Bangka Sago as A Superior Starch Source: Processing, Morphology, Chemical Properties, and Heavy Metal Content

Authors

  • Shafira Pratiwi Institut Pertanian Bogor
  • Edi Santosa Institut Pertanian Bogor
  • Mochamad Hasjim Bintoro Institut Pertanian Bogor

DOI:

https://doi.org/10.23960/jtep-l.v14i3.789-802
Abstract View: 132

Abstract

Indonesia has significant potential for food diversification through the development of sago as an alternative carbohydrate source. This study aims to analyze the processing methods, morphological characteristics, chemical properties, and heavy metal content of local sago in Bangka and Bangka Tengah Regencies. The research was conducted across six villages from November 2023 to March 2024, with chemical and heavy metal testing performed in accredited laboratories. The results indicate that modern processing methods produce high quality starch with a starch content ranging from 79.06% to 83.73% and heavy metal levels such as tin (Sn), lead (Pb), and cadmium (Cd) below the established safety limits, making it safe for consumption. Morphologically, habitat differences influence the physical characteristics of sago, such as trunk height, bark thickness, and leaf area, which affect starch productivity. The study also identifies that environmental factors, including nutrient availability and soil moisture levels, influence the chemical composition of sago. This research provides a scientific foundation for the integrated management of sago, supporting national food diversification efforts and opening opportunities for the development of sago based products that meet national quality standards (SNI) with an environmentally friendly approach. These findings are relevant for stakeholders in optimizing sago's potential as a strategic commodity contributing to national food security.

 

Keywords: Food diversification, Heavy metal, Sago, Starch content, Sustainable agriculture.

Downloads

Download data is not yet available.

References

Ahmad, A.N., Lim, S.A., Navaranjan, N., Hsu, Y-I., & Uyama, H. (2020). Green sago starch nanoparticles as reinforcing material for green composites. Polymer, 202, 122646. https://doi.org/10.1016/j.polymer.2020.122646

Alemayehu, G. F., Forsido, S. F., Tola, Y. B., Teshager, M. A., Assegie, A. A., & Amare, E. (2021). Proximate, mineral and anti nutrient compositions of oat grains (Avena sativa) cultivated in Ethiopia: Implications for nutrition and mineral bioavailability. Heliyon, 7(8), 1–8. https://doi.org/10.1016/j.heliyon.2021.e07722

Ayulia, L., Djoefrie, M.H.B., & Arifien, Y. (2021). Vegetative morphology and starch production among sago plants (Metroxylon spp.) Kepulauan Meranti District, Riau, Indonesia. Journal of Tropical Crop Science, 8(1), 33–40. https://doi.org/10.29244/JTCS.8.01.33-40

Babelprov. (2023). Pengamatan Unsur Iklim di Stasiun Pengamatan Badan Meteorologi dan Geofisika (BMKG). https://sdi.babelprov.go.id/sektoral/elemen/periode/6215A2352C1D6/2023 Botanri, S. (2015). Preferensi habitat dan adaptasi tumbuhan sagu (Metroxylon spp) di Pulau Seram Provinsi Maluku. Prosiding Seminar Nasional Penguatan Pembangunan Berbasis Riset Perguruan Tinggi.

BPS (Badan Pusat Statistik). (2023). Provinsi Kepulauan Bangka Belitung Dalam Angka 2023. Badan Pusat Statistik Provinsi Bangka Belitung. Gaitán-Cremaschi, D., Klerkx, L., Duncan, J., Trienekens, J.H., & Huenchuleo, C., Dogliotti, S., Contesse, M.E., Rossing, W.A.H. (2019). Characterizing diversity of food systems in view of sustainability transitions. A review. Agronomy for Sustainable Development, 39(1), 1–22. https://doi.org/10.1007/s13593-018-0550-2

Dewayani, W., Mahendradatta, M., & Laga, A. (2024). Post-harvest handling of sago and the sustainability of the processed results. BIO Web of Conferences, 96, 02001. https://doi.org/10.1051/bioconf/20249602001

Djoefrie, M.H.B., Herodian, S., Ngadiono, Thoriq, A., & Amarillis, S. (2014). Sagu untuk kesejahteraan masyarakat Papua: Suatu kajian dalam upaya pengembangan sagu sebagai komoditas unggulan di Provinsi Papua dan Provinsi Papua Barat. Unit Percepatan Pembangunan Papua dan Papua Barat.

Du, C., Jiang, F., Jiang, W., Ge, W., & Du, S-k. (2020). Physicochemical and structural properties of sago starch. International Journal of Biological Macromolecules, 164(1), 1785–1793. https://doi.org/10.1016/j.ijbiomac.2020.07.310

Ickowitz, A., Powell, B., Rowland, D., Jones, A., & Sunderland, T. (2019). Agricultural intensification, dietary diversity, and markets in the global food security narrative. Global Food Security, 20(1), 9–16. https://doi.org/10.1016/j.gfs.2018.11.002

Li, Z., & Wei, C. (2020). Morphology, structure, properties and applications of starch ghost: A review. International Journal of Biological Macromolecules, 163(1), 2084–2096. https://doi.org/10.1016/j.ijbiomac.2020.09.077

Maherawati., Lestari, R.B., & Haryadi. (2011). Karakteristik pati dari batang sagu Kalimantan Barat pada tahap pertumbuhan yang berbeda. AGRITECH, 31(1), 9–13. https://jurnal.ugm.ac.id/agritech/article/view/9720/7295

Octavia, D., Suharti, S., Murniati., Dharmawan, I.W.S., Nugroho, H.Y.S.H., Supriyanto, B., Rohadi, D., Njurumana, G.N., Yeny, I., Hani, A., Mindawati, N., Suratman., Adalina, Y., Prameswari, D., Hadi, E.E.W., & Ekawati, S. (2022). Mainstreaming smart agroforestry for social forestry implementation to support sustainable development goals in Indonesia: A Review. Sustainability, 14(15), 1–29. https://doi.org/10.3390/su14159313

Polnaya, F.J., Huwae, A.A., & Tetelepta, G. (2018). Karakteristik sifat fisiko-kimia dan fungsional pati sagu ihur (Metroxylon sylvestre) dimodifikasi dengan hidrolisis asam. Agritech, 38(1), 7–15. https://doi.org/10.22146/agritech.16611

Purbaningsih, Y., Bafadal, A., & Sutariati, G.A.K. (2019). An analysis of the comparative and competitive advantage of sago processing business. IOP Conference Series: Earth and Environmental Science, 382, 012036. https://doi.org/10.1088/1755 1315/382/1/012036

Rahmawati, S., Wahyuni, S., Khaeruni, A. (2019). Pengaruh modifikasi terhadap karakteristik kimia tepung sagu termodifikasi : Studi kepustakaan, The effect of modification process on the chemical characteristics of modified sago flour: A review. Jurnal Sains dan Teknologi Pangan, 4(2), 2096–2103. https://ojs.uho.ac.id/index.php/jstp/article/view/7129/5288

Santoso, A.D. (2018). Potensi dan kendala pengembangan sagu sebagai bahan pakan, pangan, energi dan kelestarian lingkungan di Indonesia. Jurnal Rekayasa Lingkungan, 10(2), 51–57. Schneider, P., & Asch, F. (2020). Rice production and food security in Asian Mega deltas—A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. Journal of Agronomy and Crop Science, 206(4), 491–503. https://doi.org/10.1111/jac.12415

Selvarajan, E., Veena, R., & Kumar, N.M. (2018). Microbial bioprospecting for sustainable development. Springer Singapore, 203 222.

Sheil, D., Boissière, M., van Heist, M., Rachman, I., Basuki, I., Wan, M., & Watopa, Y. (2021). The floodplain forests of the mamberamo basin, papua, indonesia (Western new guinea): Vegetation, soils, and local use. Forests, 12(12), 1–26. https://doi.org/10.3390/f12121790

Sugeng, S., & Fitria, A. (2023). Food sovereignty for Indonesia: The epistemological dimension of knowledge and variety of local food. Jurnal Analisis Hukum, 6(1), 18–32. https://doi.org/10.38043/jah.v6i1.4179

Sumardiono, S., Budiyono, B., Kusumayanti, H., Silvia, N., Luthfiani, V.F., & Cahyono, H. (2021). Production and physicochemical characterization of analog rice obtained from sago flour, mung bean flour, and corn flour using hot extrusion technology. Foods, 10(12), 1–15. https://doi.org/10.3390/foods10123023

Susanto, B., Tosuli, Y.T., Adnan., Cahyadi., Nami, H., Surjosatyo, A., Alandro, D., Nugroho, A.D., Rashyid, M.I., & Muflikhun, M. A. (2024). Characterization of sago tree parts from Sentani, Papua, Indonesia for biomass energy utilization. Heliyon, 10(1), 1 22. https://doi.org/10.1016/j.heliyon.2024.e23993

Syartiwidya, S. (2023). Potensi sagu (Metroxylon Sp.) dalam mendukung ketahanan pangan di Provinsi Riau. Selodang Mayang: Jurnal Perencanaan Pembangunan Daerah Kabupaten Indragiri Hilir, 9(1), 77–84. https://doi.org/10.47521/selodangmayang.v9i1.277

Toromade, A.S., Soyombo, D.A., Kupa, E., & Ijomah, T.I. (2024). Reviewing the impact of climate change on global food security: Challenges and solutions. International Journal of Applied Research in Social Sciences, 6(7), 1403–1416. https://doi.org/10.51594/ijarss.v6i7.1300

Trisia, M.A., Metaragakusuma, A.P., Osozawa, K., & Bai, H. (2016). Promoting sago palm in the context of national level: Challenges and strategies to adapt to climate change in Indonesia. International Journal of Sustainable Future for Human Security, 4(2), 54–63. https://doi.org/10.24910/jsustain/4.2/5463

Trisia, M.A., Tachikawa, M., & Ehara, H. (2021). The role of the sago supply chain for rural development in Indonesia. Reviews in Agricultural Science, 9(1), 143–156. https://www.jstage.jst.go.jp/article/ras/9/0/9_143/_html/-char/en

Zou, W., Sissons, M., Gidley, M.J., Gilbert, R.G., & Warren, F.J. (2015). Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chemistry, 188(1), 559–568. https://doi.org/10.1016/j.foodchem.2015.05.032

Downloads

Published

2025-05-09

How to Cite

Pratiwi, S., Santosa, E., & Bintoro, M. H. (2025). Bangka Sago as A Superior Starch Source: Processing, Morphology, Chemical Properties, and Heavy Metal Content. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(3), 789–802. https://doi.org/10.23960/jtep-l.v14i3.789-802

Issue

Section

Articles