Predicting Oil Content of Palm Fruit Based on its Electrical Properties

Authors

  • Verra Mellyana Departemen Teknik Mesin dan Biosistem, IPB University; Badan Penyuluhan dan Pengembangan Sumber Daya Manusia Pertanian, Kementerian Pertanian
  • I Wayan Budiastra Departemen Teknik Mesin dan Biosistem, IPB University http://orcid.org/0000-0002-1251-3458
  • Irmansyah Irmansyah Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor
  • Yohanes Aris Purwanto Departemen Teknik Mesin dan Biosistem, IPB University

DOI:

https://doi.org/10.23960/jtep-l.v14i3.933-946
Abstract View: 157

Abstract

The oil content of oil palm fruit is a crucial parameter that must be determined before harvest, as it directly impacts crude palm oil (CPO) quality and processing efficiency. The conventional chemical method for oil content determination is costly and time consuming. This study aims to develop a non-destructive, accurate, and rapid method for predicting oil content in oil palm fruit based on its electrical properties. Measurements of electrical properties were taken across frequencies of 50 Hz to 5 MHz. Oil content of samples were determined by chemical method. Some pre-treatments of electrical properties were carried out and the pre-treated electrical properties were calibrated with reference oil content using simple linear regression and partial least squares regression. Linear regression model showed moderate accuracy (r = 0.61–0.81), with RMSE values between 9.54% and 12.99%. PLS regression models using admittance (r = 0.99, R² = 0.98, SEP 2.20%, RPD 7.99), resistance (r = 0.98, R² = 0.97, SEP 2.62%, RPD 5.56), and impedance (r = 0.98, R² = 0.95, SEP 3.16%, RPD 4.68) produced high prediction accuracy. The results confirm that electrical properties can be used to predict oil content in oil palm fruit rapidly and non destructively.

 

Keywords: Electrical properties, Linear regression, Oil content, PLS.

Downloads

Download data is not yet available.

Author Biographies

Verra Mellyana, Departemen Teknik Mesin dan Biosistem, IPB University; Badan Penyuluhan dan Pengembangan Sumber Daya Manusia Pertanian, Kementerian Pertanian



I Wayan Budiastra, Departemen Teknik Mesin dan Biosistem, IPB University

Lecturer

Departemen Teknik Mesin dan Biosistem IPB University

Irmansyah Irmansyah, Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor

-Lecturer
-Departemen Teknik Mesin dan Biosistem IPB University

Yohanes Aris Purwanto, Departemen Teknik Mesin dan Biosistem, IPB University

-Lecturer
-Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor

References

Aliteh, N., Misron, N., Aris, I., Mohd Sidek, R., Tashiro, K., & Wakiwaka, H. (2018). Triple flat-type inductive-based oil palm fruit maturity sensor. Sensors, 18(8), 2496. https://doi.org/10.3390/s18082496

Barsoukov, E., & Macdonald, J.R. (2018). Impedance Spectroscopy: Theory, Experiment, and Applications. John Wiley & Sons Inc.

Borràs, E., Ferré, J., Boqué, R., Mestres, M., Aceña, L., Calvo, A., & Busto, O. (2016). Prediction of olive oil sensory descriptors using instrumental data fusion and partial least squares (PLS) regression. Talanta, 155, 116–123. https://doi.org/10.1016/j.talanta.2016.04.040

BPS (Badan Pusat Statistik). (2024). Indonesia Oil Palm Statistics. 17.

CAMO Software. (2014). The Unscrambler® X v10.3 User Manual. www.camo.com

Chin-Hashim, N.F., Khaled, A.Y., Jamaludin, D., & Abd Aziz, S. (2022). Electrical impedance spectroscopy for moisture and oil content prediction in oil palm (Elaeis guineensis Jacq.) fruitlets. Plants, 11(23). https://doi.org/10.3390/plants11233373

Fowler, R., & Schultz, M. (2022). Principles and Applications Electricity (9th ed). McGraw Hill LLC. Hao, S., Yuan, J., Cui, J., Yuan, W., Zhang, H., & Xuan, H. (2022). The rapid detection of acacia honey adulteration by alternating current impedance spectroscopy combined with 1H NMR profile. LWT, 161, 113377. https://doi.org/10.1016/j.lwt.2022.113377

Harun, N., Misron, N., Sidek, R., Aris, I., Wakiwaka, H., & Tashiro, K. (2014). Dual resonant frequencies effects on an induction based oil palm fruit sensor. Sensors, 14(11), 21923–21940. https://doi.org/10.3390/s141121923

Hioki Corporation. (2015). LCR HiTESTER 3532-50, Component Measuring Instrument. www.hioki.com Ibrahim, N.U.A., Abd Aziz, S., Hashim, N., Jamaludin, D., & Khaled, A.Y. (2019). Dielectric spectroscopy of palm olein during batch deep frying and their relation with degradation parameters. Journal of Food Science, 84(4), 792–797. https://doi.org/10.1111/1750-3841.14436

Jamaludin, D., Abd Aziz, S., & Ibrahim, N.U.A. (2014). Dielectric based sensing system for banana ripeness assessment. International Journal of Environmental Science and Development, 5(3), 286–289. https://doi.org/10.7763/ijesd.2014.v5.493

Juansah, J., Budiastra, I. W., Dahlan, K., & Seminar, K.B. (2013). Spektroskopi impedansi dari jeruk garut sebagai variability input dalam teknologi pemanenan untuk mendukung teknologi pertanian presisi. Prosiding Seminar Nasional HIPI 2013. Juansah, J., Budiastra, I.W., Dahlan, K., & Seminar, K.B. (2014). Electrical properties of garut citrus fruits at low alternating current signal and its correlation with physicochemical properties during maturation. International Journal of Food Properties, 17(7), 1498–1517. https://doi.org/10.1080/10942912.2012.723233

Kato, K. (1997). Electrical density sorting and estimation of soluble solids content of watermelon. Journal of Agricultural Engineering Research, 67(2), 161-170. https://doi.org/10.1006/jaer.1997.0160

Mellyana, V., Budiastra, I.W., Irmansyah, & Purwanto, Y.A. (2024). Electrical properties for non-destructive determination of free fatty acid and moisture content in oil palm fruit. International Journal on Advanced Science, Engineering and Information Technology, 14(2), 641–649. https://doi.org/10.18517/ijaseit.14.2.19850

Miloš, B., Bensa, A., & Japundžić-Palenkić, B. (2022). Evaluation of Vis-NIR preprocessing combined with PLS regression for estimation soil organic carbon, cation exchange capacity and clay from eastern Croatia. Geoderma Regional, 30. https://doi.org/10.1016/j.geodrs.2022.e00558

Misron, N., Aliteh, N., Harun, N., Tashiro, K., Sato, T., & Wakiwaka, H. (2016). Relative estimation of water content for flat-type inductive-based oil palm fruit maturity sensor. Sensors, 17(1), 52. https://doi.org/10.3390/s17010052

Mohammed, M., Alqahtani, N., & El-Shafie, H. (2021). Development and evaluation of an ultrasonic humidifier to control humidity in a cold storage room for postharvest quality management of dates. Foods, 10(5). https://doi.org/10.3390/foods10050949

Phattaraworamet, T., Sangsuriyun, S., Kutchomsri, P., & Chokphoemphun, S. (2024). Image classification of lotus in Nong Han Chaloem Phrakiat Lotus Park using convolutional neural networks. Artificial Intelligence in Agriculture, 11, 23–33. https://doi.org/10.1016/j.aiia.2023.12.003

Pourdarbani, R., Sabzi, S., Rohban, M.H., García-Mateos, G., Paliwal, J., & Molina-Martínez, J.M. (2022). Using metaheuristic algorithms to improve the estimation of acidity in Fuji apples using NIR spectroscopy. Ain Shams Engineering Journal, 13(6), 101776. https://doi.org/10.1016/j.asej.2022.101776

Shmueli, G., Ray, S., Velasquez Estrada, J.M., & Chatla, S.B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564. https://doi.org/10.1016/j.jbusres.2016.03.049

Silalahi, D.D., Midi, H., Arasan, J., Mustafa, M.S., & Caliman, J.-P. (2021). Kernel partial least square regression with high resistance to multiple outliers and bad leverage points on near-infrared spectral data analysis. Symmetry, 13(4), 547. https://doi.org/10.3390/sym13040547

Sinambela, R., Mandang, T., Subrata, I. D. M., & Hermawan, W. (2020). Application of an inductive sensor system for identifying ripeness harvest time of oil palm. Scientia Horticulturae, 265, 109231. https://doi.org/10.1016/j.scienta.2020.109231

Widyaningrum, Purwanto, Y.A., Widodo, S., Supijatno, & Iriani, E.S. (2024). Rapid assessment of vanilla (Vanilla planifolia) quality parameters using portable near-infrared spectroscopy combined with random forest. Journal of Food Composition and Analysis, 133, 106346. https://doi.org/10.1016/j.jfca.2024.106346

Williams, P. (2014). The RPD Statistic: A Tutorial Note. NIR News, 25(1), 22–26. https://doi.org/10.1255/nirn.1419

Williams, P., Antoniszyn, J., & Manley, M. (2019). Near-Infrared Technology: Getting the Best Out of Light. African Sun Media. https://doi.org/10.18820/9781928480310

Wu, X., Zeng, S., Fu, H., Wu, B., Zhou, H., & Dai, C. (2023). Determination of corn protein content using near-infrared spectroscopy combined with A-CARS-PLS. Food Chemistry: X, 18, 100666. https://doi.org/10.1016/j.fochx.2023.100666

Downloads

Published

2025-05-21

How to Cite

Mellyana, V., Budiastra, I. W., Irmansyah, I., & Purwanto, Y. A. (2025). Predicting Oil Content of Palm Fruit Based on its Electrical Properties. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(3), 933–946. https://doi.org/10.23960/jtep-l.v14i3.933-946

Issue

Section

Articles