Identification of Guava Fruit Shape (Psidium guajava L.) with Android-Based Digital Image Processing

Authors

  • Ifmalinda Ifmalinda Universitas Andalas
  • Zhefira Fitriyah Andalas University, Padang
  • Dinah Cherie Andalas University, Padang

DOI:

https://doi.org/10.23960/jtepl.v14i4.1300-1312
Abstract View: 103

Keywords:

Digital image, Guava, K-value, Roundness, Sphericity

Abstract

Fruit shape determine the quality of guava which in turn affects greatly consumers’ appeal. Guava fruit is classified into intact and non-intact and is sorted manually using human eye which is less efficient and takes time. Digital image processing can be develop to effectively determine shape index of guava fruits. The objective of this study is to investigate the physical shape of red guava fruit using digital image processing, with a focus on roundness, sphericity, and K-value as shape indices. The calculation of these three parameters is done manually and image analysis. The results showed that manual roundness values ranged from 0.814 to 0.953. Image roundness values range from 0.871 to 0.908. Manual sphericity values range from 0.712 to 0.995. Image sphericity values range from 0.748 to 0.840. Manual K values range from 1.697 to 2.278. The image K value ranges from 1.631 to 3.285. Based on the results of the research, it is concluded that guava fruit can only be distinguished by the sphericity and K value shape index, due to the limited shape of the sample used so that it is not very visible the difference between intact and non-intact fruit with the roundness index.

Downloads

Download data is not yet available.

Author Biographies

Zhefira Fitriyah, Andalas University, Padang

Department of Agriculture Engineering and Biosystem

Dinah Cherie, Andalas University, Padang

Department of Agriculture Engineering and Biosystem

References

Adhim, D.N. (2018). Pengembangan aplikasi kematangan buah jambu biji menggunakan metode ekstraksi tekstur statistic. Jurnal Mahasiswa Teknik Informatika, 2(1), 256–261. https://doi.org/10.36040/jati.v2i1.1277

Andono, P.N., Sutojo, T., & Muljono, M. (2017). Pengolahan Citra Digital. Andi, Yogyakarta.

BPS (Badan Pusat Statistik). (2019). Produksi Buah-buahan di Indonesia. Badan Pusat Statistik, Jakarta.

BSN (Badan Standardisasi Nasional). (2009). Jambu Biji. Badan Standardisasi Nasional, Jakarta.

Fadhilah, A., Susanti, S., & Gultom, T. (2018). Karakterisasi tanaman jambu biji (Psidium guajava L) di Desa Namoriam Pancur Batu Kabupaten Deli Serdang Sumatera Utara. Prosiding Seminar Nasional Biologi dan Pembelajarannya, Universitas Negeri Medan, 12 Oktober 2018.

Fauzi, J.F., Tolle, H., & Dewi, R.K. (2018). Implementasi metode rgb to hsv pada aplikasi pengenalan mata uang kertas berbasis android untuk tuna netra. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(6), 2319–2325.

Hadikristanto, W. (2016). Pembelajaran sistem tata surya untuk siswa sekolah dasar berbasis unity 3d. Jurnal SIGMA, 7(2), 127-134.

Huda, M. (2016). Deteksi tepi citra telur dengan algoritma Prewitt untuk perhitungan volume. Prosiding Seminar Nasional IPTEK Terapan, 18–23.

Ifmalinda, I., Andasuryani, A., & Shaufana, L. (2022). Identifikasi bentuk buah alpukat (Persea americana Mill.) dengan analisis citra digital. Jurnal Teknologi Pertanian, 23(3), 215–226. http://dx.doi.org/10.21776/ub.jtp.2022.023.03.5

Indriyani, L., Susanto, W., & Riana, D. (2017). Aplikasi matlab pada pengukuran diameter buah jeruk keprok. IJCIT (Indonesian Jurnal Computer and Information Technology), 2(1), 46–52. https://doi.org/10.31294/ijcit.v2i1.1913

Maroof, M.A., Mahboubi, A., Noorzad, A., & Safi, Y. (2020). A new approach to particle shape classification of granular materials. Transportation Geotechnics, 22(5), 100296. https://doi.org/10.1016/j.trgeo.2019.100296

Murtius, W.S., & Hari, P.D. (2019). Pelatihan pasca panen dan pengolahan jambu biji merah untuk petani di Kecamatan VII Koto Sungai Sariak Padang Pariaman. Jurnal Warta Pengabdian Andalas, 26(2), 117-122. http://dx.doi.org/10.25077/jwa.26.2.117-122.2019

Naseer, S., Hussain, N., Naeem, N., Pervaiz, M., & Rahman, M. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4, 32. https://doi.org/10.1186/s40816-018-0093-8

Prasetyo, V.R., Lazuardi, H., Mulyono, A.A., & Lauw, C. (2021). Penerapan aplikasi rapidminer untuk prediksi nilai tukar rupiah terhadap US dollar dengan metode regresi linear. TEKNOSI, 7(1), 8–17.

Putri, P.S.A., Martono, K.T., & Windasari, I.P. (2020). Pengembangan sistem pendeteksi gesture angka pada tangan secara realtime berbasis android. Edu Komputika Journal, 7(1), 1–9. http://dx.doi.org/10.15294/edukomputika.v7i1.38655

Rohmawati, I., Sudargo., & Menarianti, I. (2019). Pengembangan game edukasi tentang budaya Nusantara ‘Tanara’ menggunakan unity 3d berbasis Android. Jurnal Sistem Informatika dan Teknologi, 2, 175–184. https://doi.org/10.24176/sitech.v2i2.3907

Sinaga, A.S.R.M. (2017). Implementasi teknik threshoding pada segmentasi citra digital. Jurnal Mantik Penusa, 1(2), 48–51.

Sugiyono, S. (2008). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Alfabeta, Bandung.

Sukestiyarno, S. (2014). Statistika Dasar. Andi, Yogyakarta.

Supranto, J. (2016). Statistik: Teori dan Aplikasi. Erlangga, Jakarta.

Sutarno, S., Abdullah, R.F., & Passarella, R. (2017). Identifikasi tanaman buah berdasarkan fitur bentuk, warna dan tekstur daun berbasis pengolahan citra dan learning vector quantization (LVQ). Prosiding Annual Research Seminar, 3(1), 65–70.

Syakri, S.A., Mulyadi, M., & Simbolon, Z.K. (2018). Identifikasi tingkat kebulatan buah pepaya berdasarkan luas objek dengan pengolahan citra. Jurnal Infomedia, 2(2), 41–47. http://dx.doi.org/10.30811/.v2i2.517

Utami, R.Z., Suksmadana, M.B., & Kanata, B. (2018). Menentukan luas objek citra dengan teknik deteksi tepi. Dielektrika, 2(1), 11-17.

Wirayudhana, I.G. (2021). Klasifikasi mutu buah jambu biji getas merah berdasarkan tekstur menggunakan grey level co-occurence matrix (GLCM) dengan klasifikasi KNN. Jurnal Indonesia Sosial Teknologi, 2(6), 953-964. http://dx.doi.org/10.36418/jist. v2i6.166

Yelvarina, Y., Nugroho, S., & Swita, B. (2018). Kajian uji Mann-Whitney dan uji peringkat bertanda Wilcoxon. Sigma Mu Rho e-Jurnal Statistika, 2, 61-69.

Yossy, E.H., Pranata, J., Wijaya, T., Hermawan, H., Budiharto, W. (2017). Mango fruit sortation system using neural network and computer vision. Procedia Computer Science, 116, 596-603. https://doi.org/10.1016/j.procs.2017.10.013

Downloads

Published

2025-07-25

How to Cite

Ifmalinda, I., Fitriyah, Z., & Cherie, D. (2025). Identification of Guava Fruit Shape (Psidium guajava L.) with Android-Based Digital Image Processing. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(4), 1300–1312. https://doi.org/10.23960/jtepl.v14i4.1300-1312