SIFAT TRANSPARANSI DAN PERMEABILITAS FILM BIONANOKOMPOSIT POLYLACTIC ACID DAN POLYCAPROLACTONE DENGAN PENAMBAHAN NANOCRYSTALLINE CELLULOSE SEBAGAI PENGISI [Transparency and permeability properties of Bionanocomposite Film of Polylactic Acid and Polycaprolactone, and Nanocrystalline Cellulose as a Filler]
Keywords:
Bionanocomposite, Polylactic acid, Polycaprolactone, Nanocrystalline celluloseAbstract
Production of Polylactic acid (PLA)/Polycaprolactone (PCL) bionanocomposite films with various ratios was done by adding nanocrystalline celullose (NCC) from oil palm empty fruit bunches (OPEFB) as a filler. The aim of the research was to find out the effect of PLA/PCL ratio on film thickness, transparency of bionanocomposite films and water vapor permeability or WVP of the film bionanocomposite with addition of the 3% NCC. The PLA/PCL ratio are 1.0/0.0; 0.8/0.2; 0.6/0.4; 0.5/0.5; 0.4/0.6; 0.2/0.8; and 0.0/1.0, prepared with solvent casting method. Characterization of PLA/PCL bionanocomposites film performed was thickness, transparency test and water vapor permeability (WVP) test. The thickness of bionanocomposites film produced were around are about 0.036-0.053 mm, results show that the lower PLA/PCL ratio the thicker film obtained. The highest value of film transparency was obtained at a ratio of 1.0 / 0.0 (81.4% at a wavelength of 550 nm), the smaller the PLA / PCL ratio, the lower the value of transparency. The WVP value of PLA/PCL bionanocomposite films gives a lower value than the WVP value of pure PLA film and pure PCL film. The best WVP was obtained at a PLA/PCL ratio of 0.8/0.2 which was 1.49x10-16kg.m/(m2.s.Pa).
Downloads
References
Arrieta, M. P., J. López, D. López, J. M. Kenny, and L. Peponi. 2016. Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polym. Degrad. Stabil. 132:145-156.
ASTM-D1746-03. 2003. Standard Test Method for Transparency of Plastic Sheeting.
Baheti, V., J. Militky, and M. Marsalkova. 2013. Mechanical properties of poly lactic acid composite films reinforced with wet milled jute nanofibers. Polym. Composites. 34(12):2133-2141.
Fortunati, E., I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L. A. Berglund, and J. M. Kenny. 2012. Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nano-particles. Carbohyd. Polym. 87(2): 1596-1605.
Garcia-Garcia, D., J. Lopez-Martinez, R. Balart, E. Strömberg, and R. Moriana. 2018. Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly (3-hydroxybutyrate)/poly (ε-capro-lactone) (PHB/PCL) thermoplastic blend. Eur. Polym. J. 104:10-18.
Habibi, Y., L. A. Lucia, and O. J. Rojas. 2010. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 110(6): 3479-3500.
Hamad, K., M. Kaseem, and F. Deri. 2012. Poly (lactic acid)/low density polyethylene polymer blends: preparation and characterization. Asia‐Pac. J. Chem. Eng. 7(S3): S310-S316.
Hwang, T. I., J. I. Kim, M. K. Joshi, C. H. Park, and C. S. Kim. 2019. Simultaneous regeneration of calcium lactate and cellulose into PCL nanofiber for biomedical application. Carbohyd. Polym. 212: 21-29.
Indarti, E., Marwan, and W. D. W. Rosli. 2019. Morphological and Optical Properties of Polylactic Acid Bionanocomposite Film Reinforced with Oil Palm Empty Fruit Bunch Nanocrystalline Cellulose. J. Phy. Conf. Ser. 1295. 012053
Indarti, E., Marwan, and W. D. Wanrosli. 2015. Thermal Stability of Oil Palm Empty Fruit Bunch (OPEFB) Nanocrystalline Cellulose: Effects of post-treatment of oven drying and solvent exchange techniques. J. Phy. Conf. Ser. 622(1):012025.
Indarti, E., R. Roslan, Marwan, and W. R. W. Daud. 2016. Polylactic Acid Bionanocomposites Filled with Nanocrystalline Cellulose from TEMPO-Oxidized Oil Palm Lignocellulosic Biomass. BioResources. 11(4):8615-8626.
Kalita, N. K., S. M. Bhasney, C. Mudenur, A. Kalamdhad, and V. Katiyar. 2020. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/ Microcrystalline cellulose (MCC) polyblends under composting conditions. Chemosphere. 247: 125875.
Lasprilla, A. J. R., G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho. 2012. Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnol. Adv. 30(1):321-328.
Ligot, S., S. Benali, R. Ramy-Ratiarison, M. Murariu, and R. Snyders. 2015. Mechanical, optical and barrier properties of PLA-layered silicate nanocomposites coated with organic plasma polymer thin films. Mater Sci Eng Adv Res. 2015(1):1-11.
Manshor, M. R., H. Anuar, M. N. Nur Aimi, M. I. Ahmad Fitrie, W. B. Wan Nazri, S. M. Sapuan, Y. A. El-Shekeil, and M. U. Wahit. 2014. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater. Des. 59: 279-286.
Moon, R. J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7):3941-3994.
Park, H. J. and M. S. Chinnan. 1995. Gas and water vapor barrier properties of edible films from protein and cellulosic materials. J. Food Eng. 25(4):497-507.
Qian, S. and K. Sheng. 2017. PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Compos. Sci. Technol. 148:59-69.
Sanchez-Garcia, M. D., and J. M. Lagaron. 2010. On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose. 17(5):987-1004.
Sessini, V., I. Navarro-Baena, M. P. Arrieta, F. Dominici, D. López, and L. Torre. 2018. Effect of the addiaddition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nano composites. Polym. Degrad. Stabil. 152:126-138.
Tang, C. and H. Liu. 2008. Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos. Part A-Appl. Sc. 39(10):1638-1643.
Turhan, K. N. and F. Şahbaz. 2001. A simple method for determining light transmittance of polymer films used for packaging foods. Polym. Int. 50(10):1138-1142.
UNE-53097. 2002. Sheet materials-Determination of water vapor transmission rate – Gavimetric (dish) method.
Vatansever, E., D. Arslan, and M. Nofar. 2019. Polylactide cellulose-based nanocomposites. Int. J Biol. Macromol. 137:912-938.
Wachirahuttapong, S., C. Thongpin, and N. Sombatsompop. 2016. Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia. 89:198-206.
Wanrosli, W. D., Z. Zainuddin, and L. K. Lee. 2004. Influence of pulping variables on the properties of Elaeis guineensis soda pulp as evaluated by response surface methodology. Wood Sci. Technol. 38(3):191-205.
Yessi, W., B. Abbas, dan N. Suryani. 2013. Pembuatan Nanokomposit Polycaprolatone-Kitosan Hidroksiapatit Iradasi Untuk Aplikasi Biomaterial. Jurnal Majalah Metalurgi, 28(2):149-160.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work

Jurnal Teknologi & Industri Hasil Pertanian is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.