Kajian Industri Arang Dari Kayu Akasia (Acacia mangium) Di Kecamatan Bumi Nabung Kabupaten Lampung Tengah

Authors

  • Sekar Kinanti Universitas Lampung
  • Agus Haryanto Universitas Lampung
  • Sapto Kuncoro Universitas Lampung
  • Siti Suharyatun Universitas Lampung

DOI:

https://doi.org/10.23960/jabe.v1i3.6333
Abstract View: 687

Abstract

One way to increase the energy and economic value of wood waste is to convert it into charcoal through the pyrolysis process. The purpose of this study was to determine the performance of the acacia wood charcoal industry and the characteristics of acacia wood charcoal. Data collection was carried out by observing the production process of acacia wood charcoal in Bumi Nabung District, Central Lampung Regency. Parameters included charcoal yield, processing capacity, charcoal characteristics (bulk density, moisture content, ash content, water absorption, and calorific value), and economic analysis of small-scale charcoal industry. The results showed that the production system still uses traditional methods, starting from the preparation of raw materials, preparation of raw materials, installation of boxes, adding soil to the boxes, burning, cooling and harvesting. Based on cooling method, charcoal production was grouped into two, namely natural and water spraying cooling. Sprayed charcoal has the characteristics of water content 5.1%, ash content 2.99%, bulk density 0.256 g/cm3 and calorific value 30.42 MJ/kg. While the characteristics of natural cooled charcoal were 2.52% moisture content, 1.78% ash content, 0.123 g/cm3 bulk density and calorific value 32.93 MJ/kg. The monthly profit obtained wass IDR656.918,64 for sprayed charcoal and IDR167.227,46 for natural charcoal.

 

Keywords: Acacia, Charcoal, Cooling, Pyrolysis, Yield.

Downloads

Download data is not yet available.

References

Adam, J. C. (2009). Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal). Renewable Energy, 34(8), 1923–1925. https://doi.org/10.1016/j.renene.2008.12.009

Babinszki, B., Sebestyén, Z., Jakab, E., Kőhalmi, L., Bozi, J., Várhegyi, G., Wang, L., Skreiberg, Ø., & Czégény, Zs. (2021). Effect of slow pyrolysis conditions on biocarbon yield and properties: Characterization of the volatiles. Bioresource Technology, 338, 125567. https://doi.org/10.1016/j.biortech.2021.125567

Brewer, C. E., & Levine, J. (2015). Weight or Volume for Handling Biochar and Biomass? The Biochar Journal. https://www.biochar-journal.org/en/ct/71

Dias Júnior, A. F., Pirola, L. P., Takeshita, S., Lana, A. Q., Brito, J. O., & Andrade, A. M. e. (2016). Higroscopicity of Charcoal Produced in Different Temperatures. CERNE, 22(4), 423–430. https://doi.org/10.1590/01047760201622032175

Haryanto, A., Hidayat, W., Hasanudin, U., Iryani, D. A., Kim, S., Lee, S., & Yoo, J. (2021). Valorization of Indonesian wood wastes through pyrolysis: A review. Energies, 14(5), 1407. https://doi.org/10.3390/en14051407

Hastuti, N., Pari, G., Setiawan, D., Mahpudin, M., & Saepuloh, S. (2015). Kualitas Arang 6 Jenis Kayu Asal Jawa Barat Sebagai Produk Destilasi Kering. Jurnal Penelitian Hasil Hutan, 33(4), 337–346. https://doi.org/10.20886/jphh.2015.33.4.337-346

Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143–144. https://doi.org/10.1038/447143a

Marsoem, S. N., Sulistyo, J., & Irawati, D. (2004). Status and Prospects of Charcoal in Indonesia. Proceeding of The International Workshop on ”Better Utilization of Forest Biomass for Local Community and Environment", 112–126.

Menemencioglu, K. (2013). Traditional wood charcoal production labour in Turkish forestry (Çankırı sample). Journal of Food, Agriculture & Environment, 11(2), 1136–1142.

Pereira, B. L. C., Oliveira, A. C., Carvalho, A. M. M. L., Carneiro, A. de C. O., Santos, L. C., & Vital, B. R. (2012). Quality of Wood and Charcoal from Eucalyptus Clones for Ironmaster Use. International Journal of Forestry Research, 2012, 1–8. https://doi.org/10.1155/2012/523025

Purwanto, D. (2011). Arang Dari Limbah Tempurung Kelapa Sawit (Elaeis guineensis Jacq). Jurnal Penelitian Hasil Hutan, 29(1), 57–66. https://doi.org/10.20886/jphh.2011.29.1.57-66

Putra, J., Efendi, R., & Hamzah, F. (2017). Karakteristik Briket Arang Serpihan Kayu dengan Penambahan Arang Tempurung Biji Karet. Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, 4(1), 1–8.

Rochmayanto, Y. (2012). Potensi Tunggak Acacia Crassicarpa dan Ekonomi Pemanfaatan sebagai Bahan Baku Arang. Jurnal Penelitian Hutan Tanaman, 9(1), 9–18. https://doi.org/10.20886/jpht.2012.9.1.9-18

Salim, R. (2016). Karakteristik dan Mutu Arang Kayu Jati (Tectona grandis) dengan Sistem Pengarangan Campuran pada Metode Tungku Drum. Jurnal Riset Industri Hasil Hutan, 8(2), 53–64. https://doi.org/10.24111/jrihh.v8i2.2113

Somerville, M., & Jahanshahi, S. (2015). The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renewable Energy, 80, 471–478. https://doi.org/10.1016/j.renene.2015.02.013

Sudiryanto, G., & Suharto, S. (2020). Analisa jenis limbah kayu di Jepara. Jurnal DISPROTEK, 11(1), 47–53. https://doi.org/10.34001/jdpt.v11i1.1163

Sulistyo, J., Marsoem, S. N., Kholik, A., Yatagai, M., & Nagatsuka, Y. (2019). Charcoal Quality Improvement Using Double Layer Walls in a Movable Kiln. Teknologi Hutan, Fakultas Kehutanan, UGM. https://teknologihutan.fkt.ugm.ac.id/wp-content/uploads/sites/675/2019/09/Charcoal-Quality-Improvement-Using-Double-Layer-Walls-in-a-Movable-Kiln.pdf

Varma, A. K., Shankar, R., & Mondal, P. (2018). A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation. In P. K. Sarangi, S. Nanda, & P. Mohanty (Eds.), Recent Advancements in Biofuels and Bioenergy Utilization (pp. 227–259). Springer Singapore. https://doi.org/10.1007/978-981-13-1307-3_10

Downloads

Published

2022-10-10

How to Cite

Kinanti, S., Haryanto, A., Kuncoro, S., & Suharyatun, S. (2022). Kajian Industri Arang Dari Kayu Akasia (Acacia mangium) Di Kecamatan Bumi Nabung Kabupaten Lampung Tengah. Jurnal Agricultural Biosystem Engineering, 1(3), 370–380. https://doi.org/10.23960/jabe.v1i3.6333