Optimization of Spent Coffee Ground Extraction for Kombucha Production: Effect of Temperature on Fermentation Dynamics and Antioxidant Activity
DOI:
https://doi.org/10.23960/jtepl.v14i5.1611-1618
Keywords:
Coffee waste valorization, Functional beverage, SCOBY, Total phenolic contentAbstract
The valorization of agro-industrial waste into functional beverages offers a sustainable approach to food processing. This study aimed to optimize the extraction temperature of spent coffee grounds for kombucha production and to evaluate its impact on fermentation dynamics and antioxidant activity. Spent coffee grounds were extracted at three different temperatures (30°C, 60°C, and 90°C) and fermented for 14 days using a symbiotic culture of bacteria and yeast (SCOBY) and kombucha broth. Key parameters monitored included pH, total soluble solids (°Brix), reducing sugars, total phenolic content, and antioxidant activity. Each treatment was repeated three times, and the data was processed using simple statistical analysis. Results showed that all samples experienced a decrease in pH (from 3.95 to 3.3) and dissolved solids (by 3.23°Brix), alongside an increase in reducing sugars (from 0.02–0.05 mg/mL to 0.43–0.56 mg/mL), indicating active microbial fermentation. The 90°C extract exhibited the highest total phenolic content (823.82 μg GAE/mL) on day 2 and antioxidant activity (82.11%) on day 14, outperforming the 60°C and 30°C extracts. These results underscore the role of thermal extraction in enhancing the functional qualities of coffee ground kombucha and highlight its potential as a promising candidate for upcycled functional beverage development.
Downloads
References
Andrade, C., Perestrelo, R., & Câmara, J.S. (2022). Bioactive compounds and antioxidant activity from spent coffee grounds as a powerful approach for its valorization. Molecules, 27(21), 7504. https://doi.org/10.3390/molecules27217504
Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(4), 96. https://doi.org/10.3390/plants8040096
Błaszak, B., Dorawa, P., Sudoł, P., Fabiszak, K., Świadek, M., Witucka, K., Zimnicka, J., Brudnicki, M., Maciejewski, B., Bovkun, D., Cierach, M., Gozdecka, G., & Szulc, J. (2024). Kombucha fermentation in coffee: Application of constant air flow reactor. Processes, 12(10), 2159. https://doi.org/10.3390/pr12102159
Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H.A., & Oomah, B.D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45(1), 24–36. https://doi.org/10.1016/j.tifs.2015.04.012
Cardoso, R.R., Neto, R.O., dos Santos D’Almeida, C.T., do Nascimento, T.P., Pressete, C.G., Azevedo, L., Martino, H.S.D., Cameron, L.C., Ferreira, M.S.L., & Barros, F.A.R.de. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782. https://doi.org/10.1016/j.foodres.2019.108782
Coelho, R.M.D., Almeida, A., do Amaral, R.Q.G., da Mota, R.N., & de Sousa, P.H.M. (2020). Kombucha: Review. International Journal of Gastronomy and Food Science, 100272. https://doi.org/10.1016/j.ijgfs.2020.100272
Dongoran, M., Nasution, W.N., & Sitorus, I.A. (2023). Identify the ingredients in kombucha, which is safe for magh and GERD sufferers. Bioedunis Journal, 2(2), 83–89. https://doi.org/10.24952/bioedunis.v2i2.10266
Gulsunoglu-Konuskan, Z., & Kilic-Akyilmaz, M. (2022). Microbial bioconversion of phenolic compounds in agro-industrial wastes: A review of mechanisms and effective factors. Journal of Agricultural and Food Chemistry, 70(23), 6901–6910. https://doi.org/10.1021/acs.jafc.1c06888
Hapsari, M., Rizkiprilisa, W., & Sari, A. (2021). Pengaruh lama fermentasi terhadap aktivitas antioksidan minuman fermentasi kombucha lengkuas merah (Alpinia purpurata). Agromix, 12(2), 84–87. https://doi.org/10.35891/agx.v12i2.2647
Haq, I.U., Qaisar, K., Nawaz, A., Akram, F., Mukhtar, H., Zohu, X., Xu, Y., Mumtaz, M.W., Rashid, U., Ghani, W.A.W.A.K., & Choong, T.S.Y. (2021). Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts, 11(3), 1–26. https://doi.org/10.3390/catal11030309
Hidayat, U., & Yunita, N.P. (2022). Penentuan kadar gula reduksi dan kadar protein secara spektrofotometri, serta uji organoleptik produk Nata De Leri hasil optimalisasi asam asetat glasial. Jurnal Penelitian Inovatif, 2(2), 355–362. https://doi.org/10.54082/jupin.76
International Coffee Organization. (2023). Coffee Report and Outlook.
Ivanišová, E., Meňhartová, K., Terentjeva, M., Harangozo, Ľ., Kántor, A., & Kačániová, M. (2020). The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. Journal of Food Science and Technology, 57(5), 1840–1846. https://doi.org/10.1007/s13197-019-04217-3
Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9(5), 447. https://doi.org/10.3390/antiox9050447
Kaewkod, T., Bovonsombut, S., & Tragoolpua, Y. (2019). Efficacy of kombucha obtained from green, oolongand black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms, 7(12), 700. https://doi.org/10.3390/microorganisms7120700
Karyantina, M., Surulloh, A., & Suhartatik, N. (2024). Antioxidant activity kombucha coffee (Coffee spp) with variation concentration and type. BIO Web of Conferences, 99, 02009. https://doi.org/10.1051/bioconf/20249902009
Kim, H., Jeon, J., Lee, J., Song, C., Gu, B., Kim, N.M., Yang, T. hui, Oh, S., Park, S., Pal, K., Kim, G.J., & Kim, D. (2025). Utilizing kombucha culture for coffee fermentation and biochemical characteristic analysis. Current Research in Food Science, 10(February), 100996. https://doi.org/10.1016/j.crfs.2025.100996
Leal, J.M., Suárez, L.V., Jayabalan, R., Oros, J.H., & Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CYTA - Journal of Food, 16(1), 390–399. https://doi.org/10.1080/19476337.2017.1410499
Liang, Z., Huang, Y., Zhang, P., & Fang, Z. (2023). Impact of fermentation on the structure and antioxidant activity of selective phenolic compounds. Food Bioscience, 56(July), 103147. https://doi.org/10.1016/j.fbio.2023.103147
Mialni, E., Hashemi, N., Golimovehhed, Q. A., & Hashemi, M. (2020). A feasibility study of fiber solid foam based on food by products (Spent coffee – wheat bran). Journal of food science and technology (Iran), 17(103), 67–81. https://doi.org/10.52547/fsct.17.103.67
Mitraka, G.C., Kontogiannopoulos, K.N., Batsioula, M., Banias, G.F., & Assimopoulou, A.N. (2021). Spent coffee grounds’ valorization towards the recovery of caffeine and chlorogenic acid: A response surface methodology approach. Sustainability (Switzerland), 13(16), 8818. https://doi.org/10.3390/su13168818
Narko, T., Wibowo, M.S., Damayanti, S., & Wibowo, I. (2020). Effect of kombucha culture on caffeine and chlorogenic acid content in fermentation of robusta green coffee beans (Coffea canephora L.). Rasayan Journal of Chemistry, 13(2), 1181–1186. https://doi.org/10.31788/RJC.2020.1325675
Nizioł-Łukaszewska, Z., Ziemlewska, A., Bujak, T., Zagórska-Dziok, M., Zarębska, M., Hordyjewicz-Baran, Z., & Wasilewski, T. (2020). Effect of fermentation time on antioxidant and anti-ageing properties of green coffee kombucha ferments. Molecules, 25(22), 5394. https://doi.org/10.3390/molecules25225394
Osiripun, V., & Apisittiwong, T. (2021). Polyphenol and antioxidant activities of kombucha fermented from different teas and fruit juices. Journal of Current Science and Technology, 11(2), 188–196. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/390
Pezhman, I., Karazhyan, R., & Gord-Noshahri, N. (2022). Evaluation of the effect of Arabica coffee pulp waste as a sugar substitute on the antioxidant, textural and sensory properties of beneficial chocolate. Journal of Food Science and Technology (Iran), 19(126), 217–225. https://doi.org/10.22034/FSCT.19.126.217
Priena, G.H., Handajani, M., & Nisa, L.M. (2023). Utilization of spent coffee grounds as adsorbent: A review. ITB Graduate School Conference, 3(1), 727–739. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/188
Saito, M.S., dos-Santos, W.A., & Mamede, M.E.de-O. (2024). Coffee-flavoured kombucha: Development, physicochemical characterisation, and sensory analysis. Fermentation, 10(7), 334. https://doi.org/10.3390/fermentation10070334
Santos, S.C., Fortes, G.A.C., Camargo, L.T.F.M., Camargo, A.J., & Ferri, P.H. (2021). Antioxidant effects of polyphenolic compounds and structure-activity relationship predicted by multivariate regression tree. LWT, 137, 110366. https://doi.org/10.1016/j.lwt.2020.110366
Srihari, T., Karthikesan, K., Ashokkumar, N., & Satyanarayana, U. (2013). Antihyperglycaemic efficacy of kombucha in streptozotocin-induced rats. Journal of Functional Foods, 5(4), 1794–1802. https://doi.org/10.1016/j.jff.2013.08.008
Sulistiawaty, L., & Solihat, I. (2022). Kombucha: Fisikokimia dan studi kritis tingkat kehalalan. Warta AKAB, 46, 21–27. https://doi.org/10.55075/wa.v46i1.80
Villarreal-Soto, S.A., Beaufort, S., Bouajila, J., Souchard, J.-P., Renard, T., Rollan, S., & Taillandier, P. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry, 83, 44–54. https://doi.org/10.1016/j.procbio.2019.05.004
Wang, B., Rutherfurd-Markwick, K., Zhang, X.X., & Mutukumira, A.N. (2022a). Kombucha: Production and microbiological research. Foods, 11(21), 1–18. https://doi.org/10.3390/foods11213456
Wang, X., Wang, D., Wang, H., Jiao, S., Wu, J., Hou, Y., Sun, J., & Yuan, J. (2022b). Chemical profile and antioxidant capacity of kombucha tea by the pure cultured kombucha. LWT, 168(August), 113931. https://doi.org/10.1016/j.lwt.2022.113931
Yuliana, N., Nurainy, F., Sari, G.W., Sumardi, & Widiastuti, E.L. (2023). Total microbe, physicochemical property, and antioxidative activity during fermentation of cocoa honey into kombucha functional drink. Applied Food Research, 3(1), 100297. https://doi.org/10.1016/j.afres.2023.100297
Zhao, Z.J., Sui, Y.C., Wu, H.W., Zhou, C.B., Hu, X.C., & Zhang, J. (2018). Flavour chemical dynamics during fermentation of kombucha tea. Emirates Journal of Food and Agriculture, 30(9), 732–741. https://doi.org/10.9755/ejfa.2018.v30.i9.1794
Zubaidah, E., Dewantari, F.J., Novitasari, F.R., Srianta, I., & Blanc, P.J. (2018). Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium. Biocatalysis and Agricultural Biotechnology, 13, 198–203. https://doi.org/10.1016/j.bcab.2017.12.012
Zubaidah, E., Valencia, V., Rifa’i, M., Srianta, I., & Tewfik, I. (2020). Investigating chemical changes during snake fruit and black tea kombucha fermentation and the associated immunomodulatory activity in Salmonella Typhi-Infected Mice. Potravinarstvo Slovak Journal of Food Sciences, 14, 995–1000. https://doi.org/10.5219/1416
Zuluaga, R., Hoyos, C.G., Velásquez-Cock, J., Vélez-Acosta, L., Palacio Valencia, I., Rodríguez Torres, J.A., & Gañán Rojo, P. (2024). Exploring spent coffee grounds: Comprehensive morphological analysis and chemical characterization for potential uses. Molecules, 29(24), 5886. https://doi.org/10.3390/molecules29245866
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sri Hartini, Margareta Novian Cahyanti, Alifia Dewi Safira

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.