Fluorescence Imaging as a Non-Destructive Method for Aflatoxin Detection in Corn Kernels: Recent Advances and Challenges
DOI:
https://doi.org/10.23960/jtep-l.v14i2.714-731
Abstract View: 232
Abstract
Fluorescence imaging has developed as a promising non-invasive method for identifying aflatoxin contamination in agricultural commodities, especially corn kernels. This paper examines current improvements in fluorescence imaging technologies, highlighting its potential to improve food safety through swift and precise detection of mycotoxins. The paper examines the basics of fluorescence, the necessary setup for optimal imaging, and the issues related to background fluorescence interference, sensitivity, and the construction of calibration models. Although there are some limitations, fluorescence imaging presents considerable advantages, such as cost-efficiency and the capacity to obtain concurrent spectral and spatial data. Proposed future research objectives include the validation of imaging systems using naturally contaminated samples, the optimization of imaging parameters, and the integration of machine learning techniques to enhance data processing. By overcoming existing constraints and utilizing technical progress, fluorescence imaging can serve as an essential instrument in the detection of aflatoxin contamination, hence enhancing food safety.
Keywords: Aflatoxin, Detection, Fluorescence imaging, Food safety, Machine learning.
Downloads
References
Abdallah, M.F., Krska, R., & Sulyok, M. (2018). Occurrence of ochratoxins, fumonisin B2, aflatoxins (B1 and B2), and other secondary fungal metabolites in dried date palm fruits from Egypt: A mini‐survey. Journal of Food Science, 83(2), 559–564. https://doi.org/10.1111/1750-3841.14046
Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J.J. (2017). Hyperspectral imaging: A review on UAV based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110. https://doi.org/10.3390/rs9111110
Al-Jaal, B., Jaganjac, M., Barcaru, A., Horvatovich, P., & Latiff, A.A. (2019). Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food and Chemical Toxicology, 129, 211–228. https://doi.org/10.1016/j.fct.2019.04.047
Ammida, N.H.S., Micheli, L., & Palleschi, G. (2004). Electrochemical immunosensor for determination of aflatoxin B 1 in barley. Analytica Chimica Acta, 520(1–2), 159–164. https://doi.org/10.1016/j.aca.2004.04.024
Anfossi, L., D’Arco, G., Calderara, M., Baggiani, C., Giovannoli, C., & Giraudi, G. (2011). Development of a quantitative lateral flow immunoassay for the detection of aflatoxins in maize. Food Additives & Contaminants Part A, 28(2), 226–234. https://doi.org/10.1080/19440049.2010.540763
Balina, A., Kebede, A., & Tamiru, Y. (2018). Review on aflatoxin and its impacts on livestock. JOJ Science, 1(3), 555564. https://doi.org/10.19080/JOJS.2018.01.555564
Barikbin, B., Allahresani, A., Khosravi, R., & Khodadadi, M. (2015). Detection of aflatoxin M1 in dairy products marketed in Iran. Health Scope, 4(1). https://doi.org/10.17795/jhealthscope-18925
Bartolić, D., Mutavdžić, D., Carstensen, J.M., Stankоvić, S., Nikolić, M., Krstović, S., & Radotić, K. (2022). Fluorescence spectroscopy and multispectral Imaging for fingerprinting of Aflatoxin-B1 contaminated (Zea Mays L.) seeds: A preliminary study. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-08352-4
Benkerroum, N. (2020). Aflatoxins: Producing-molds, structure, health issues and incidence in Southeast Asian and Sub-Saharan African countries. International Journal of Environmental Research and Public Health, 17(4), 1215. https://doi.org/10.3390/ijerph17041215
Journal of Environmental Research and Public Health, 17(4), 1215.
Bertani, F.R., Businaro, L., Gambacorta, L., Mencattini, A., Brenda, D., Di Giuseppe, D., De Ninno, A., Solfrizzo, M., Martinelli, E., & Gerardino, A. (2020). Optical detection of aflatoxins B in grained almonds using fluorescence spectroscopy and machine learning algorithms. Food Control, 112, 107073. https://doi.org/10.1016/j.foodcont.2019.107073
Bertani, F.R., Mencattini, A., Gambacorta, L., De Ninno, A., Businaro, L., Solfrizzo, M., Gerardino, A., & Martinelli, E. (2023). Aflatoxins detection in almonds via fluorescence imaging and Deep Neural Network approach. Journal of Food Composition and Analysis, 125. https://doi.org/10.1016/j.jfca.2023.105850
Budianto, B., Arumsari, A. G., Lenin, A., Suparmi, A., Arifin, M.J., & Haryani, R. (2022). Effectiveness of collaborative strategy to reduce aflatoxin contamination in corn. Series II - Forestry • Wood Industry • Agricultural Food Engineering, 123–138. https://doi.org/10.31926/but.fwiafe.2022.15.64.2.9
Cernoch, I., Fránek, M., Diblíková, I., Hilscherová, K., Randak, T., Ocelka, T., & Bláha, L. (2012). POCIS sampling in combination with ELISA: Screening of sulfonamide residues in surface and waste waters. Journal of Environmental Monitoring, 14(1), 250–257. https://doi.org/10.1039/c1em10652j
Chavez, R.A., Cheng, X., & Stasiewicz, M.J. (2020). A review of the methodology of analyzing aflatoxin and fumonisin in single
corn kernels and the potential impacts of these methods on food security. Foods, 9(3), 297https://doi.org/10.3390/foods9030297
Chen, J., Wang, L., Zhao, M., Huang, D., Luo, F., Huang, L., Qiu, B., Guo, L., Lin, Z., & Chen, G. (2018). Enzyme-linked immunosorbent assay for aflatoxin B1 using a portable pH meter as the readout. Analytical Methods, 10(30), 3585–3591. https://doi.org/10.1039/C8AY01030G
Cheng, X., Vella, A., & Stasiewicz, M.J. (2019). Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy. Food Control, 98, 253–261. https://doi.org/10.1016/j.foodcont.2018.11.037
Chu, X., Wang, W., Ni, X., Zheng, H., Zhao, X., Zhuang, H., Lawrence, K.C., Li, C., Li, Y., & Lu, C. (2018a). Evaluation of growth characteristics of Aspergillus parasiticus inoculated in different culture media by shortwave infrared (SWIR) hyperspectral imaging. Journal of Innovative Optical Health Sciences, 11(5), 1–15. https://doi.org/10.1142/S1793545818500311visible/near-infrared
Chu, X., Wang, W., Zhao, X., Zheng, H., Kimuli, D., Jiang, H., Jia, B., & Yang, Y. (2018b). Identification of moldy corn kernels using visible/near-infrared hyperspectral image. ASABE 2018 Annual International Meeting, 2–11. http://dx.doi.org/10.13031/aim.201800808
Council for Agricultural Science and Technology (CAST). (2013). Mycotoxins: Risks in plant, animal, and human systems. CAST Daşbaşı, T. (2022). Kırmızı Pul Biber Örneklerinde HPLC İle Aflatoksin Türlerinin Analizi. European Journal of Science and Technology, 41, 126-131. https://doi.org/10.31590/ejosat.1141196
Divakara, S.T., Aiyaz, M., Moore, G.G., Mudili, V., Hariprasad, P., Nayaka, S.C., & Niranjana, S.R. (2015). Analysis of genetic and aflatoxin diversity among Aspergillus flavus isolates collected from sorghum seeds. Journal of Basic Microbiology, 55(11), 1255–1264. https://doi.org/10.1002/jobm.201400951
Ehrlich, K.C. (2014). Non-aflatoxigenic Aspergillus Flavus to prevent aflatoxin contamination in crops: Advantages and limitations. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00050
Endre, G., Nagy, B.E., Hercegfalvi, D., Kasuba, C., Vágvölgyi, C., & Szekeres, A. (2023). Scale-up of aflatoxin purification by centrifugal partition chromatography. Toxins, 15(3), 178. https://doi.org/10.3390/toxins15030178
Finglas, P.M., Williams, R.D., & McClements, D.J. (2008). Aflatoxins: Occurrence, analysis, and control. In Handbook of food science, technology, and engineering (Vol. 4, pp. 1–20). CRC Press/Taylor & Francis
Fountain, J.C., Scully, B.T., Ni, X., Kemerait, R.C., Lee, R.D., Chen, Z.Y., & Guo, B. (2014). Environmental influences on maize Aspergillus flavus interactions and aflatoxin production. In Frontiers in Microbiology (Vol. 5, Issue FEB). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2014.00040
Fujita, K., Sugiyama, J., Tsuta, M., Shibata, M., Kokawa, M., Onda, H., & Sagawa, T. (2013). Detection of aflatoxins B1, B2, G1 and G2 in nutmeg extract using fluorescence fingerprint. Food Science and Technology Research, 19(4), 539–545. https://doi.org/10.3136/fstr.19.539
Gao, J., Wang, J., Wu, C., Hou, F., Chang, S., Wang, Z., Pu, Q., Guo, D., & Fu, H. (2018). Fast screening of aflatoxins in dairy cattle feeds with CE‐LIF method combined with preconcentration technique of vortex assisted low density solvent microextraction. Electrophoresis, 40(4), 499–507. https://doi.org/10.1002/elps.201800339
Göttfert, F., Pleiner, T., Heine, J., Westphal, V., Görlich, D., Sahl, S.J., & Hell, S.W. (2017). Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proceedings of the National Academy of Sciences, 114(9), 2125–2130. https://doi.org/10.1073/pnas.1621495114
Güneş, A., Kalkan, H., Durmuş, E., & Butukcan, M.B. (2013). Detection of Aflatoxin Contaminated Figs Using Near-Infrared (NIR) Reflectance Spectroscopy. 123–126. https://doi.org/10.1109/icecco.2013.6718244
Han, D., Yao, H., Hruska, Z., Kincaid, R., Rajasekaran, K., & Bhatnagar, D. (2019). Development of high-speed dual-camera system for batch screening of aflatoxin contamination of corn using multispectral fluorescence imaging. American Society of Agricultural and Biological Engineers, 62(2012), 381–391. http://dx.doi.org/10.13031/trans.13125
Hao, W., Guan, S., Li, A., Wang, J., An, G., Hofstetter, U., & Schatzmayr, G. (2023). Mycotoxin occurrence in feeds and raw materials in China: A five-year investigation. Toxins, 15(1), 63. https://doi.org/10.3390/toxins15010063
Hruska, Z., Yao, H., Kincaid, R., Brown, R.L., & Bhatnagar, D. (2017). Temporal effects on internal fluorescence emissions associated with aflatoxin contamination from corn kernel cross-sections inoculated with toxigenic and atoxigenic Aspergillus Flavus. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01718
Hruska, Z., Yao, H., Kincaid, R., Darlington, D., Brown, R.L., Bhatnagar, D., & Cleveland, T.E. (2013). Fluorescence imaging spectroscopy (FIS) for comparing spectra from corn ears naturally and artificially infected with aflatoxin producing fungus. Journal of Food Science, 78(8). https://doi.org/10.1111/1750-3841.12202
International Agency for Research on Cancer (IARC). (2012). Aflatoxins. In IARC monographs on the evaluation of carcinogenic risks to humans (Vol. 100F). International Agency for Research on Cancer. https://publications.iarc.fr
Jacobson, T.A. (2024). Advancing global health surveillance of mycotoxin exposures using minimally invasive sampling techniques:
A state-of-the-science review. Environmental Science & Technology, 58(8), 3580–3594. https://doi.org/10.1021/acs.est.3c04981
Jallow, A., Xie, H., Tang, X., Zhang, Q., & Li, P. (2021). Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2332–2381. https://doi.org/10.1111/1541-4337.12734
Kandpal, L.M., Lee, S., Kim, M.S., Bae, H., & Cho, B.K. (2014). Short wave infrared (SWIR) hyperspectral imaging technique for examination aflatoxin B 1 (AFB 1 ) on corn kernels. Food Control, 51, 171–176. https://doi.org/10.1016/j.foodcont.2014.11.020
Kerry, R., Ortiz, B.V, Ingram, B., & Scully, B.T. (2017). A spatio–temporal investigation of risk factors for aflatoxin contamination of
corn in Southern Georgia, USA using geostatistical methods. Crop Protection, 94, 144–158. https://doi.org/10.1016/j.cropro.2016.12.005
Khalid, S., Hussain, N., & Imran, M. (2018). Detection of aflatoxigenicity of Aspergillus Flavus, based on potential gene marker, from food and feed samples. Journal of Food Safety, 38(3). https://doi.org/10.1111/jfs.12448
Kim, Y., Baek, I., Lee, K., Kim, G., Kim, S., Kim, S., Chan, D., Herrman, T.J., Kim, N., & Kim, M.S. (2023). Rapid Detection of Single- and Co-Contaminant Aflatoxins Imaging Techniques. 1–12.
Kumar, P., Mahato, D.K., Kamle, M., Mohanta, T.K., & Kang, S.G. (2017). Aflatoxins: A global concern for food safety, human health and their management. Frontiers in Microbiology, 07. https://doi.org/10.3389/fmicb.2016.02170
Levasseur-Garcia, C. (2018). Updated overview of infrared spectroscopy methods for detecting mycotoxins on cereals (Corn, wheat, and barley). Toxins, 10(1), 38. https://doi.org/10.3390/toxins10010038
Li, J., Cai, T., Li, W., Li, W., Song, L., Li, Q., Lv, G., Sun, J., Jiao, S., Wang, S., Yu, J., & Zheng, T. (2020). Highly sensitive simultaneous detection of multiple mycotoxins using a protein microarray on a TiO2-modified porous silicon surface. Journal of Agricultural and Food Chemistry, 69(1), 528–536. https://doi.org/10.1021/acs.jafc.0c06859
Lien, K., Wang, X., Pan, M., & Ling, M. (2019). Assessing Aflatoxin exposure risk from peanuts and peanut products imported to Taiwan. Toxins, 11(2), 80. https://doi.org/10.3390/toxins11020080
Luis, J.M., Ozias-Akins, P., Holbrook, C.C., Kemerait, Jr.R.C., Snider, J., & Liakos, V. (2016). Phenotyping Peanut for drought tolerance. Peanut Science, 43(1), 36–48. https://doi.org/ 10.3146/PS15-5.1
Magnus, I., Virte, M., Thienpont, H., & Smeesters, L. (2021). Combining optical spectroscopy and machine learning to improve food classification. Food Control, 130, 108342. https://doi.org/10.1016/j.foodcont.2021.108342
Mahfuz, M., Gazi, M.A., Hossain, M., Islam, M.R., Fahim, S.M., & Ahmed, T. (2020). General and advanced methods for the detection and measurement of aflatoxins and aflatoxin metabolites: A review. Toxin Reviews, 39(2), 123–137. https://doi.org/10.1080/15569543.2018.1514638
Mateus, A., Barros, S., Pena, A., & Sanches-Silva, A. (2021). Development and validation of QuEChERS followed by UHPLC ToF-MS method for determination of multi-mycotoxins in Pistachio Nuts. Molecules, 26(19), 5754. https://doi.org/10.3390/molecules26195754
Medina, Á., Rodríguez, A., & Magan, N. (2014). Effect of climate change on aspergillus flavus and aflatoxin B1 production. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00348
Mitchell, N., Bowers, E.L., Hurburgh, C.R., & Wu, F. (2016). Potential economic losses to the US corn industry from aflatoxin contamination. Food Additives & Contaminants Part A, 33(3), 540–550. https://doi.org/10.1080/19440049.2016.1138545
Momin, A., Kondo, N., Riza, D.F.A., Ogawa, Y., & Obenland, D. (2023). A methodological review of fluorescence imaging for quality assessment of agricultural products. Agriculture, 13(7), 1433. https://doi.org/10.3390/agriculture13071433
Moreau, M.J.J., Lescure, G., Agoulon, A., Svinareff, P., Orange, N., & Feuilloley, M. (2011). Application of the pulsed light technology to mycotoxin degradation and inactivation. Journal of Applied Toxicology, 33(5), 357–363. https://doi.org/10.1002/jat.1749
Nazhand, A., Durazzo, A., Lucarini, M., Souto, E.B., & Santini, A. (2020). Characteristics, occurrence, detection and detoxification of aflatoxins in foods and feeds. Foods, 9(5), 644. https://doi.org/10.3390/foods9050644
Neittaanmäki-Perttu, N., Grönroos, M., Jeskanen, L., Pölönen, I., Ranki, A., Saksela, O., & Snellman, E. (2015). Delineating margins of lentigo maligna using a hyperspectral imaging system. Acta Dermato Venereologica, 95(5), 549–552. https://doi.org/10.2340/00015555-2010
Oliveira, G.R.F.de, Silva, C.B.d., Hirai, W.Y., Batista, T.B., Sudki, J.M., Petronilio, A.C.P., Crusciol, C.A.C., & Silva, E.A.A.da. (2022). An approach using emerging optical technologies and artificial intelligence brings new markers to evaluate peanut seed quality. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.849986
Omar, S.S., Haddad, M.A., & Parisi, S. (2020). Validation of HPLC and Enzyme-linked immunosorbent assay (ELISA) techniques for detection
and quantification of aflatoxins in different food samples. Foods, 9(5), 661. https://doi.org/10.3390/foods9050661
Otto, M., Pretorius, B., Kritzinger, Q., & Schönfeldt, H.C. (2020). Contamination of freshly harvested bambara groundnut (Vigna subterranea) seed from Mpumalanga, South Africa, with mycotoxigenic fungi. Journal of Food Safety, 40(6). https://doi.org/10.1111/jfs.12846
Qin, L., Jiang, J.Y., Zhang, L., Dou, X.W., Ouyang, Z., Wan, L., & Yang, M.H. (2020). Occurrence and analysis of mycotoxins in domestic Chinese herbal medicines. Mycology, 11(2), 126–146. https://doi.org/10.1080/21501203.2020.1727578
Rasch, C., Kumke, M., & Löhmannsröben, H.G. (2010). Sensing of mycotoxin producing fungi in the processing of grains. Food and Bioprocess Technology, 3(6), 908–916. https://doi.org/10.1007/s11947-010-0364-y
Sadimantara, M.S., Argo, B.D., Sucipto, S., Al Riza, D.F., & Hendrawan, Y. (2024). The classification of aflatoxin contamination level in cocoa beans using fluorescence imaging and deep learning. Journal of Robotics and Control (Jrc), 5(1), 82–91. https://doi.org/10.18196/jrc.v5i1.19081
Singh, P., & Prasad, R. (2018). Screening of penicillium from arachis hypogea and its mycotoxin production. Journal of Plant Pathology & Microbiology, 9(10). https://doi.org/10.4172/2157-7471.1000458
Smeesters, L., Meulebroeck, W., Raeymaekers, S., & Thienpont, H. (2015). Optical detection of aflatoxins in maize using one- and two-photon induced fluorescence spectroscopy. Food Control, 51, 408. https://doi.org/10.1016/j.foodcont.2014.12.003
Smeesters, L., Meulebroeck, W., Raeymaekers, S., & Thienpont, H. (2016). One- and two-photon induced fluorescence spectroscopy enabling the detection of localized aflatoxin contamination in individual maize kernels. Proceedings Volume 9899, Optical Sensing and Detection IV, 98990X. https://doi.org/10.1117/12.2227467
Smith, L.E., Stasiewicz, M.J., Hestrin, R., Morales, L., Mutiga, S., & Nelson, R. (2016). Examining environmental drivers of spatial variability in aflatoxin accumulation in Kenyan Maize: Potential utility in risk prediction models. African Journal of Food Agriculture Nutrition and Development, 16(03), 11086–11105. https://doi.org/10.18697/ajfand.75.ilri09
Szulc, J., Kołodziej, A., & Ruman, T. (2021). Silver-109/Silver/Gold nanoparticle-enhanced target surface-assisted laser desorption/ionisation mass spectrometry—The new methods for an assessment of mycotoxin concentration on building materials. Toxins, 13(1), 45. https://doi.org/10.3390/toxins13010045
Teena, M., Manickavasagan, A., Mothershaw, A., El Hadi, S., & Jayas, D.S. (2013). Potential of machine vision techniques for detecting fecal and microbial contamination of food products: A review. Food and Bioprocess Technology, 6(7), 1621–1634. https://doi.org/10.1007/s11947-013-1079-7
Temba, B.A., Darnell, R., Gichangi, A., Lwezaura, D., Pardey, P.G., Harvey, J., Karanja, J., Massomo, S.M.S., Ota, N., Wainaina, J., Fletcher, M.T., & Kriticos, D.J. (2021). The Influence of weather on the occurrence of aflatoxin B1 in harvested maize from Kenya and Tanzania. Foods, 10(2), 216. https://doi.org/10.3390/foods10020216
Udomkun, P., Wiredu, A.N., Nagle, M., Müller, J., Vanlauwe, B., & Bandyopadhyay, R. (2017). Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – A review. Food Control, 76, 127–138. https://doi.org/10.1016/j.foodcont.2017.01.008
Umesha, S., Manukumar, H.M., Chandrasekhar, B., Shivakumara, P., Kumar, J.S., Raghava, S., Prakasha, A., Marahel, S., Bharathi, T.R., Rajini, S.B., Nandhini, M., Rani, G.g.V., Shobha, M., & Prakash, H.S. (2016). Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. Journal of the Science of Food and Agriculture, 97(6), 1698–1707. https://doi.org/10.1002/jsfa.8144
Wacoo, A.P., Wendiro, D., Vuzi, P.C., & Hawumba, J.F. (2014). Methods for detection of aflatoxins in agricultural food crops. Journal of Applied Chemistry, 2014, 1–15. https://doi.org/10.1155/2014/706291
Wang, T., Zhang, E., Chen, X., Li, L., & Liang, X. (2010). Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis Hypogaea L). BMC Plant Biology, 10(1). https://doi.org/10.1186/1471-2229-10267
Wang, W., Lawrence, K.C., Ni, X., Yoon, S.C., Heitschmidt, G.W., & Feldner, P. (2015). Near-infrared hyperspectral imaging for detecting Aflatoxin B1 ofmaize kernels. Food Control, 51, 347–355. https://doi.org/10.1016/j.foodcont.2014.11.047
Wang, Z., Li, H., Li, C., Yu, Q., Shen, J., & Saeger, S.D. (2014). Development and application of a quantitative fluorescence-based immunochromatographic assay for fumonisin B1 in maize. Journal of Agricultural and Food Chemistry, 62(27), 6294–6298. https://doi.org/10.1021/jf5017219
Yan, L., & Wu, F. (2010). Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environmental Health Perspectives, 118(6), 818–824. https://doi.org/10.1289/ehp.0901388
Yang, Q. (2020). Decontamination of Aflatoxin B1. https://doi.org/10.5772/intechopen.88774
Yao, H., Hruska, Z., Kincaid, R., Brown, R., Cleveland, T., & Bhatnagar, D. (2010). Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores. Food Additives and contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 27(5), 701–709. https://doi.org/10.1080/19440040903527368
Yao, H., Hruska, Z., Kincaid, R., Brown, R.L., Bhatnagar, D., & Cleveland, T.E. (2012). Utilizing fluorescence hyperspectral imaging to differentiate corn inoculated with toxigenic and atoxigenic fungal strains. Sensing for Agriculture and Food Quality and Safety IV, 8369, 83690B-83690B – 9. https://doi.org/10.1117/12.919580
Yao, H., Hruska, Z., Kincaid, R., Brown, R.L., Bhatnagar, D., & Cleveland, T.E. (2013a). Detecting maize inoculated with toxigenic and atoxigenic fungal strains with fluorescence hyperspectral imagery. Biosystems Engineering, 115(2), 125–135. https://doi.org/10.1016/j.biosystemseng.2013.03.006
Yao, H., Hruska, Z., Kincaid, R., Brown, R.L., Bhatnagar, D., & Cleveland, T.E. (2013b). Hyperspectral image classification and development of fluorescence index for single corn kernels infected with Aspergillus flavus. Transactions of the ASABE, 56(5), 1977–1988. https://doi.org/10.13031/trans.56.10091
Yao, H., Hruska, Z., & Di Mavungu, J.D. (2015). Developments in detection and determination of aflatoxins. World Mycotoxin Journal, 8(2), 181-192. https://doi.org/10.3920/WMJ2014.1797
Yao, H., Zhu, F., Kincaid, R., Hruska, Z., & Rajasekaran, K. (2023). A low-cost, portable device for detecting and sorting aflatoxin contaminated maize kernels. Toxins, 15(3), 197. https://doi.org/10.3390/toxins15030197
Yao, W., Liu, R., Zhang, F., Li, S., Huang, X., Guo, H., Peng, M., & Zhong, G. (2022). Near-infrared transmission and diffuse reflection spectroscopy. Molecules, 27(6294), 2–16.
Yu, J., Hennessy, D.A., Tack, J., & Wu, F. (2022). Climate change will increase aflatoxin presence in US Corn. Environmental Research Letters, 17(5), 54017. https://doi.org/10.1088/1748-9326/ac6435
quantification
Zhang, X., Wang, Z., Fang, Y., Sun, R., Cao, T., Paudyal, N., Fang, W., & Song, H. (2018). Antibody microarray immunoassay for simultaneous of multiple mycotoxins in corn samples. Toxins, 10(10), 415. https://doi.org/10.3390/toxins10100415
Zheng, M.Z., Richard, J.L., & Binder, J. (2006). A review of rapid methods for the analysis of mycotoxins. Mycopathologia, 161(5), 261–273. https://doi.org/10.1007/s11046-006-0215-6
Zhu, F., Yao, H., Hruska, Z., Kincaid, R., Brown, R., Bhatnagar, D., & Cleveland, T. (2016). Integration of fluorescence and reflectance visible near-infrared (vnir) hyperspectral images for detection of aflatoxins in corn kernels. Transactions of the ASABE, 59(3), 785–794. https://doi.org/10.13031/trans.59.11365
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Lice that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknik Pertanian Lampung

JTEPL is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


