Sipil & Perencanaan, 12(1), 41–50.

Harun, N.Y., & Afzal, M.T. (2016). Effect of particle size on mechanical properties of pellets made from biomass blends. Procedia Engineering, 148, 93–99.

Haryanto, A., Suharyatun, S., Rahmawati, W., & Triyono, S. (2019). Energi terbarukan dari jerami padi: Review potensi dan tantangan bagi Indonesia. Jurnal Keteknikan Pertanian, 7(2), 137–144.

Intagun, W., & Tarawadee, N. (2016). The effect of particle size on the bulk density and durability of pellets: Bagasse and eucalyptus bark. Research & Knowledge, 2(1), 74–79.

Kaliyan, N., & Morey, R.V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337–359.

Kinanti, S. 2022. Kajian Industri Arang Dari Kayu Akasia (Acacia mangium) di Kecamatan Bumi Nabung, Kabupaten Lampung Tengah. [Skripsi]. Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung.

Li, Y., & Liu, H. (2000). High-pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19(3), 177–186.

Maharani, R., Yutaka, T., Yajima, T., & Minoru, T. (2010). Scrutiny on physical properties of sawdust from tropical commercial wood species: Effects of different mills and sawdust’s particle size. Journal of Forestry Research, 7(1), 20–32.

Mani, S., Tabil, L. G., & Sokhansanj, S. (2003). An overview of compaction of biomass grinds. Powder Handling and Processing, 15(3), 160–168.

Maulina, S., & Putri, F.S. (2017). Pengaruh suhu, waktu, dan kadar air bahan baku terhadap pirolisis serbuk pelepah kelapa sawit. Jurnal Teknik Kimia USU, 6(2), 35–40.

Orisaleye, J.I., Jekayinfa, S.O., Adebayo, A.O., Ahmed, N.A., & Pecenka, R. (2018). Effect of densification variables on density of corn cob briquettes produced using a uniaxial compaction biomass briquetting press. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(24), 3019–3028.

Rahman, R. (2011). Uji Keragaan Biopelet Dari Biomassa Limbah Sekam Padi (Oryza sativa Sp.) Sebagai Bahan Bakar Alternatife Terbarukan. [Skripsi]. Institut Pertanian Bogor.

Rudolfsson, M. (2016). Characterization and Densification of Carbonized Lignocellulosic Biomass. [Doctoral Thesis]. Swedish University of Agricultural Sciences.

Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafiniuk, P., & Gondek, E. (2017). Mechanical and combustion properties of sawdust – Straw pellets blended in different proportions. Fuel Processing Technology, 156, 366–375.

Stelte, W., Sanadi, A.R., Shang, L., Holm, J.K., Ahrenfeldt, J., & Henriksen, U.B. (2012). Recent Developments in Biomass Pelletization – A Review. BioResources, 7(3), 4451-4490–4490.

Styks, J., Knapczyk, A., & Łapczyńska-Kordon, B. (2021). Effect of compaction pressure and moisture content on post-agglomeration elastic springback of pellets. Materials, 14(4), 879.

Sudiryanto, G., & Suharto, S. (2020). Analisa jenis limbah kayu di Jepara. Jurnal DISPROTEK, 11(1), 47–53.

Sylviani, S., & Suryandari, E.Y. (2013). Potensi pengembangan industri pelet kayu sebagai bahan bakar terbarukan—Studi kasus di Kabupaten Wonosobo. Jurnal Penelitian Sosial dan Ekonomi Kehutanan, 10(4), 235–246.

Terazawa, M., Horisawa, S., Tamai, Y., & Yamashita, K. (1999). Biodegradation of nonlignocellulosic substances I: System for complete decomposition of garbage using sawdust and aerobic soil bacteria. Journal of Wood Science, 45(4), 354–358.

Tippayawong, N., Jaipa, C., & Kwanseng, K. (2018). Biomass pellets from densification of tree leaf waste with algae. Agricultural Engineering International: CIGR Journal, 20(4), 119–125.

Tumuluru, J.S., Wright, C.T., Hess, J.R., & Kenney, K.L. (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5(6), 683–707.

Wang, T. (2014). Compaction behavior, mechanical properties, and moisture resistance of torrefied and non-torrefied biomass pellets. [Graduate Thesis]. West Virginia University.

Yao, X., Xu, K., Yan, F., & Liang, Y. (2017). The influence of ashing temperature on ash fouling and slagging characteristics during combustion of biomass fuels. BioResources, 12(1), 1593–1610.

Yokoyama, S. (2008). Buku Panduan Biomassa Asia. The University of Tokyo.

Downloads

Published

2022-10-10

How to Cite

Simanjuntak, F. A., Wisnu, F. K., Telaumbanua, M., & Haryanto, A. (2022). Pengaruh Durasi Penekanan dan Ukuran Partikel terhadap Kualitas Pelet Serbuk Gergaji. Jurnal Agricultural Biosystem Engineering, 1(3), 349–360. https://doi.org/10.23960/jabe.v1i3.6331