Effect of Storage Duration and Seed Type on the Viability and Growth of Agave (Agave sisalana L. Perrine) from In Vitro Culture
DOI:
https://doi.org/10.23960/jtepl.v14i5.1726-1737
Keywords:
Agave, Duration, In vitro culture, Seeds, StorageAbstract
Agave seeds have a relatively short lifespan, thus require appropriate storage methods to maintain their viability and germination capacity. This study aimed to identify the optimal combination of storage duration and seedling treatments to preserve seedling quality and growth performance of agave. The experiment was conducted in a factorial randomized complete design with three replications. Each experimental unit consisted of 10 plants. The first factor was storage duration (0, 21, and 35 days). The second factor was seedling treatments involving seeds with: (1) complete leaves and roots, (2) complete leaves and half roots, (3) top leaves and half roots, (4) complete leaves without roots, and (5) top leaves and no roots. The seedlings were stored in a greenhouse with average temperature 25.67 °C and relative humidity 82.92%. The observed parameters included weight loss, germination percentage, seedling height, number of leaves, leaf length and width, number and length of roots, and fresh weight after 45 days of planting. The results showed that storage duration and root or leaf trimming significantly affected seed viability and seedling growth. Storage for 21 days combined with full leaves and half roots produced the highest germination percentage, growth performance, and fresh weight. Agave seeds can be stored for up to 35 days while maintaining high viability, and different seed types stored for 35 days still exhibited 100% germination.
Downloads
References
Aguilar, E.E.Q, Martínez, A.C.M., Gabriel, Enriquez, R. Lobit, P., & Pérez L.L. (2016). Effectiveness of native arbuscular mycorrhizal consortia on the growth of Agave inaequidens. Journal of Soil Science and Plant Nutrition (16):4: 1052-1064.
Alonso, S. Gautam, K. Iglesias-Moya, J. Martínez, C. Jamilena, M. (2024). Crosstalk between Ethylene, Jasmonate and ABA in Response to Salt Stress during Germination and Early Plant Growth in Cucurbita pepo. Int. J. Mol. Sci. (25), 8728. https://doi.org/10.3390/ijms25168728
Alwani, M.F., Meiriani., & Mawarni, L. (2019). Pertumbuhan bibit bud set tebu (Saccharum officinarum L.) pada berbagai umur bahan tanam dan lama penyimpanan [Sugarcane bud set seed growth at various planting material ages and storage periods]. Jurnal Agroteknologi, 7(1), 176–180.
Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress: A review. African Journal of Agricultural Research, 6(9), 2026–2032. https://doi.org/10.5897/AJAR2016.11422
Annisa, F., Taryono, & Yudono, P. (2015). Pengaruh lama penyimpanan bagal terhadap kualitas dan perkecambahan mata tunas tunggal tebu (Saccharum officinarum L.). Vegetalika, 4(4), 48–56.
Ariyani, D., Puspitasari, A.R., & Permatasari, D. (2023). Respon perkecambahan benih dan pertumbuhan tanaman tebu pasca penyimpanan. Indonesian Sugar Research Journal, 3(2), 96–104. https://doi.org/10.54256/isrj.v3i2.116
Bautista-Montes, A., Alarcón, J., Rodríguez-Garay, B., & Gutiérrez-Mora, A. (2022). Advances in agave micropropagation and conservation: Current perspectives and future challenges. Scientia Horticulturae, 292, 110628.
Burdett, A.N. (1990). Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canadian Journal of Forest Research, 20(4), 415–427. https://doi.org/10.1139/x90-059
Chauhan, R., Singh, V., Quraishi, A. (2019). In Vitro Conservation Through Slow-Growth Storage. In: Faisal, M., Alatar, A. (eds) Synthetic Seeds . Springer, Cham. https://doi.org/10.1007/978-3-030-24631-0_19
Cosgrove, D.J. (2024). Plant cell wall loosening by expansins. Annual Review of Cell and Developmental Biology, 40(1), 329–352. https://doi.org/10.1146/annurev-cellbio-111822-115334
Cruz-Cruz, C.A., González-Arnao, M.T., & Engelmann, F. (2013). Biotechnology and conservation of plant biodiversity. Resources, 2(2), 73–95. https://doi.org/10.3390/resources2020073
del Rosario, M.H.M, Abel L.B.J., Karen, S.F.M., Adriana, C.A. & Jabín, B.B.J. (2025). Arbuscular mycorrhizal fungi improve the growth, nutrient uptake and survival of micropropagated agave (Agave marmorata Roezl) plantlets during acclimatization, Journal of Arid Environments (228), 105330, https://doi.org/10.1016/j.jaridenv.2025.105330.
Delgado-Aceves, L, Corona, S, CastañedaNava, J.J., Rodr´ıguez-Dom´ınguez, J.M, & Gutie´ rrez-Mora, A. (2025) Indirect somatic embryogenesis of Agave maximiliana Baker. Front. Plant Sci. 16:1648362. doi: 10.3389/fpls.2025.1648362
Feng, Z., Kong, D., Kong, Y., Zhang, B., & Yang, X. (2022). Coordination of root growth with root morphology, physiology and defense functions in response to root pruning in Platycladus orientalis. Journal of Advanced Research, 36, 187–199. https://doi.org/10.1016/j.jare.2021.07.005
Fernie, A.R., Bachem, C.W.B., Helariutta, Y., Neuhaus, H.E., Prat, S., Ruan, Y.-L., Stitt, M., Sweetlove, L.J., Tegeder, M., Wahl, V., Sonnewald, S., & Sonnewald, U. (2020). Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nature Plants, 6(1), 55–66. https://doi.org/10.1038/s41477-020-0590-x
Goyette, B., Piché, M., Brownbridge, M., & McGrath, D. (2014). Impact of handling practices on the quality of bare-root plants: A review. Journal of Environmental Horticulture, 32(2), 103-112. https://doi.org/10.24266/0738-2898.32.2.103
Hairani, P.M., Suhartanto, M.R., & Widajati, E. (2020). Penyimpanan mahkota nanas dan zat pengatur tumbuh pada pertumbuhan setek basal daun asal mahkota. Jurnal Ilmu Pertanian Indonesia, 25(2), 278–284. https://doi.org/10.18343/jipi.25.2.278
Hernández-Cuevas, L.V., Salinas-Escobar, L.A., Segura-Castruita, M.Á., Palmeros-Suárez, P.A., & Gómez-Leyva, J.F. (2023). Physiological Responses of Agave maximiliana to Inoculation with Autochthonous and Allochthonous Arbuscular Mycorrhizal Fungi. Plants (Basel, Switzerland), 12(3), 535. https://doi.org/10.3390/plants12030535
Hernández-Cuevas, L.V., Salinas-Escobar, L.A., Segura-Castruita, M.Á., Palmeros-Suárez, P.A., & Gómez-Leyva, J.F. (2023). Physiological responses of Agave maximiliana to inoculation with autochthonous and allochthonous arbuscular mycorrhizal fungi. Plants, 12(3), 535. https://doi.org/10.3390/plants12030535
Hua, D., Wang, C., He, J., Liao, H., Duan, Y., Zhu, Z., Guo, Y., Chen, Z., & Gong, Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. The Plant cell, 24(6), 2546–2561. https://doi.org/10.1105/tpc.112.100107
Jimenez-Torres, J.A., Monroy-Gonzalez, Z., & Juarez-Muñoz, J. (2022). Evaluation of seed morphology, seedling genetic variation, and components for seed storage of Agave landraces of commercial interest. Experimental Results, 3, e25. https://doi.org/10.1017/exp.2022.16
Juprianto, M., Nugroho, A., Tebu, K., Chip, B., & Penyimpanan, C. (2018). Kajian waktu dan cara penyimpanan bibit tebu (Saccharum officinarum L .) varietas ps 881 metode bud chip pada pertumbuhan vegetatif awal. Jurnal Produksi Tanaman, 6(3), 350–354.
Kawai, T., Chen, Y., Takahashi, H., Inukai, Y., & Siddique, K.H.M. (2022). Rice genotypes express compensatory root growth with altered root distributions in response to root cutting. Frontiers in Plant Science, 13, 830577. https://doi.org/10.3389/fpls.2022.830577
Lakehal, A., Dob, A., Rahneshan, Z., Novák, O., Escamez, S., Alallaq, S., Strnad, M., Tuominen, H., & Bellini, C. (2020). Ethylene Response Factor 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. New Phytologist, 228(5), 1611–1626. https://doi.org/10.1111/nph.16794
Li, J.-N., Wang, W.-N., Xie, L.-Z., Wang, Z.-Q., & Gu, J.-C. (2014). Effects of defoliation on current-year stem growth and fine root dynamics in Fraxinus mandschurica and Larix gmelinii seedlings [J]. Chin J Plant Ecol 38(10): 1082-1092. DOI: 10.3724/SP.J.1258.2014.00102
Li, S.-W. (2021). Molecular bases for the regulation of adventitious root generation in plants. Frontiers in Plant Science, 12, 614072. https://doi.org/10.3389/fpls.2021.614072
Liu, C., Wu, J., Gu, J., & Duan, H. (2024). Response of non-structural carbohydrates and carbon, nitrogen, and phosphorus stoichiometry in Pinus yunnanensis seedlings to drought re-watering. Forests, 15(11), 1864. https://doi.org/10.3390/f15111864
Luca, A, Edelenbos, M, Mahajan, P.V., & Petersen, K.K. (2021). Modified humidity packaging of potted roses. Scientia Horticulturae, 275, 109697. https://doi.org/10.1016/j.scienta.2020.109697
McKay, H.M. (1997). A review of the effect of stresses between lifting and planting on nursery stock quality and performance. New Forests, 13, 369–399. https://doi.org/10.1023/A:1006562406870
Młodzińska-Michta, E. (2023). Abiotic factors determine the root system architecture: Review and update. Acta Societatis Botanicorum Poloniae, 92(1), Article e168700. https://doi.org/10.5586/asbp/168700
Müller, M. (2021). Foes or friends: ABA and ethylene interaction under abiotic stress. Plants, 10(3), 448. https://doi.org/10.3390/plants10030448
Nar, H., Saglam, A., Terzi, R., Várkonyi, Z., & Kadioglu, A. (2009). Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetica, 47(3), 429–436. https://doi.org/10.1007/s11099-009-0066-8
Oktaviana, M.A., Linda, R., & Mukarlina. (2015). Pertumbuhan tunas mahkota nanas (Ananas comosus (L.) Merr) secara in vitro dengan penambahan ekstrak tomat (Solanum lycopersicum L.) dan benzyl amino purin (BAP). Protobiont, 4(3), 109–112.
Parnidi, P., & Hamida, R. (2021). The effect of type and duration of seed storage on sugarcane growth. Jurnal Penelitian Pendidikan IPA, 7(2), 207-212. doi:https://doi.org/10.29303/jppipa.v7i2.579
Parnidi., & Budi, S.U. (2016). Perbanyakan benih agave secara in vitro. Prosiding "Peran IPTEK Dalam Mewujudkan NAWACITA", 1–12.
Parnidi., Budi, U.S., & Marjani, M. (2016). Growth of agave gemplasm in Balittas, Malang East Java. In A. Sugiharto (Ed.), Proceeding "International Symposium on Resource Efficiency in Pulp and Paper Technology", 110–113.
Pirredda, M., Fañanás-Pueyo, I., Oñate-Sánchez, L., & Mira, S. (2024). Seed longevity and ageing: A review on physiological and genetic factors with an emphasis on hormonal regulation. Plants, 13(1), 41. https://doi.org/10.3390/plants13010041
Poonsri, W. (2021). Effects of active and passive modified atmosphere packaging on biochemical properties of cut Dendrobium orchid flowers. Heliyon, 7(6), e07197. https://doi.org/10.1016/j.heliyon.2021.e07197
Puente-Garza, C.A., Gutiérrez-Mora, A & García-Lara, S. (2015) Micropropagation of Agave salmiana: Means to production of antioxidant and bioactive principles. Front. Plant Sci. 6:1026. doi: 10.3389/fpls.2015.01026
Sánchez, A., Coronel-Lara, Z., Gutiérrez, A., Vargas, G., Coronado, M.L., & Esqueda, M. (2020). Acclimatization and transplantation of Agave angustifolia Haw. vitroplants in wild conditions. Revista Mexicana De Ciencias Agrícolas, 11(7), 1593–1605. https://doi.org/10.29312/remexca.v11i7.2403
Santoso, B., & Cholid, M. (2019). Kelayakan teknis pengembangan agave di lahan kering. Perspektif, 18(1), 40–51.
Scheres, B., & van der Putten, W.H. (2017). The plant perceptron connects environment to development. Nature, 543, 337–345. https://doi.org/10.1038/nature22010
Sedigheh, H. G., Mortazavian, M., Norouzian, D., Atyabi, M., Akbarzadeh, A., Hasanpoor, K., & Ghorbani, M. (2011). Oxidative stress and leaf senescence. BMC research notes, 4, 477. https://doi.org/10.1186/1756-0500-4-477
Shivaraj, Y.N., Barbara, P., Gugi, B., Vicré-Gibouin, M., Driouich, A., Govind, S.R., Devaraja, A., & Kambalagere, Y. (2018). Perspectives on structural, physiological, cellular, and molecular responses to desiccation in resurrection plants. Scientifica, 2018(1), 9464592. https://doi.org/10.1155/2018/9464592
Singh, A., & Roychoudhury, A. (2023). Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant cell reports, 42(6), 961–974. https://doi.org/10.1007/s00299-023-03013-w
Taiz, L., Møller, I., Murphy, A., & Zeiger, E. (2023). Plant Physiology and Development. Oxford University Press. http://dx.doi.org/10.1093/hesc/9780197614204.001.0001
Tian, J., Xing, Q., Jing, T., Fan, X., Zhang, Q., & Müller-Xing, R. (2022). The epigenetic regulator ULTRAPETALA1 suppresses de novo root regeneration from Arabidopsis leaf explants. Epigenetics, 17(7), 741–753. https://doi.org/10.1080/15592324.2022. 2031784
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Parnidi - Parnidi, Moch. Machfud, Mala Murianingrum, Fatkhur Rochman, Marjani Marjani, Bambang Heliyanto, Rully Dyah Purwati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung
JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.