Optimization of Spent Coffee Ground Extraction for Kombucha Production: Effect of Temperature on Fermentation Dynamics and Antioxidant Activity

Authors

  • Sri Hartini Universitas Kristen Satya Wacana
  • Margareta Novian Cahyanti Universitas Kristen Satya Wacana
  • Alifia Dewi Safira Universitas Kristen Satya Wacana

DOI:

https://doi.org/10.23960/jtepl.v14i5.1611-1618
Abstract View: 25

Keywords:

Coffee waste valorization, Functional beverage, SCOBY, Total phenolic content

Abstract

The valorization of agro-industrial waste into functional beverages offers a sustainable approach to food processing. This study aimed to optimize the extraction temperature of spent coffee grounds for kombucha production and to evaluate its impact on fermentation dynamics and antioxidant activity. Spent coffee grounds were extracted at three different temperatures (30°C, 60°C, and 90°C) and fermented for 14 days using a symbiotic culture of bacteria and yeast (SCOBY) and kombucha broth. Key parameters monitored included pH, total soluble solids (°Brix), reducing sugars, total phenolic content, and antioxidant activity. Each treatment was repeated three times, and the data was processed using simple statistical analysis. Results showed that all samples experienced a decrease in pH (from 3.95 to 3.3) and dissolved solids (by 3.23°Brix), alongside an increase in reducing sugars (from 0.02–0.05 mg/mL to 0.43–0.56 mg/mL), indicating active microbial fermentation. The 90°C extract exhibited the highest total phenolic content (823.82 μg GAE/mL) on day 2 and antioxidant activity (82.11%) on day 14, outperforming the 60°C and 30°C extracts. These results underscore the role of thermal extraction in enhancing the functional qualities of coffee ground kombucha and highlight its potential as a promising candidate for upcycled functional beverage development.

Downloads

Download data is not yet available.

Author Biographies

Sri Hartini, Universitas Kristen Satya Wacana

Department of Chemistry, Science and Math Faculty

Margareta Novian Cahyanti, Universitas Kristen Satya Wacana

Department of Chemistry, Science and Math Faculty

Alifia Dewi Safira, Universitas Kristen Satya Wacana

Department of Chemistry, Science and Math Faculty

References

Andrade, C., Perestrelo, R., & Câmara, J.S. (2022). Bioactive compounds and antioxidant activity from spent coffee grounds as a powerful approach for its valorization. Molecules, 27(21), 7504. https://doi.org/10.3390/molecules27217504

Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(4), 96. https://doi.org/10.3390/plants8040096

Błaszak, B., Dorawa, P., Sudoł, P., Fabiszak, K., Świadek, M., Witucka, K., Zimnicka, J., Brudnicki, M., Maciejewski, B., Bovkun, D., Cierach, M., Gozdecka, G., & Szulc, J. (2024). Kombucha fermentation in coffee: Application of constant air flow reactor. Processes, 12(10), 2159. https://doi.org/10.3390/pr12102159

Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H.A., & Oomah, B.D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45(1), 24–36. https://doi.org/10.1016/j.tifs.2015.04.012

Cardoso, R.R., Neto, R.O., dos Santos D’Almeida, C.T., do Nascimento, T.P., Pressete, C.G., Azevedo, L., Martino, H.S.D., Cameron, L.C., Ferreira, M.S.L., & Barros, F.A.R.de. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782. https://doi.org/10.1016/j.foodres.2019.108782

Coelho, R.M.D., Almeida, A., do Amaral, R.Q.G., da Mota, R.N., & de Sousa, P.H.M. (2020). Kombucha: Review. International Journal of Gastronomy and Food Science, 100272. https://doi.org/10.1016/j.ijgfs.2020.100272

Dongoran, M., Nasution, W.N., & Sitorus, I.A. (2023). Identify the ingredients in kombucha, which is safe for magh and GERD sufferers. Bioedunis Journal, 2(2), 83–89. https://doi.org/10.24952/bioedunis.v2i2.10266

Gulsunoglu-Konuskan, Z., & Kilic-Akyilmaz, M. (2022). Microbial bioconversion of phenolic compounds in agro-industrial wastes: A review of mechanisms and effective factors. Journal of Agricultural and Food Chemistry, 70(23), 6901–6910. https://doi.org/10.1021/acs.jafc.1c06888

Hapsari, M., Rizkiprilisa, W., & Sari, A. (2021). Pengaruh lama fermentasi terhadap aktivitas antioksidan minuman fermentasi kombucha lengkuas merah (Alpinia purpurata). Agromix, 12(2), 84–87. https://doi.org/10.35891/agx.v12i2.2647

Haq, I.U., Qaisar, K., Nawaz, A., Akram, F., Mukhtar, H., Zohu, X., Xu, Y., Mumtaz, M.W., Rashid, U., Ghani, W.A.W.A.K., & Choong, T.S.Y. (2021). Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts, 11(3), 1–26. https://doi.org/10.3390/catal11030309

Hidayat, U., & Yunita, N.P. (2022). Penentuan kadar gula reduksi dan kadar protein secara spektrofotometri, serta uji organoleptik produk Nata De Leri hasil optimalisasi asam asetat glasial. Jurnal Penelitian Inovatif, 2(2), 355–362. https://doi.org/10.54082/jupin.76

International Coffee Organization. (2023). Coffee Report and Outlook.

Ivanišová, E., Meňhartová, K., Terentjeva, M., Harangozo, Ľ., Kántor, A., & Kačániová, M. (2020). The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. Journal of Food Science and Technology, 57(5), 1840–1846. https://doi.org/10.1007/s13197-019-04217-3

Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9(5), 447. https://doi.org/10.3390/antiox9050447

Kaewkod, T., Bovonsombut, S., & Tragoolpua, Y. (2019). Efficacy of kombucha obtained from green, oolongand black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms, 7(12), 700. https://doi.org/10.3390/microorganisms7120700

Karyantina, M., Surulloh, A., & Suhartatik, N. (2024). Antioxidant activity kombucha coffee (Coffee spp) with variation concentration and type. BIO Web of Conferences, 99, 02009. https://doi.org/10.1051/bioconf/20249902009

Kim, H., Jeon, J., Lee, J., Song, C., Gu, B., Kim, N.M., Yang, T. hui, Oh, S., Park, S., Pal, K., Kim, G.J., & Kim, D. (2025). Utilizing kombucha culture for coffee fermentation and biochemical characteristic analysis. Current Research in Food Science, 10(February), 100996. https://doi.org/10.1016/j.crfs.2025.100996

Leal, J.M., Suárez, L.V., Jayabalan, R., Oros, J.H., & Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CYTA - Journal of Food, 16(1), 390–399. https://doi.org/10.1080/19476337.2017.1410499

Liang, Z., Huang, Y., Zhang, P., & Fang, Z. (2023). Impact of fermentation on the structure and antioxidant activity of selective phenolic compounds. Food Bioscience, 56(July), 103147. https://doi.org/10.1016/j.fbio.2023.103147

Mialni, E., Hashemi, N., Golimovehhed, Q. A., & Hashemi, M. (2020). A feasibility study of fiber solid foam based on food by products (Spent coffee – wheat bran). Journal of food science and technology (Iran), 17(103), 67–81. https://doi.org/10.52547/fsct.17.103.67

Mitraka, G.C., Kontogiannopoulos, K.N., Batsioula, M., Banias, G.F., & Assimopoulou, A.N. (2021). Spent coffee grounds’ valorization towards the recovery of caffeine and chlorogenic acid: A response surface methodology approach. Sustainability (Switzerland), 13(16), 8818. https://doi.org/10.3390/su13168818

Narko, T., Wibowo, M.S., Damayanti, S., & Wibowo, I. (2020). Effect of kombucha culture on caffeine and chlorogenic acid content in fermentation of robusta green coffee beans (Coffea canephora L.). Rasayan Journal of Chemistry, 13(2), 1181–1186. https://doi.org/10.31788/RJC.2020.1325675

Nizioł-Łukaszewska, Z., Ziemlewska, A., Bujak, T., Zagórska-Dziok, M., Zarębska, M., Hordyjewicz-Baran, Z., & Wasilewski, T. (2020). Effect of fermentation time on antioxidant and anti-ageing properties of green coffee kombucha ferments. Molecules, 25(22), 5394. https://doi.org/10.3390/molecules25225394

Osiripun, V., & Apisittiwong, T. (2021). Polyphenol and antioxidant activities of kombucha fermented from different teas and fruit juices. Journal of Current Science and Technology, 11(2), 188–196. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/390

Pezhman, I., Karazhyan, R., & Gord-Noshahri, N. (2022). Evaluation of the effect of Arabica coffee pulp waste as a sugar substitute on the antioxidant, textural and sensory properties of beneficial chocolate. Journal of Food Science and Technology (Iran), 19(126), 217–225. https://doi.org/10.22034/FSCT.19.126.217

Priena, G.H., Handajani, M., & Nisa, L.M. (2023). Utilization of spent coffee grounds as adsorbent: A review. ITB Graduate School Conference, 3(1), 727–739. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/188

Saito, M.S., dos-Santos, W.A., & Mamede, M.E.de-O. (2024). Coffee-flavoured kombucha: Development, physicochemical characterisation, and sensory analysis. Fermentation, 10(7), 334. https://doi.org/10.3390/fermentation10070334

Santos, S.C., Fortes, G.A.C., Camargo, L.T.F.M., Camargo, A.J., & Ferri, P.H. (2021). Antioxidant effects of polyphenolic compounds and structure-activity relationship predicted by multivariate regression tree. LWT, 137, 110366. https://doi.org/10.1016/j.lwt.2020.110366

Srihari, T., Karthikesan, K., Ashokkumar, N., & Satyanarayana, U. (2013). Antihyperglycaemic efficacy of kombucha in streptozotocin-induced rats. Journal of Functional Foods, 5(4), 1794–1802. https://doi.org/10.1016/j.jff.2013.08.008

Sulistiawaty, L., & Solihat, I. (2022). Kombucha: Fisikokimia dan studi kritis tingkat kehalalan. Warta AKAB, 46, 21–27. https://doi.org/10.55075/wa.v46i1.80

Villarreal-Soto, S.A., Beaufort, S., Bouajila, J., Souchard, J.-P., Renard, T., Rollan, S., & Taillandier, P. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry, 83, 44–54. https://doi.org/10.1016/j.procbio.2019.05.004

Wang, B., Rutherfurd-Markwick, K., Zhang, X.X., & Mutukumira, A.N. (2022a). Kombucha: Production and microbiological research. Foods, 11(21), 1–18. https://doi.org/10.3390/foods11213456

Wang, X., Wang, D., Wang, H., Jiao, S., Wu, J., Hou, Y., Sun, J., & Yuan, J. (2022b). Chemical profile and antioxidant capacity of kombucha tea by the pure cultured kombucha. LWT, 168(August), 113931. https://doi.org/10.1016/j.lwt.2022.113931

Yuliana, N., Nurainy, F., Sari, G.W., Sumardi, & Widiastuti, E.L. (2023). Total microbe, physicochemical property, and antioxidative activity during fermentation of cocoa honey into kombucha functional drink. Applied Food Research, 3(1), 100297. https://doi.org/10.1016/j.afres.2023.100297

Zhao, Z.J., Sui, Y.C., Wu, H.W., Zhou, C.B., Hu, X.C., & Zhang, J. (2018). Flavour chemical dynamics during fermentation of kombucha tea. Emirates Journal of Food and Agriculture, 30(9), 732–741. https://doi.org/10.9755/ejfa.2018.v30.i9.1794

Zubaidah, E., Dewantari, F.J., Novitasari, F.R., Srianta, I., & Blanc, P.J. (2018). Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium. Biocatalysis and Agricultural Biotechnology, 13, 198–203. https://doi.org/10.1016/j.bcab.2017.12.012

Zubaidah, E., Valencia, V., Rifa’i, M., Srianta, I., & Tewfik, I. (2020). Investigating chemical changes during snake fruit and black tea kombucha fermentation and the associated immunomodulatory activity in Salmonella Typhi-Infected Mice. Potravinarstvo Slovak Journal of Food Sciences, 14, 995–1000. https://doi.org/10.5219/1416

Zuluaga, R., Hoyos, C.G., Velásquez-Cock, J., Vélez-Acosta, L., Palacio Valencia, I., Rodríguez Torres, J.A., & Gañán Rojo, P. (2024). Exploring spent coffee grounds: Comprehensive morphological analysis and chemical characterization for potential uses. Molecules, 29(24), 5886. https://doi.org/10.3390/molecules29245866

Downloads

Published

2025-09-24

How to Cite

Hartini, S., Cahyanti, M. N., & Safira, A. D. (2025). Optimization of Spent Coffee Ground Extraction for Kombucha Production: Effect of Temperature on Fermentation Dynamics and Antioxidant Activity. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(5), 1611–1618. https://doi.org/10.23960/jtepl.v14i5.1611-1618