Effect of Storage Duration and Seed Type on the Viability and Growth of Agave (Agave sisalana L. Perrine) from In Vitro Culture

Authors

  • Mala Murianingrum National Research and Innovation Agency (BRIN)
  • Parnidi Parnidi National Research and Innovation Agency (BRIN)
  • Moch. Machfud National Research and Innovation Agency (BRIN)
  • Fatkhur Rochman National Research and Innovation Agency (BRIN)
  • Marjani Marjani National Research and Innovation Agency (BRIN)
  • Bambang Heliyanto National Research and Innovation Agency (BRIN)
  • Rully Dyah Purwati National Research and Innovation Agency (BRIN)

DOI:

https://doi.org/10.23960/jtepl.v14i5.1726-1737
Abstract View: 16

Keywords:

Agave, Duration, In vitro culture, Seeds, Storage

Abstract

Agave seeds have a relatively short lifespan, thus require appropriate storage methods to maintain their viability and germination capacity. This study aimed to identify the optimal combination of storage duration and seedling treatments to preserve seedling quality and growth performance of agave. The experiment was conducted in a factorial randomized complete design with three replications. Each experimental unit consisted of 10 plants. The first factor was storage duration (0, 21, and 35 days). The second factor was seedling treatments involving seeds with: (1) complete leaves and roots, (2) complete leaves and half roots, (3) top leaves and half roots, (4) complete leaves without roots, and (5) top leaves and no roots. The seedlings were stored in a greenhouse with average temperature 25.67 °C and relative humidity 82.92%. The observed parameters included weight loss, germination percentage, seedling height, number of leaves, leaf length and width, number and length of roots, and fresh weight after 45 days of planting. The results showed that storage duration and root or leaf trimming significantly affected seed viability and seedling growth. Storage for 21 days combined with full leaves and half roots produced the highest germination percentage, growth performance, and fresh weight. Agave seeds can be stored for up to 35 days while maintaining high viability, and different seed types stored for 35 days still exhibited 100% germination.

Downloads

Download data is not yet available.

Author Biographies

Mala Murianingrum, National Research and Innovation Agency (BRIN)

Research Center for Plantation Crops, Research Organization for Agriculture and Food

Parnidi Parnidi, National Research and Innovation Agency (BRIN)

Research Center for Plantation Crops, Research Organization for Agriculture and Food

Moch. Machfud, National Research and Innovation Agency (BRIN)

Research Center for Plantation Crops, Research Organization for Agriculture and Food

Fatkhur Rochman, National Research and Innovation Agency (BRIN)

Research Center for Plantation Crops, Research Organization for Agriculture and Food

Marjani Marjani, National Research and Innovation Agency (BRIN)

Research Center for Plantation Crops, Research Organization for Agriculture and Food

Bambang Heliyanto, National Research and Innovation Agency (BRIN)

Research Center for Plantation Crops, Research Organization for Agriculture and Food

Rully Dyah Purwati, National Research and Innovation Agency (BRIN)

Research Center for Plantation Crops, Research Organization for Agriculture and Food

References

Aguilar, E.E.Q, Martínez, A.C.M., Gabriel, Enriquez, R. Lobit, P., & Pérez L.L. (2016). Effectiveness of native arbuscular mycorrhizal consortia on the growth of Agave inaequidens. Journal of Soil Science and Plant Nutrition (16):4: 1052-1064.

Alonso, S. Gautam, K. Iglesias-Moya, J. Martínez, C. Jamilena, M. (2024). Crosstalk between Ethylene, Jasmonate and ABA in Response to Salt Stress during Germination and Early Plant Growth in Cucurbita pepo. Int. J. Mol. Sci. (25), 8728. https://doi.org/10.3390/ijms25168728

Alwani, M.F., Meiriani., & Mawarni, L. (2019). Pertumbuhan bibit bud set tebu (Saccharum officinarum L.) pada berbagai umur bahan tanam dan lama penyimpanan [Sugarcane bud set seed growth at various planting material ages and storage periods]. Jurnal Agroteknologi, 7(1), 176–180.

Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress: A review. African Journal of Agricultural Research, 6(9), 2026–2032. https://doi.org/10.5897/AJAR2016.11422

Annisa, F., Taryono, & Yudono, P. (2015). Pengaruh lama penyimpanan bagal terhadap kualitas dan perkecambahan mata tunas tunggal tebu (Saccharum officinarum L.). Vegetalika, 4(4), 48–56.

Ariyani, D., Puspitasari, A.R., & Permatasari, D. (2023). Respon perkecambahan benih dan pertumbuhan tanaman tebu pasca penyimpanan. Indonesian Sugar Research Journal, 3(2), 96–104. https://doi.org/10.54256/isrj.v3i2.116

Bautista-Montes, A., Alarcón, J., Rodríguez-Garay, B., & Gutiérrez-Mora, A. (2022). Advances in agave micropropagation and conservation: Current perspectives and future challenges. Scientia Horticulturae, 292, 110628.

Burdett, A.N. (1990). Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canadian Journal of Forest Research, 20(4), 415–427. https://doi.org/10.1139/x90-059

Chauhan, R., Singh, V., Quraishi, A. (2019). In Vitro Conservation Through Slow-Growth Storage. In: Faisal, M., Alatar, A. (eds) Synthetic Seeds . Springer, Cham. https://doi.org/10.1007/978-3-030-24631-0_19

Cosgrove, D.J. (2024). Plant cell wall loosening by expansins. Annual Review of Cell and Developmental Biology, 40(1), 329–352. https://doi.org/10.1146/annurev-cellbio-111822-115334

Cruz-Cruz, C.A., González-Arnao, M.T., & Engelmann, F. (2013). Biotechnology and conservation of plant biodiversity. Resources, 2(2), 73–95. https://doi.org/10.3390/resources2020073

del Rosario, M.H.M, Abel L.B.J., Karen, S.F.M., Adriana, C.A. & Jabín, B.B.J. (2025). Arbuscular mycorrhizal fungi improve the growth, nutrient uptake and survival of micropropagated agave (Agave marmorata Roezl) plantlets during acclimatization, Journal of Arid Environments (228), 105330, https://doi.org/10.1016/j.jaridenv.2025.105330.

Delgado-Aceves, L, Corona, S, CastañedaNava, J.J., Rodr´ıguez-Dom´ınguez, J.M, & Gutie´ rrez-Mora, A. (2025) Indirect somatic embryogenesis of Agave maximiliana Baker. Front. Plant Sci. 16:1648362. doi: 10.3389/fpls.2025.1648362

Feng, Z., Kong, D., Kong, Y., Zhang, B., & Yang, X. (2022). Coordination of root growth with root morphology, physiology and defense functions in response to root pruning in Platycladus orientalis. Journal of Advanced Research, 36, 187–199. https://doi.org/10.1016/j.jare.2021.07.005

Fernie, A.R., Bachem, C.W.B., Helariutta, Y., Neuhaus, H.E., Prat, S., Ruan, Y.-L., Stitt, M., Sweetlove, L.J., Tegeder, M., Wahl, V., Sonnewald, S., & Sonnewald, U. (2020). Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nature Plants, 6(1), 55–66. https://doi.org/10.1038/s41477-020-0590-x

Goyette, B., Piché, M., Brownbridge, M., & McGrath, D. (2014). Impact of handling practices on the quality of bare-root plants: A review. Journal of Environmental Horticulture, 32(2), 103-112. https://doi.org/10.24266/0738-2898.32.2.103

Hairani, P.M., Suhartanto, M.R., & Widajati, E. (2020). Penyimpanan mahkota nanas dan zat pengatur tumbuh pada pertumbuhan setek basal daun asal mahkota. Jurnal Ilmu Pertanian Indonesia, 25(2), 278–284. https://doi.org/10.18343/jipi.25.2.278

Hernández-Cuevas, L.V., Salinas-Escobar, L.A., Segura-Castruita, M.Á., Palmeros-Suárez, P.A., & Gómez-Leyva, J.F. (2023). Physiological Responses of Agave maximiliana to Inoculation with Autochthonous and Allochthonous Arbuscular Mycorrhizal Fungi. Plants (Basel, Switzerland), 12(3), 535. https://doi.org/10.3390/plants12030535

Hernández-Cuevas, L.V., Salinas-Escobar, L.A., Segura-Castruita, M.Á., Palmeros-Suárez, P.A., & Gómez-Leyva, J.F. (2023). Physiological responses of Agave maximiliana to inoculation with autochthonous and allochthonous arbuscular mycorrhizal fungi. Plants, 12(3), 535. https://doi.org/10.3390/plants12030535

Hua, D., Wang, C., He, J., Liao, H., Duan, Y., Zhu, Z., Guo, Y., Chen, Z., & Gong, Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. The Plant cell, 24(6), 2546–2561. https://doi.org/10.1105/tpc.112.100107

Jimenez-Torres, J.A., Monroy-Gonzalez, Z., & Juarez-Muñoz, J. (2022). Evaluation of seed morphology, seedling genetic variation, and components for seed storage of Agave landraces of commercial interest. Experimental Results, 3, e25. https://doi.org/10.1017/exp.2022.16

Juprianto, M., Nugroho, A., Tebu, K., Chip, B., & Penyimpanan, C. (2018). Kajian waktu dan cara penyimpanan bibit tebu (Saccharum officinarum L .) varietas ps 881 metode bud chip pada pertumbuhan vegetatif awal. Jurnal Produksi Tanaman, 6(3), 350–354.

Kawai, T., Chen, Y., Takahashi, H., Inukai, Y., & Siddique, K.H.M. (2022). Rice genotypes express compensatory root growth with altered root distributions in response to root cutting. Frontiers in Plant Science, 13, 830577. https://doi.org/10.3389/fpls.2022.830577

Lakehal, A., Dob, A., Rahneshan, Z., Novák, O., Escamez, S., Alallaq, S., Strnad, M., Tuominen, H., & Bellini, C. (2020). Ethylene Response Factor 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. New Phytologist, 228(5), 1611–1626. https://doi.org/10.1111/nph.16794

Li, J.-N., Wang, W.-N., Xie, L.-Z., Wang, Z.-Q., & Gu, J.-C. (2014). Effects of defoliation on current-year stem growth and fine root dynamics in Fraxinus mandschurica and Larix gmelinii seedlings [J]. Chin J Plant Ecol 38(10): 1082-1092. DOI: 10.3724/SP.J.1258.2014.00102

Li, S.-W. (2021). Molecular bases for the regulation of adventitious root generation in plants. Frontiers in Plant Science, 12, 614072. https://doi.org/10.3389/fpls.2021.614072

Liu, C., Wu, J., Gu, J., & Duan, H. (2024). Response of non-structural carbohydrates and carbon, nitrogen, and phosphorus stoichiometry in Pinus yunnanensis seedlings to drought re-watering. Forests, 15(11), 1864. https://doi.org/10.3390/f15111864

Luca, A, Edelenbos, M, Mahajan, P.V., & Petersen, K.K. (2021). Modified humidity packaging of potted roses. Scientia Horticulturae, 275, 109697. https://doi.org/10.1016/j.scienta.2020.109697

McKay, H.M. (1997). A review of the effect of stresses between lifting and planting on nursery stock quality and performance. New Forests, 13, 369–399. https://doi.org/10.1023/A:1006562406870

Młodzińska-Michta, E. (2023). Abiotic factors determine the root system architecture: Review and update. Acta Societatis Botanicorum Poloniae, 92(1), Article e168700. https://doi.org/10.5586/asbp/168700

Müller, M. (2021). Foes or friends: ABA and ethylene interaction under abiotic stress. Plants, 10(3), 448. https://doi.org/10.3390/plants10030448

Nar, H., Saglam, A., Terzi, R., Várkonyi, Z., & Kadioglu, A. (2009). Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetica, 47(3), 429–436. https://doi.org/10.1007/s11099-009-0066-8

Oktaviana, M.A., Linda, R., & Mukarlina. (2015). Pertumbuhan tunas mahkota nanas (Ananas comosus (L.) Merr) secara in vitro dengan penambahan ekstrak tomat (Solanum lycopersicum L.) dan benzyl amino purin (BAP). Protobiont, 4(3), 109–112.

Parnidi, P., & Hamida, R. (2021). The effect of type and duration of seed storage on sugarcane growth. Jurnal Penelitian Pendidikan IPA, 7(2), 207-212. doi:https://doi.org/10.29303/jppipa.v7i2.579

Parnidi., & Budi, S.U. (2016). Perbanyakan benih agave secara in vitro. Prosiding "Peran IPTEK Dalam Mewujudkan NAWACITA", 1–12.

Parnidi., Budi, U.S., & Marjani, M. (2016). Growth of agave gemplasm in Balittas, Malang East Java. In A. Sugiharto (Ed.), Proceeding "International Symposium on Resource Efficiency in Pulp and Paper Technology", 110–113.

Pirredda, M., Fañanás-Pueyo, I., Oñate-Sánchez, L., & Mira, S. (2024). Seed longevity and ageing: A review on physiological and genetic factors with an emphasis on hormonal regulation. Plants, 13(1), 41. https://doi.org/10.3390/plants13010041

Poonsri, W. (2021). Effects of active and passive modified atmosphere packaging on biochemical properties of cut Dendrobium orchid flowers. Heliyon, 7(6), e07197. https://doi.org/10.1016/j.heliyon.2021.e07197

Puente-Garza, C.A., Gutiérrez-Mora, A & García-Lara, S. (2015) Micropropagation of Agave salmiana: Means to production of antioxidant and bioactive principles. Front. Plant Sci. 6:1026. doi: 10.3389/fpls.2015.01026

Sánchez, A., Coronel-Lara, Z., Gutiérrez, A., Vargas, G., Coronado, M.L., & Esqueda, M. (2020). Acclimatization and transplantation of Agave angustifolia Haw. vitroplants in wild conditions. Revista Mexicana De Ciencias Agrícolas, 11(7), 1593–1605. https://doi.org/10.29312/remexca.v11i7.2403

Santoso, B., & Cholid, M. (2019). Kelayakan teknis pengembangan agave di lahan kering. Perspektif, 18(1), 40–51.

Scheres, B., & van der Putten, W.H. (2017). The plant perceptron connects environment to development. Nature, 543, 337–345. https://doi.org/10.1038/nature22010

Sedigheh, H. G., Mortazavian, M., Norouzian, D., Atyabi, M., Akbarzadeh, A., Hasanpoor, K., & Ghorbani, M. (2011). Oxidative stress and leaf senescence. BMC research notes, 4, 477. https://doi.org/10.1186/1756-0500-4-477

Shivaraj, Y.N., Barbara, P., Gugi, B., Vicré-Gibouin, M., Driouich, A., Govind, S.R., Devaraja, A., & Kambalagere, Y. (2018). Perspectives on structural, physiological, cellular, and molecular responses to desiccation in resurrection plants. Scientifica, 2018(1), 9464592. https://doi.org/10.1155/2018/9464592

Singh, A., & Roychoudhury, A. (2023). Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant cell reports, 42(6), 961–974. https://doi.org/10.1007/s00299-023-03013-w

Taiz, L., Møller, I., Murphy, A., & Zeiger, E. (2023). Plant Physiology and Development. Oxford University Press. http://dx.doi.org/10.1093/hesc/9780197614204.001.0001

Tian, J., Xing, Q., Jing, T., Fan, X., Zhang, Q., & Müller-Xing, R. (2022). The epigenetic regulator ULTRAPETALA1 suppresses de novo root regeneration from Arabidopsis leaf explants. Epigenetics, 17(7), 741–753. https://doi.org/10.1080/15592324.2022. 2031784

Downloads

Published

2025-09-24

How to Cite

Murianingrum, M., Parnidi, P., Machfud, M., Rochman, F., Marjani, M., Heliyanto, B., & Purwati, R. D. (2025). Effect of Storage Duration and Seed Type on the Viability and Growth of Agave (Agave sisalana L. Perrine) from In Vitro Culture. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(5), 1726–1737. https://doi.org/10.23960/jtepl.v14i5.1726-1737