Wastewater Processing of Chicken Slaughterhouses Using Combination of Trickling Filter and Rotating Biological Contactor

Authors

  • Handriani Handriani Universitas Syiah Kuala
  • Muhammad Faisal Universitas Syiah Kuala
  • Cut Meurah Rosnelly Universitas Syiah Kuala

DOI:

https://doi.org/10.23960/jtep-l.v14i1.249-261
Abstract View: 246

Abstract

This research was conducted to explore the effectiveness of combined Trickling Filter (TF) and Rotating Biological Contactor (RBC) method in processing liquid waste from chicken slaughterhouses through local and economical media. Microorganisms were grown by inserting liquid waste into a TF tank containing gravel, used ceramics, coconut shells, and pumice. Subsequently, liquid waste flowed into a rotating biological contactor added with local microorganisms from stale rice and fermented banana stems. Waste treatment was carried out with variations in retention time of 1, 3, and 6 h. The results showed that at 6 h, the organic compound decreased significantly. The removal efficiency obtained was 87.05%, 82.11%, 90.51%, 22.57%, 79.36%, and 88.66% for Biological Oxygen Demand, Chemical Oxygen Demand, Total Suspended Solids, Total Dissolved Solids, Turbidity, and Ammonia, respectively. This high efficiency was supported by the collaboration between the activity of microorganisms attached to the TF biofilm and the use of local microorganisms in decomposing organic compounds in the rotating biological contactor. The combination of the two methods has been proven to help waste treatment process from chicken slaughterhouses in an environmentally friendly and efficient manner.

 

Keywords: Biofilm, Chicken slaughterhouse waste, Local microorganisms, Rotating biological contactor, Trickling filter.

Downloads

Download data is not yet available.

Author Biographies

Handriani Handriani, Universitas Syiah Kuala

Magister Program of Environmental Management

Muhammad Faisal, Universitas Syiah Kuala

Department of Chemical Engineering, Faculty of Engineering

Cut Meurah Rosnelly, Universitas Syiah Kuala

Department of Chemical Engineering, Faculty of Engineering

References

Abbasi, H., Abbasi, S., Haeri, S.A., Rezayati, S., Kalantari, F., & Heravi, P.M.R. (2022). Electromembrane extraction using biodegradable deep eutectic solvents and agarose gel as green and organic solvent-free strategies for the determination of polar and non-polar bases drugs from biological samples: A comparative study. Analytica Chimica Acta. 1222(22), 339986. https://doi.org/10.1016/j.aca.2022.339986

Adam, M.S., Nugrohoputri, A.S., Rahmadi, R., Astuti, A.D., & Kurniawan, A. (2023). Treatment of palm oil mill effluent using modified rotating biological contactor with organic loading rate variations. Earth and Environmental Science. 3(2), 1263-012061. https://doi.org/10.1088/1755-1315/1263/1/012061

Aguilera, M.M., Ávila, V., Castillo, M.N.A., Cardona, A., Carranza, C., & Ocampo, R. (2021). Biodegradation of carbamazepine and production of bioenergy using a microbial fuel cell with bioelectrodes fabricated from devil fish bone chars. Journal of Environmental Chemical Engineering. 9(6), 106692. https://doi.org/10.1016/j.jece.2021.106692

Al-Shammari, M.M.A., Al-Lami, A.K., Hammadi, A.M., Al-Maliki, A.A., & Al-Lami, N. (2024). The determination of ground water balance (GW) using modeling flow, a case study west of Karbala Province. Iraqi Journal of Science. 65(6), 3492-3504. https://doi.org/10.24996/ijs.2024.65.6.41

Baruah, A., Chaudhary, V., Malik, R., & Vijay K.T. (2019). 17-nanotechnology based solutions for wastewater treatment. nanotechnology in water and wastewater treatment. Theory and Applications Micro and Nano Technologies, 337-368. https://doi.org/10.1016/B978-0-12-813902-8.00017-4

Bi, Y., Han, Z., Feng, S., Wang, X., Xu, Z., Zhang, Y., Su, H., Zhuang, X., & Xu, S. (2021). Microbial community changes in a full-scale wastewater treatment system with a rotating biological contactor integrated into anaerobic-anoxic-oxic processes. Desalination and Water Treatment, 228, 165–175. https://doi.org/10.5004/dwt.2021.27346

Boltz, J.P., & Motta, L.E.J. (2007) Kinetics of particulate organic matter removal as a response to bioflocculation in aerobic biofilm reactors. Water Environment Research. 79, 725-735. https://doi.org/10.2175/106143007X156718

Bowman, B.M., Hunt, D.V.L., & Rogers, C.D.F. (2024). Visualising the surface water system: an environmental justice-led approach. Sec. Water and Human Systems. 6, 1423247. https://doi.org/10.3389/frwa.2024.1423247

Buczynska, A.Z., Ciesielski, S., Zabczynski, S., & Cema, G. (2019). Bacterial community structure in rotating biological contactor treating coke wastewater in relation to medium composition. Environmental Science and Pollution Research. 26(19), 19171-19179. https://doi.org/10.1007/s11356-019-05087-0

Chen, Y., Zheng, R., Sui, Q., Ritigala, T., Wei, Y., Cheng, X., Ren, J., Yu, D., Chen, M., Wang, T. (2021). Coupling anammox with denitrification in a full-scale combined biological nitrogen removal process for swine wastewater treatment. Bioresource Technology, 329, 124906. https://doi.org/10.1016/j.biortech.2021.124906

Deepali, J. (2021). Biological treatment process for industrial waste. International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM), 8(4), 1492-1506.

Dezotti, M., Lippel, G., & Bassin, J.P. (2018). Advanced biological processes for wastewater treatment: Emerging, consolidated technologies and introduction to molecular techniques. Springer. https://link.springer.com/book/10.1007/978-3-319-58835-3

Dong, C., Qingye, P., & Yaquan, S. (2020). Research on the mechanism of simultaneous and efficient removal of ammonia, NO2- NO3- and TN in the coking wastewater. IOP Conference Series: Earth and Environmental Science. 508(1), 012150. http://dx.doi.org/10.1088/1755-1315/508/1/012150

Faisal, M., Gani, A., Mulana, F., & Daimon, H. (2016a). Effect of organic loading on the production of methane biogas from tofu wastewater treated by the thermophilic stirred anaerobic reactor. Rasayan Journal of Chemistry. 9(2), 133-138. https://www.researchgate.net/publication/304943456

Faisal, M., Gani, A., Mulana, F., & Daimon, H. (2016b). Treatment and utilization of industrial tofu waste in Indonesia. Asian Journal of Chemistry. 28(3). http://dx.doi.org/10.14233/ajchem.2016.19372

Faisal, M., Mulana, F., Gani, A., & Daimon, H. (2015). Physical and chemical properties of wastewater discharged from tofu industries in Banda Aceh City, Indonesia. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(4), 1053-1058.

Gaber, M.E., Yehia, A.A., Abdulrahim, A., Alzahrani, Mohamed, H., & Abdel, A. (2024). Optimizing organic contaminants removal using rotating biological contactors – A kinetic and equilibrium study. Journal of Ecological Engineering, 25(3), 143–154. https://doi.org/10.12911/22998993/178384

Gao, R., Peng, Y., Li, J., Liu, Y., Deng, L., Li, W., & Kao, C. (2022). Mainstream partial denitrification-anammox (pd/a) for municipal sewage treatment from moderate to low temperature: Reactor performance and bacterial structure. Science of The Total Environment, 806, 150267. https://doi.org/10.1016/j.scitotenv.2021.150267

García, T.P., Borgne, S.L., & Revah, S. (2016). Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions. Appl Microbiol Biotechnol, 100, 10637–10647. https://doi.org/10.1007/s00253-016-7861-5

Hamza, R., Hamodaa, M.F., & Elassa, M. (2022). Energy and reliability analysis of wastewater treatment plants in small communities in Ontario. Water Science & Technology, 85(6), 1824. https://doi.org/10.2166/wst.2022.093

Hanafy, M., Fouad, H., & Elhefny, R. (2022). Rotating biological contactor wastewater treatment using geotextiles, sugarcane straw, and steel cylinder for green areas irrigation. Egyptian Journal of Chemistry, 65(6), 59–72. https://doi.org/10.21608/ejchem.2021.82581.4065

Handriani. (2021). Pengolahan limbah cair rumah pemotongan ayam dengan metode trickling filter. [Undergraduated Thesis]. Teknik Lingkungan Universitas Islam Negeri Ar-Raniry, Banda Aceh. https://repository.ar-raniry.ac.id/id/eprint/22954/

Herlambang, A., & Marsidi, R. (2003). Denitrification process with a biofilter system for treating wastewater containing nitrates. Jurnal Teknologi Lingkungan BPPT, 4(1), 46-55.

Huang, J., Wen, X., Tang, Q., Liu, D., & Chen, S. (2023). An innovative waterwheel-rotating biological contactor (wrbc) system for rural sewage treatment. Water, 15(7), 1323. https://doi.org/10.3390/w15071323

Indah, S., Kiki, P.U., & Suci, P. (2023). Perencanaan instalasi pengolahan air limbah (IPAL) Rumah Potong Ayam PD.X. Rekayasa Hijau: Jurnal Teknologi Ramah Lingkungan, 7(1). https://doi.org/10.26760/jrh.v7i1.37-48

Kanwar, R.M.A., Khan, Z.M., & Farid, H.U. (2023). Fate of biofilm activity in cascade aerating trickling filter for wastewater treatment: comparison of two types of indigenous support media. Biochemical Engineering Journal, 194, 108875. https://doi.org/10.1016/j.bej.2023.108875

Khan, A.A., Gaur, R.Z., Tyagi, V.K., Khursheed, A., Lew, B., Mehrotra, I., & Kazmi, A.A. (2020). Sustainable options of post treatment of UASB effluent treating sewage: A review. Resources, Conservation and Recycling. Chemosphere, 55(12), 1232-1251. https://doi.org/10.1016/j.resconrec.2011.05.017

Khatoon, H., Penz, K.P., Banerjee, S., Rahman, M.R., Minhaz, T.M., Islam, Z., Mukta, F.A., Nayma, Z., Sultana, R., & Amira, K.I. (2021). Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater. Bioresource Technology, 338, 125529. https://doi.org/10.1016/j.biortech.2021.125529

Kumar, M., Gogoi, A., & Mukherjee, S. (2019). Metal removal, partitioning and phase distributions in the wastewater and sludge: Performance evaluation of conventional, upflow anaerobic sludge blanket and downflow hanging sponge treatment systems. Journal of Cleaner Production, 249, 119426 https://doi.org/10.1016/j.jclepro.2019.119426

Lecompte, B.C., & Mehrvar, M. (2017). Slaughterhouse wastewater: treatment, management and resource recovery. Physico-Chemical Wastewater Treatment and Resource Recovery, 153, 74. http://dx.doi.org/10.5772/65499

Li, Q., Guo, Y., Yu, J., Yao, L., Liu, S., Yahua, L., Chen, D., Peng, F., Xu, D., Wu, Z., Zhou, Q. (2023). Construction of hybrid constructed wetlands for phosphorus chemical industry tailwater treatment in the middle yangtze river basin: Responses of plant growth and root-associated microbial communities. Water Biology and Security, 2(3), 100144. https://doi.org/10.1016/j.watbs.2023.100144

Liu, J., Zhang, Y., Li, J., & Yue, T. (2021). Effects of filler voidage on pressure drop and microbial community evolution in fungal bio-trickling filters. Chemosphere, 273, 129710. https://doi.org/10.1016/j.chemosphere.2021.129710

Lu, J., Hong, Y., Wei, Y., Gu, J.-D., Wu, J., Wang, Y., Ye, F., & Lin, J.-G. (2021). Nitrification mainly driven by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in an anammox-inoculated wastewater treatment system. AMB Express, 11, 158. https://doi.org/10.1186/s13568-021-01321-6

Ma, W.-J., Ren, Z.-Q., Yu, L.-Q., Wu, X.-X., Yao, Y.-X., Zhang, J.-T., Guo, J.-Y., Fan, N.-S., Jin, R.-C. (2021). Deciphering the response of anammox process to heavy metal and antibiotic stress: Arsenic enhances the permeability of extracellular polymeric substance and aggravates the inhibition of sulfamethoxazole. Chemical Engineering Journal, 426, 130815. https://doi.org/10.1016/j.cej.2021.130815

Novita, E., Agustin, A., & Pradana, H.A. (2021). Pengendalian potensi pencemaran air limbah rumah pemotongan ayam menggunakan metode fitoremediasi dengan beberapa jenis tanaman air (Komparasi antara tanaman eceng gondok, kangkung, dan melati air). Agroteknika, 4(2), 106–119.

Oktavitri, N. I., Purnobasuki, H., Kuncoro, E., & Purnamasari, I. (2017). Ammonia removal using coconut shell-based adsorbent: Effect of carbonization duration and contact time. IPTEK Journal of Proceedings Series, 2017(4), Article 3072. https://doi.org/10.12962/j23546026.y2017i4.3072

Patel, A., Mahboubi, A., Horváth, I. S., Taherzadeh, M. J., Rova, U., Christakopoulos, P., & Matsakas, L. (2021). Volatile fatty acids (VFAs) generated by anaerobic digestion serve as feedstock for freshwater and marine oleaginous microorganisms to produce biodiesel and added-value compounds. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.614612

Powar, P., Nejkar, V., Patil, P., & Naik, V. (2023). Dairy wastewater treatment with rotating biological contactor as secondary unit and use of treated effluent for agriculture. E3S Web of Conferences, 405, 01006. http://dx.doi.org/10.1051/e3sconf/202340501006

Ratnawati, R., & Al-Kholif, M. (2018). Aplikasi media batu apung pada biofilter anaerobik untuk pengolahan limbah cair rumah potong ayam. Jurnal Sains dan Teknologi Lingkungan, 10(1). https://doi.org/10.20885/jstl.vol10.iss1.art1

Rodrigues, A.A.M., Costa, R.R., Santos, L.F., Silva, S.M., Britto, D., & Lima, M.A.C. (2021). Properties and characterization of biodegradable films obtained from different starch sources. Food Sci. Technol, Campinas, 41(2), 476-482. https://doi.org/10.1590/fst.28520

Subhadarsini, L., & Dash, R.R. (2020). Treatment of industrial wastewater using single-stage rotating biological contactor. IOP Conference Series: Materials Science and Engineering, 970(1), 012025. https://doi.org/10.1088/1757-899X/970/1/012025

Sugihhartati, Dj.R., Rochmah, L., Indranoviyani, W., Susilo, W.H., Permadi, D.A., Soleh, S.A., & Salsabila, G. (2024). Seeding and acclimatization of microorganisms in a moving bed biological reactor (MBBR) for process optimization at a compact septage treatment plant. Water Science and Technology. https://doi.org/10.20944/preprints202405.0917.v1

Suwahdendi, M.P.A., & Purnama, I.G.H. (2020). Uji efektivitas batu vulkanik dan arang sebagai media filter pengolahan air limbah laundry dengan menggunakan sistem pengolahan constructed wetland. Archive of Community Health, 5(1), 67–76.

Tewari, A., Bhutada, D.S., & Wadgaonkar, V. (2023). Heavy metal remediation from water/wastewater using bioadsorbents: A review. Nature Environment and Pollution Technology, 22(4), 2039–2053. https://doi.org/10.46488/NEPT.2023.v22i04.029

Thompson, M., Moussavi, S., Li, S., Barutha, P., & Dvorak, B. (2022). Environmental life cycle assessment of small water resource recovery facilities: Comparison of mechanical and lagoon systems. Water Research, 215, 118234. https://doi.org/10.1016/j.watres.2022.118234

Wang, W., Wang, Y., Wang, X., Zhang, Y., & Yan, Y. (2019). Dissolved oxygen microelectrode measurements to develop a more sophisticated intermittent aeration regime control strategy for biofilm-based canon systems. Chemical Engineering Journal, 365, 165-174. https://doi.org/10.1016/j.cej.2019.02.033

Wulandari, D.T., Prihatini, N.S., and Nirtha, R.I.N. (2022). Penyisihan cod pada limbah cair rumah potong hewan martapura dengan system lahan basah buatan aliran horizontal bawah permukaan menggunakan tanaman cyperus alternifolius dan canna indica. Jurnal Reka Lingkungan. 2(2), 125-44. https://doi.org/10.26760/rekalingkungan.v10i2.125-134

Yang, Z., Li, J., Liu, J., Cao, J., Sheng, D., & Cai, T. (2019). Evaluation of a pilot-scale bio-trickling filter as a vocs control technology for the chemical fibre wastewater treatment plant. Journal of Environmental Management, 246(15), 71-76. https://doi.org/10.1016/j.jenvman.2019.05.102

Zhang, Z., Zhang, Y., & Chen, Y. (2020). Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. Bioresource Technology, 298, 122444. https://doi.org/10.1016/j.biortech.2019.122444

Downloads

Published

2025-01-24

How to Cite

Handriani, H., Faisal, M., & Rosnelly, C. M. (2025). Wastewater Processing of Chicken Slaughterhouses Using Combination of Trickling Filter and Rotating Biological Contactor. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(1), 249–261. https://doi.org/10.23960/jtep-l.v14i1.249-261