Evaluation on the effect of butternut pumpkin (Cucurbita moschata) maturity stage on the bioactive components and antioxidant activity of pumpkin flour

Authors

  • Siti Nurdjanah Department of Agricultural Product Technology, Faculty of Agriculture, Lampung University
  • Nurbaiti Nurbaiti university of Lampung
  • Sussi Astuti Universitas Lampung
  • Tanto Pratondo Utomo Universitas Lampung
  • Sartika Dewi Universitas Lampung

DOI:

https://doi.org/10.23960/jtihp.v28i2.174-183
Abstract View: 488

Keywords:

antioxidant activity, bioactive components, maturity stage, pumpkin flour

Abstract

Pumpkin flour is a processed product high in carotenoids and a good source of nutrients. This nutritional content of pumpkin flour was considered to be influenced by the fruit maturity stage. Therefore, this research aimed to evaluate pumpkin flour's chemical properties, bioactive components, and antioxidant activity at different maturity stages. This also used honey pumpkins with a maturity stage of 15, 20,25, and 30 days after fruit set( DAFS). The results showed that the maturity stage of butternut pumpkin affects the moisture content and bioactive components such as phenols, flavonoids, and carotenoids of flour produced. Furthermore, the highest antioxidant activity was found in pumpkin flour with a maturity stage of 25 DAFS with IC50 values of 85.31 µg/mL (DPPH) and 64.39 g/mL (ABTS). Therefore, butternut pumpkins with a maturity stage of 25 DAFS can be processed into flour with antioxidant properties.


Downloads

Download data is not yet available.

References

Abbas, H. M. K., Huang, H. X., Huang, W. J., Xue, S. D., Yan, S. J., Wu, T. Q., Li, J. X., & Zhong, Y. J. (2020). Evaluation of metabolites and antioxidant activity in pumpkin species. Natural Product Communications, 15(4). https://doi.org/10.1177/1934578X20920983

Almeida, M. M. B., de Sousa, P. H. M., Arriaga, Â. M. C., do Prado, G. M., Magalhães, C. E. de C., Maia, G. A., & de Lemos, T. L. G. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44(7), 2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051

Amarowicz, R., & Pegg, R. B. (2019). Natural antioxidants of plant origin. In Advances in Food and Nutrition Research, 90, 1–81. https://doi.org/10.1016/bs.afnr.2019.02.011

AOAC No.925.10. (2005). Official methods of analysis of AOAC International. AOAC International.

Arena, M. E., Postemsky, P., & Curvetto, N. R. (2012). Accumulation patterns of phenolic compounds during fruit growth and ripening of Berberis buxifolia, a native Patagonian species. New Zealand Journal of Botany, 50(1), 15–28. https://doi.org/10.1080/0028825X.2011.638644

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT, 28, 25–30. https://doi.org/https://doi.org/10.1016/S0023-6438(95)80008-5

Goulao, L. F., & Oliveira, C. M. (2008). Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends in Food Science and Technology, 19(1), 4–25. https://doi.org/10.1016/j.tifs.2007.07.002

Jamiołkowska, A. (2020). Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. In Agronomy, 10(2), 173. MDPI. https://doi.org/10.3390/agronomy10020173

Jaramillo, A. M., Londoño, L. F., Orozco, J. C., Patiño, G., Belalcazar, J., Davrieux, F., & Talsma, E. F. (2018). A comparison study of five different methods to measure carotenoids in biofortified yellow cassava (Manihot esculenta). PLoS ONE, 13(12). https://doi.org/10.1371/journal.pone.0209702

Kulczynski, B., & Gramza-Michałowska, A. (2019). The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars. Molecules, 24(18). https://doi.org/10.3390/molecules24183212

Lapčíková, B., Lapčík, L., Valenta, T., Majar, P., & Ondroušková, K. (2021). Effect of the rice flour particle size and variety type on water holding capacity and water diffusivity in aqueous dispersions. LWT, 142, 111082. https://doi.org/10.1016/j.lwt.2021.111082

Muenmanee, N., Joomwong, Natwichai, & Boonyakiat, D. (2016). Changes in physico-chemical properties during fruit development of Japanese pumpkin (Cucurbita maxima). International Food Research Journal, 23(5), 2063–2070.

Nakhon, P. P. na S., Jangchud, K., Jangchud, A., & Prinyawiwatkul, W. (2017). Comparisons of physicochemical properties and antioxidant activities among pumpkin (Cucurbita moschata L.) flour and isolated starches from fresh pumpkin or flour. International Journal of Food Science and Technology, 52(11), 1–9. https://doi.org/10.1111/ijfs.13528

Norshazila, S., Othman, R., Zuhanis, Y., & Hashim, Y. (2012). Scheme of obtaining β-carotene standard from pumpkin (Cucurbita moschata) flesh. International Food Research Journal, 19(2), 531–535. https://www.researchgate.net/publication/264045178

Nurdjanah, S., Yuliana, N., Astuti, S., Hernanto, J., & Zukryandry. (2017). Physico chemical, antioxidant and pasting properties of pre-heated purple sweet potato flour. Journal of Food and Nutrition Sciences, 5(4), 140–146. https://doi.org/10.11648/j.jfns.20170504.11

Oloyede, F. M., Agbaje, G. O., Obuotor, E. M., & Obisesan, I. O. (2012). Nutritional and antioxidant profiles of pumpkin (Cucurbita pepo Linn.) immature and mature fruits as influenced by NPK fertilizer. Food Chemistry, 135, 460–463. https://doi.org/10.1016/j.foodchem.2012.04.124

Ouyang, M., Huang, Y., Wang, Y., Luo, F., & Liao, L. (2022). Stability of carotenoids and carotenoid esters in pumpkin (Cucurbita maxima) slices during hot air drying. Food Chemistry, 367. https://doi.org/10.1016/j.foodchem.2021.130710

Pereira, A. M., Krumreich, F. D., Ramos, A. H., Krolow, A. C. R., Santos, R. B., & Gularte, M. A. (2020). Physicochemical characterization, carotenoid content and protein digestibility of pumpkin access flours for food application. Food Science and Technology (Brazil), 40(2), 691–698. https://doi.org/10.1590/fst.38819

Piepiórka-Stepuk, J., Wojtasik-Kalinowska, I., Sterczyńska, M., Mierzejewska, S., Stachnik, M., & Jakubowski, M. (2023). The effect of heat treatment on bioactive compounds and color of selected pumpkin cultivars. LWT, 175, 114469. https://doi.org/10.1016/j.lwt.2023.114469

Piłat, B., & Zadernowski, R. (2017). Bioactive substances – positive and negative effects of their addition to foodstuffs. Food Industry, 71(12), 19–22. https://doi.org/https://doi.org/10.15199/65.2017.12.3

Pratiwi, A., Nurdjanah, S., & Utomo, T. (2020). Chemicals, physicochemical, and physical properties of cassava flour as affected by temperature and heating time during the blanching process. Jurnal Penelitian Pasca Pertanian, 17(2), 117–125.

Provesi, J. G., Dias, C. O., & Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128, 195–202. https://doi.org/10.1016/j.foodchem.2011.03.027

Schumann, C., Sitzenstock, S., Erz, L., & Knoche, M. (2020). Decreased deposition and increased swelling of cell walls contribute to increased cracking susceptibility of developing sweet cherry fruit. Planta, 252(6). https://doi.org/10.1007/s00425-020-03494-z

Sharma, S., & Rao, R. (2013). Nutritional quality characteristics of pumpkin fruit as revealed by its biochemical analysis. International Food Research Journal, 20(5), 2309–2316.

Singh, J., McCarthy, O. J., Singh, H., Moughan, P. J., & Kaur, L. (2007). Morphological, thermal, and rheological characterization of starch isolated from New Zealand kamo kamo (Cucurbita pepo) fruit - A novel source. Carbohydrate Polymers, 67, 233–244. https://doi.org/10.1016/j.carbpol.2006.05.021

Stapleton, S. C., Wien, H. C., & Morse, R. A. (2000). Flowering and fruit set of pumpkin cultivars under field conditions. HortScience, 35(6), 1074–1077. https://doi.org/10.21273/hortsci.35.6.1074.

Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14, 2167–2180. https://doi.org/10.3390/molecules14062167

Xiang, Y., Haixia, W., Lijuan, M., & Yanduo, T. (2018). Isolation, purification, and identification of antioxidants from Lepidium latifolium extracts. Medicinal Chemistry Research, 27(1), 37–45. https://doi.org/10.1007/s00044-017-2042-3.

Downloads

Published

2023-09-03

How to Cite

Nurdjanah, S., Nurbaiti, N., Astuti, S., Utomo, T. P., & Dewi, S. (2023). Evaluation on the effect of butternut pumpkin (Cucurbita moschata) maturity stage on the bioactive components and antioxidant activity of pumpkin flour. Jurnal Teknologi &Amp; Industri Hasil Pertanian, 28(2), 174–183. https://doi.org/10.23960/jtihp.v28i2.174-183