Karakteristik Pellet dari Bagas Tebu

Authors

  • Agus Haryanto Universitas Lampung
  • Yuko Armandho Pratama Universitas Lampung
  • Sugeng Triyono Universitas Lampung
  • Siti Suharyatun Universitas Lampung

DOI:

https://doi.org/10.23960/jabe.v2i1.6931
Abstract View: 915

Abstract

Sugarcane bagasse is the remaining solid waste from sugarcane (Sacharum officinarum) milling which has the potential to be developed as solid fuel in the form of pellets. The purpose of this study was to determine the effect of variations in pressure and particle size on the characteristics of pellets from sugarcane bagasse. The research was carried out with a combination of variations in particle size (fine, medium, and coarse) and pressure (1, 2, and 3 tons). The results showed that sugarcane bagasse has the potential to be developed as a pellet fuel because it has a relatively high calorific value, an average of 16.53 MJ/kg. Sugarcane bagasse pellets meet SNI 8675-2018 standards in terms of moisture content, density, and ash content. The results showed that although the ash content of the pellets was affected by the particle size, in general, the characteristics of the pellets were not significantly affected by the treatment factors (pressure and particle size as well as their interactions). Sugarcane bagasse pellets have a high water absorption capacity, so they require a good storage method.

 

Keywords: Densification, Density, Pressure, Particl Size, Strength

Downloads

Download data is not yet available.

References

Bilba, K., Arsene, M.-A. & Ouensanga, A. 2003. Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cement and Concrete Composites, 25(1): 91–96.

BPS (Badan Pusat Statistik). 2022. Statistical Yearbook of Indonesia 2022. Jakarta: Badan Pusat Statistik.

Brunerová, A., Roubík, H., Brožek, M., Van Dung, D., Phung, L.D., Hasanudin, U., Iryani, D.A. & Herák, D. 2020. Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam. Waste Management & Research, 38(11): 1239–1250.

BSN (Badan Standardisasi Nasional). 2018. SNI 8675-2018: Pelet Biomassa Untuk Energi. Jakarta: Badan Standardisasi Nasional.

Colombo, G., Ocampo-Duque, W. & Rinaldi, F. 2014. Challenges in Bioenergy Production from Sugarcane Mills in Developing Countries: A Case Study. Energies, 7(9): 5874–5898.

Daniyanto, Sutidjan, Deendarlianto & Budiman, A. 2015. Torrefaction of Indonesian Sugar-cane Bagasse to Improve Bio-syngas Quality for Gasification Process. Energy Procedia, 68: 157–166.

Erlich, C., Bjornbom, E., Bolado, D., Giner, M. & Fransson, T. 2006. Pyrolysis and gasification of pellets from sugar cane bagasse and wood. Fuel, 85(10–11): 1535–1540.

Gunawan, Bantacut, T., Romli, M. & Noor, E. 2018. Biomass by-product from crystal sugar production: A comparative study between Ngadirejo and Mauritius sugar mill. IOP Conference Series: Earth and Environmental Science, 141: 012009.

Harun, N.Y. & Afzal, M.T. 2016. Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends. Procedia Engineering, 148: 93–99.

Haryanto, A., Suharyatun, S., Rahmawati, W. & Triyono, S. 2019. Energi terbarukan dari jerami padi : Review potensi dan tantangan bagi Indonesia. Jurnal Keteknikan Pertanian, 7(2): 137–144.

Hoover, A.N., Tumuluru, J.S., Teymouri, F., Moore, J. & Gresham, G. 2014. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. Bioresource Technology, 164: 128–135.

Iryani, D.A., Kumagai, S., Nonaka, M., Sasaki, K. & Hirajima, T. 2017. Characterization and Production of Solid Biofuel from Sugarcane Bagasse by Hydrothermal Carbonization. Waste and Biomass Valorization, 8(6): 1941–1951.

Leang, Y.H. & Saw, H.Y. 2011. Proximate and functional properties of sugarcane bagasse. Agro Food Industry Hi-Tech, 22(2): 5–8.

Li, Y. & Liu, H. 2000. High-pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19(3): 177–186.

Lisowski, A., Matkowski, P., Dąbrowska, M., Piątek, M., Świętochowski, A., Klonowski, J., Mieszkalski, L. & Reshetiuk, V. 2020. Particle Size Distribution and Physicochemical Properties of Pellets Made of Straw, Hay, and Their Blends. Waste and Biomass Valorization, 11(1): 63–75.

Mahmud, Md.A. & Anannya, F.R. 2021. Sugarcane bagasse - A source of cellulosic fiber for diverse applications. Heliyon, 7(8): e07771.

Pandey, A., Soccol, C.R., Nigam, P. & Soccol, V.T. 2000. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 74(1): 69–80.

Pippo, W.A., Luengo, C.A., Alberteris, L.A.M., Garzone, P. & Cornacchia, G. 2011. Energy Recovery from Sugarcane-Trash in the Light of 2nd Generation Biofuels. Part 1: Current Situation and Environmental Aspects. Waste and Biomass Valorization, 2(1): 1–16.

Poddar, S., Kamruzzaman, M., Sujan, S.M.A., Hossain, M., Jamal, M.S., Gafur, M.A. & Khanam, M. 2014. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel, 131: 43–48.

Prabhu, R., Ganesh, S., Mahesha, G. & Bhat, K.S. 2022. Physicochemical characteristics of chemically treated bagasse fibers J. Sánchez, ed. Cogent Engineering, 9(1): 2014025.

Pradhan, P., Mahajani, S.M. & Arora, A. 2018. Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, 181: 215–232.

PT GMP, (Gunung Madu Plantations). 2009. Pabrik Gula. Jakarta.

Rezende, C.A., de Lima, M.A., Maziero, P., deAzevedo, E.R., Garcia, W. & Polikarpov, I. 2011. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(1): 54.

Rípoli, T.C.C., Molina Jr., W.F. & Rípoli, M.L.C. 2000. Energy potential of sugar cane biomass in Brazil. Scientia Agricola, 57(4): 677–681.

Sakdaronnarong, C. & Jonglertjunya, W. 2012. Rice straw and sugarcane bagasse degradation mimicking lignocellulose decay in nature: An alternative approach to biorefinery. ScienceAsia, 38(4): 364.

Simanjuntak, F.A., Wisnu, F.K., Telaumbanua, M. & Haryanto, A. 2022. Pengaruh Durasi Penekanan dan Ukuran Partikel terhadap Kualitas Pelet Serbuk Gergaji. Jurnal Agricultural Biosystem Engineering, 1(3): 349–360.

Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, S., Ahrenfeldt, J. & Henriksen, U.B. 2011. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel, 90(11): 3285–3290.

Styks, J., Knapczyk, A. & Łapczyńska-Kordon, B. 2021. Effect of Compaction Pressure and Moisture Content on Post-Agglomeration Elastic Springback of Pellets. Materials, 14(4): 879.

Therdyothin, A., Bhattacharaya, S.C. & Chirarattananon, S. 1992. Electricity Generation Potential of Thai Sugar Mills. Energy Sources, 14(4): 367–380.

Tumuluru, J.S., Wright, C.T., Kenny, K.L. & Hess, J.R. 2010. A Review on Biomass Densification Technologies for Energy Application. Idaho Falls, Idaho 83415: Idaho National Laboratory. https://digital.library.unt.edu/ark:/67531/metadc840657/ 21 April 2019.

Unpinit, T., Poblarp, T., Sailoon, N., Wongwicha, P. & Thabuot, M. 2015. Fuel Properties of Bio-Pellets Produced from Selected Materials under Various Compacting Pressure. Energy Procedia, 79: 657–662.

Downloads

Published

2023-03-07

How to Cite

Haryanto, A., Pratama, Y. A., Triyono, S., & Suharyatun, S. (2023). Karakteristik Pellet dari Bagas Tebu. Jurnal Agricultural Biosystem Engineering, 2(1), 130–143. https://doi.org/10.23960/jabe.v2i1.6931

Issue

Section

Articles