Drying Characteristics of Pine Wood (Pinus merkusii Jungh. et de Vriese) Using Hot Air, Infrared, and Combined Infrared-Hot Air

Authors

  • Yefri Chan Darma Persada University
  • Dwi Aries Himawanto Sebelas Maret University
  • Budi Kristiawan Sebelas Maret University
  • Indri Yaningsih Sebelas Maret University
  • Erwin Erwin Darma Persada University

DOI:

https://doi.org/10.23960/jtep-l.v14i3.772-780
Abstract View: 155

Abstract

This research aims to determine the drying characteristics of Merkusii pine wood (Pinus merkusii Jungh. et de Vriese) using three methods, including the hot air drying, infrared, and combined infrared-hot air. The drying characteristics included temperature distribution, reduction in moisture content, drying rate, wood surface temperature distribution, and specific energy consumption (SEC). The results show that the combined infrared-hot air drying method produces a faster drying time and the highest drying rate compared to the only hot air or only infrared drying method. The fastest drying time was 345 min at a treatment temperature of 90°C, air velocity of 3 m/s, and the greatest drying rate was 0.429 gr/min at a temperature of 80°C, air velocity of 3 m/s. Additionally, the combined infrared hot air method produces a more uniform temperature distribution on the wood surface and lower specific energy consumption, specifically 1027.15 MJ/kg.

 

Keywords: Drying, Hot air, Infrared, Temperature.

Downloads

Download data is not yet available.

Author Biographies

Yefri Chan, Darma Persada University

Mechanical Engineering Department

Dwi Aries Himawanto, Sebelas Maret University

Department of Mechanical Engineering 

Budi Kristiawan, Sebelas Maret University

Department of Mechanical Engineering

Indri Yaningsih, Sebelas Maret University

Department of Mechanical Engineering

Erwin Erwin, Darma Persada University

Department of Mechanical Engineering

References

American Society for Testing Material (ASTM). (2003). ASTM D4442-92: Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials. Annual Book of ASTM Standards, 4(10).

Avramidis, S., Lazarescu, C., Rahimi, S. (2023). Basics of wood drying. In Springer Handbook of Wood Science and Technology, 679-706. https://doi.org/10.1007/978-3-030-81315-4_13

Basri, E., Yuniarti, K., Wahyudi, I., & Pari, R. (2018). Teknologi Pengeringan Kayu. IPB Press.

Chan, Y., Himawanto, D.A., Kristiawan, B., & Yaningsih, I. (2023). Isothermal drying kinetic of sengon wood (Paraserianthes falcataria) using combined infrared and hot air: Experimental and modeling study. Jordan Journal of Mechanical and Industrial Engineering, 17(4), 549–554. https://doi.org/10.59038/jjmie/170410

Chan, Y., Himawanto, D.A., Kristiawan, B., & Yaningsih, I. (2024). Short notes: Thermal characteristics of sengon wood drying using infrared and combined infrared-hot air methods. Wood Research, 69(1), 1–8.

Conde, M.J.M., Liñán, C.R., de Hita, P.R., & Gálvez, F.P. (2012). Infrared thermography applied to wood. Research in Nondestructive Evaluation, 23(1), 32–45. https://doi.org/10.1080/09349847.2011.626142

Cserta, E., Hegedus, G., & Németh, R. (2011). Drying process in Norway spruce wood exposed to infrared radiation. BioResources, 6(4), 4181–4189. https://doi.org/10.15376/biores.6.4.4181-4189

Cserta, E., Hegedűs, G., & Németh, R. (2012). Evolution of temperature and moisture profiles of wood exposed to infrared radiation. BioResources, 7(4), 5304–5311. https://doi.org/10.15376/biores.7.4.5304-5311

Cserta, E., Hegedűs, G., Agócs, G., & Németh, R. (2013). Impact of initial moisture content on the drying process of wood exposed to infrared radiation. BioResources, 8(3), 4283–4287. https://doi.org/10.15376/biores.8.3.4283-4287

Dupleix, A., De Sousa Meneses, D., Hughes, M., & Marchal, R. (2013). Mid-infrared absorption properties of green wood. Wood Science and Technology, 47(6), 1231–1241. https://doi.org/10.1007/s00226-013-0572-5

Elustondo, D., Matan, N., Langrish, T., & Pang, S. (2023). Advances in wood drying research and development. Drying Technology, 41(6), 890–914. https://doi.org/10.1080/07373937.2023.2205530

FAO (Food and Agriculture Organization). (2009). ISPM 15 Regulation of Wood Packaging Material in International Trade. Secretariat of the International Plant Protection Convention, Rome, Italy.

Fransiska, Y., Radam, R., & Sari, M.N. (2023). Pengeringan kayu karet (Hevea brasiliensis) menggunakan metode green house degan teknik penyusunan horizontal (rebah) dan vertikal (sandar). Jurnal Sylinva Scienteae, 6(3), 375–383. https://doi.org/10.20527/jss.v6i3.9213

Horák, J., Kuboňová, L., Tomšejová, S., Laciok, V., Krpec, K., Hopan. F., Kubesa, P., Kysučan, Z., & Ochodek, T. (2012). Change in the wood moisture dependency on time and drying conditions for heating by wood combustion. Wood Research, 63(2), 261–272.

International Organization for Standardization. (2003). ISO 6780: Flat Pallets for Intercontinental Materials Handling — Principal Dimensions and Tolerances. ISO Central Secretariat, Vernier (Geneva), witzerland.

Jati, I.S., & Rivai, M. (2020). Implementasi thermal camera pada pengaturan pendingin ruangan. Jurnal Teknis ITS, 8(2), 1–6. http://dx.doi.org/10.12962/j23373539.v8i2.43131

Karlinasari, L., Nawawi, D.S., & Widyani, M. (2010). Kajian sifat anatomi dan kimia kayu kaitannya dengan sifat akustik kayu. Bionatura: Jurnal Ilmu-Ilmu Hayati dan Fisik, 12(3), 110-116.

Kaveh, M., & Abbaspour-Gilandeh, Y. (2020). Impacts of hybrid (convective-infrared-rotary drum) drying on the quality attributes of green pea. Journal of Food Process Engineering, 43(7), e13424. https://doi.org/10.1111/jfpe.13424

Kollmann, F.F.P., Schneider, A., & Böhner, G. (1967). Investigations on the heating and drying of wood with infrared radiation. Wood Science and Technology, 1, 149–160. https://doi.org/10.1007/BF00353386

Lerman, P., Scheepers, G., & Wiberg, P. (2022). A laboratory setup for measuring the wood-surface temperature during drying by means of thermography. Wood Material Science & Engineering, 18(2), 701–706. https://doi.org/10.1080/17480272.2022.2066479

Nurmawati, T., Hadiyanto, H., Cahyadi, C., & Fachrizal, N. (2022). Pengaruh daya lampu terhadap proses pengeringan jamur tiram berbasis lampu infrared. Jurnal Energi Baru dan Terbarukan, 3(3), 239–248. https://doi.org/10.14710/jebt.2022.14627

Ondro, T., Vitázek, I., Húlan, T., Lawson, M.K., & Csáki, Š. (2018). Non-isothermal kinetic analysis of the thermal decomposition of spruce wood in air atmosphere. Research in Agricultural Engineering, 64(1), 41–46. https://doi.org/10.17221/115/2016-RAE

Purnawati, R., & Arifudin, M. (2021). Sifat dan jadwal pengeringan kayu Flindersia pimenteliana. Jurnal Kehutanan Papuasia, 7(2), 208–14. https://doi.org/10.46703/jurnalpapuasia.Vol7.Iss2.253

Putera, H.P., & Listyanto, T. (2021). Relationship between axial location and board thickness variation on the development of drying schedule of cemara gunung (Casuarina Junghuhniana Miq.). Jurnal Sylva Lestari, 9(1), 121-137. https://doi.org/10.23960/jsl19121-137

Sakare, P., Prasad, N., Thombare, N., Singh, R., & Sharma, S.C. (2020). Infrared drying of food materials: Recent advances. Food Engineering Reviews, 12(3), 381–398. https://doi.org/10.1007/s12393-020-09237-w

Sallata, M.K. (2013). Pinus (Pinus merkusii Jungh et de Vriese) dan keberadaannya di Kabupaten Tana Toraja, Sulawesi Selatan. Jurnal Penelitiaperlun Sosial dan Ekonomi Kehutanan, 10(2), 85-98.

Straže, A., Klarić, M., Budrović, Z., & Pervan, S. (2020). Characterisation and modelling of drying kinetics of thin ash and oak wood with infrared radiation and hot air. Drvna Industrija, 71(2), 171–177. https://doi.org/10.5552/drvind.2020.1965

Ye, L., El-Mesery, H.S., Ashfaq, M.M., Shi, Y., Zicheng, H., & Alshaer, W.G. (2021). Analysis of energy and specific energy requirements in various drying process of mint leaves. Case Studies in Thermal Engineering, 26, 101113. https://doi.org/10.1016/j.csite.2021.101113

Downloads

Published

2025-05-05

How to Cite

Chan, Y., Himawanto, D. A., Kristiawan, B., Yaningsih, I., & Erwin, E. (2025). Drying Characteristics of Pine Wood (Pinus merkusii Jungh. et de Vriese) Using Hot Air, Infrared, and Combined Infrared-Hot Air. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(3), 772–780. https://doi.org/10.23960/jtep-l.v14i3.772-780

Issue

Section

Articles