Deteksi Kerawanan Banjir Genangan Menggunakan Topographic Wetness Index (TWI) di Sub Das Way Katibung

Authors

  • Wahyuni Ma’rufah Universitas Lampung
  • Ridwan Ridwan Universitas Lampung
  • Muhammad Amin Universitas Lampung

DOI:

https://doi.org/10.23960/jabe.v3i2.9435
Abstract View: 185

Abstract

This research aims to detect flood susceptibility using the Topographic Wetness Index (TWI) and create a flood susceptibility map in the Way Katibung Sub-watershed using the Topographic Wetness Index (TWI). This study employs the Topographic Wetness Index (TWI) method with observation parameters including land slope, soil type, land elevation, rainfall, and land use. The results show that the most influential parameter on the Topographic Wetness Index (TWI) is the land slope. Therefore, TWI can be used to detect flood susceptibility in the Way Katibung Sub-watershed, which is predominantly flat. Areas with the lowest average TWI value of 6.35 have no potential for flooding, whereas areas with average TWI values of 10.94 and 13.95 are the most susceptible to flooding. The flood-prone areas are primarily located near river streams, such as Mekar Sari, Sumber Agung, Talang Way Sulan, Karang Pucung, Banjar Sari, Purwodadi, and Pamulihan in Way Sulan District.

 

Keywords:  Flood Puddle, Sub-DAS Way Katibung, TWI, Vulnerability.

Downloads

Download data is not yet available.

References

Aksoy, H., Kirca, VY., Burgan, HI., and Kellecioglu, D. 2016. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas. Proceeding IAHS (373), 137-141.

Ballerine, C. (2017). Topographic Wetness Index Urban Flooding Awareness Act Action Support, Will & DuPage Counties, Illinois. Retrieved from

Brady, N.C. 1984. The Nature and Properties of Soils. 9th Edition. Macmil.

Chandra, R. K., & Rima, D. (2013). Mitigasi Bencana Banjir Rob di Jakarta Utara. Jurnal Teknik Pomits, 2(1), 25-30.

Haas, Jan. 2010. Soil moisture modelling using TWI and satellite imagery in the Stockholm region. [Thesis]. Stockholm: Royal Institute of Technology (KTH)

Hardjowigeno, Sarwono. (1989). Ilmu Tanah. Jakarta: Mediyatama Sarana Perkasa.

Pourali, S., Arrowsmith, C., Chrisman, N., Matkan, A., & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9(1), 39-54.

Qin, C.-Z., Zhu, A.-X., Pei, T., Li, B.-L., Scholten, T., Behrens, T., & Zhou, C.-H. (2011). An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agriculture, 12(1), 32-43

Riadi, B., Barus, B., Widiatmaka, M. Y. J., & Pramudya, B. (2018). Spatial Modeling on Coastal Land Use/Land Cover Changes and its Impact on Farmers. Environment and Ecology Research, 6(3), 169-17

Rosyidie, A., 2013. Banjir: Fakta dan Dampaknya, Serta Pengaruh dari Perubahan Guna Lahan, Jurnal Perencanaan Wilayah dan Kota. Vol.24, No.3, hal.241-244.

Safitri E, I B Pramono. 2017. Analisis Banjir Cimanuk Hulu 2016. Jurnal Penelitian PDAS. 1(2).

Triatmodjo, B. 2010. Hidrologi Terapan. Beta Offset.

Downloads

Published

2024-06-28

How to Cite

Ma’rufah, W., Ridwan, R., & Amin, M. (2024). Deteksi Kerawanan Banjir Genangan Menggunakan Topographic Wetness Index (TWI) di Sub Das Way Katibung. Jurnal Agricultural Biosystem Engineering, 3(2), 238–247. https://doi.org/10.23960/jabe.v3i2.9435

Issue

Section

Articles