Effect of Azotobacter sp. and Cow Manure on Nitrogen Availability in Saline Soil, Root Length, and Vitamin C Content of Tomato

Authors

  • Aulifia Nisak Aisyah Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Rossyda Priyadarshini Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Siswanto Siswanto Universitas Pembangunan Nasional "Veteran" Jawa Timur

DOI:

https://doi.org/10.23960/jtepl.v14i6.2111-2119
Abstract View: 38

Keywords:

Ammonium, Manure, Nitrate, Salinity, Tomato

Abstract

Nitrogen is a macronutrient for plants, but its availability in saline soil is a limiting factor, making it difficult to cultivate plants. This study aims to examine the effect of the combination of Azotobacter sp. and cow manure in increasing the available N of saline soil, and to obtain the best combination in increasing the growth of tomato plants in saline soil. This research was conducted in the greenhouse and laboratory of UPN "Veteran" Jawa Timur. Saline soil samples came from the Wonorejo Mangrove land, Surabaya. Azotobacter sp. isolates came from the roots of Wonorejo mangrove trees. The study used a Completely Randomized Design with 2 factors with 3 replications. First factor was addition of Azotobacter sp., consisted of A0 (no addition of Azotobacter), and A1 (addition Azotobacter at 107 CFU/mL. Second factor was cow manure (K) involved 4 levels (in ton/ha): A0 (0); K1 (20); K2 (30); K3 (40). The results of this research showed that application of Azotobacter sp. and cow manure affected the parameters of available N, EC, pH and vitamin C content, but did not affect the parameters of plant root length. Combination of Azotobacter 107 CFU/mL + 40 tons/ha of cow manure produced the best available N of 246.48 ppm. The highest vitamin C content was 36.75 mg/g in the treatment of 107 CFU/mL Azotobacter + 30 ton/ha of cow manure. Cow manure decreased soil EC and increased soil pH.

Downloads

Download data is not yet available.

Author Biographies

Aulifia Nisak Aisyah, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Department of Agrotechnology

Rossyda Priyadarshini, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Department of Agrotechnology

Siswanto Siswanto, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Department of Agrotechnology

References

Angraeni, L., Rasyidah, R., & Mayasari, U. (2023). Isolasi dan identifikasi Azotobacter dari rizosfer tanaman jagung (Zea mays L.) di Desa Sei Mencirim Kecamatan Sunggal Kabupaten Deli Serdang. BEST Journal: Biology Education, Science, and Technology, 6(2), 338–344.

BPSITP. (2023). Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air dan Pupuk. Kementrian Pertanian Republik Indonesia.

Byard, R.W., & Maxwell-Stewart, H. (2018). Scurvy - Characteristic Features and Forensic Issues. American Journal of Forensic Medicine and Pathology, 40(1), 1–4. https://doi.org/10.1097/PAF.0000000000000442

Damanik, A.RB., Hanum, H., & Sarifuddin. (2014). Dinamika N-NH4 Dan N-NO3 akibat pemberian pupuk urea dan kapur CaCO3 pada tanah inceptisol kwala bekala dan kaitannya terhadap pertumbuhan tanaman jagung. Jurnal Online Agroekoteknologi Sumatera Utara, 2(3), 1218–1227.

David, J., Basuni, & Abdurrahman, T. (2021). Respon pertumbuhan tanaman kedelai (Glycine max) terhadap Amelioran di lahan salin. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 49(3), 259-265. https://doi.org/10.24831/jai.v49i3.36315

Febriyanto, Sugianto, A., & Sugiarto. (2023). Pengaruh pemberian pupuk kandang sapi dan pupuk organik cair NASA terhadap pertumbuhan dan produksi tanaman sawi hijau (Brassica juncea L.) yang dibudidayakan dengan model rooftop. Agronisma, 11(1), 169–180.

Gan, H.Y., Schöning, I., Schall, P., Ammer, C., & Schrumpf, M. (2020). Soil Organic matter mineralization as driven by nutrient stoichiometry in soils under differently managed forest stands. Frontiers in Forests and Global Change, 3, 1–15. https://doi.org/10.3389/ffgc.2020.00099

Ichwan, B., Rinaldi, R., & Malini, H. (2022). Pengaruh plant growth promoting Rhizobacteria alami dan pupuk kandang ayam terhadap pertumbuhan dan hasil cabai merah. Jurnal Agroecotania : Publikasi Nasional Ilmu Budidaya Pertanian, 4(2), 1–10. https://doi.org/10.22437/agroecotania.v4i2.20436

Indriani, F.N., Hindersah, R., & Suryatmana, P. (2019). N-Total, serapan N, dan pertumbuhan kacang tanah (Arachis hypogaea L.) akibat inokulasi Azotobacter dan bahan organik pada Tailing Tambang Emas Pulau Buru, Maluku. SoilREns, 15(2), 33–40. https://doi.org/10.24198/soilrens.v15i2.21463

Khotimah, K., Suwastika, A.A.N.G., & Atmaja, I.W.D. (2020). Dinamika amonium dan nitrat pada lahan sawah semi organik untuk tanaman padi lokal dan hibrida di Subak Jatiluwih Kabupaten Tabanan. Agrotrop : Journal on Agriculture Science, 10(1), 39–48. https://doi.org/10.24843/ajoas.2020.v10.i01.p05

Kusumiyati, Onggo, T.M., & Habibah, F.A. (2017). Pengaruh konsentrasi larutan garam NaCl terhadap pertumbuhan dan kualitas bibit lima kultivar asparagus. Jurnal Hortikultura, 27(1), 79–86. https://doi.org/10.21082/jhort.v27n1.2017.p79-86

Lizawati, Riduan, A., Neliyati, & Alia, Y. (2017). Keragaman genetik tanaman kayu manis (Cinnamomum burmannii BL.) asal Sumatera Barat berdasarkan karakter morfologi. Prosiding Perhimpunan Agronomi Indonesia, 187–194. https://repository.unja.ac.id/id/eprint/17648

Maatoke, C.D., Dewani, Z., & Suciati, F. (2024). Karakterisasi morfologi dan fisiologi mikrob pelarut fosfat dan mikrob penambat N₂ (Azotobacter) dari rizosfer tanaman padi dan tanah hutan Cifor Dramaga Bogor. Bioscientist: Jurnal Ilmiah Biologi, 11(1), 113-121. https://doi.org/10.31849/bl.v11i1.19518

Masganti, Abduh, A.M., Agustina, R., Alwi, M., Noor, M., & Rina, Y. (2022). Pengelolaan lahan dan tanaman padi di lahan salin. Jurnal Sumberdaya Lahan, 16(2), 83–95. https://doi.org/10.21082/jsdl.v16n2.2022.83-95

Meiliyansari, S.R., Priatmadi, B.J., & Sari, N.N. (2023). Ketersediaan N dan Fe-larut pada tanah ultisol yang diaplikasikan lumpur kolam ikan. Jurnal Ecosolum, 12(1), 56–71. https://doi.org/10.20956/ecosolum.v12i1.25367

Nasamsir, & Huffia, D. (2020). Pertumbuhan bibit bud chip tebu (Sacharum officinarum L.) pada beberapa dosis pupuk kandang kotoran sapi. Jurnal MEdia Pertanian, 5(2), 27–33. https://doi.org/10.33087/jagro.v5i2.99

Natanael, J., & Banjarnahor, D.R.V. (2021). Pengaruh beberapa campuran kompos cair terhadap pertumbuhan, hasil panen dan kandungan vitamin C tanaman kale (Brassica oleracea var. acephala). Jurnal Penelitian Pertanian Terapan, 21(2), 158–166. https://doi.org/10.25181/jppt.v21i2.2094

Nurmi, Abdullah, R., & Jamin, F.S. (2024). Kadar hara nitrogen tersedia (NO₃⁻) dengan perlakuan pupuk organik dan korelasinya terhadap pertumbuhan dan hasil tanaman kacang tanah (Arachis hypogaea L.). J. Agri-Tek, 25(1), 37–42. https://doi.org/10.33319/agtek.v25i2.171

Palupi, N.P. (2015). Karakter kimia kompos dengan dekomposer mikroorganisme lokal asal limbah sayuran. Ziraa’Ah, 40(1), 54–60.

Parjono. (2019). Kajian status unsur hara makro tanah (N, P, dan K) di profil tanah lahan hutan, wanatani, dan tegalan. Musamus AE Featuring Journal (MAEF-J), 1(2), 35–40. https://doi.org/10.35724/maef-j.v1i2.1847

Patti, P.S., Kaya, E., & Silahooy, C. (2018). Analisis status nitrogen tanah dalam kaitannya dengan serapan N oleh tanaman padi sawah di Desa Waimital, Kecamatan Kairatu, Kabupaten Seram Bagian Barat. Agrologia, 2(1), 51–58. https://doi.org/10.30598/a.v2i1.278

Perdana, A. (2022). Pengaruh pemberian biogranul kombinasi biochar sekam padi, kotoran sapi dan limbah ikan terhadap perbaikan sifat kimia tanah entisol yang ditanam sawi. [Undergraduated Thesis]. Universitas Jember.

Rachman, A., Dariah, A., & Sutono, S. (2018). Pengelolaan sawah salin berkadar garam tinggi. IAARD Press

Rahmawati, A., & Khumairah, F.H. (2023). Formulasi amelioran organik untuk menurunkan kadar salinitas tanah dan meningkatkan pertumbuhan tanaman padi di lahan salin. Composite: Jurnal Ilmu Pertanian, 5(1), 1–8. https://doi.org/10.37577/composite.v5i1.473

Ratna, Sutariati, G.A.K., & Muhidin. (2024). Efektivitas perlakuan rizobakteri tanah salin dan pupuk organik terhadap pertumbuhan tanaman kedelai (Glycine max (L.) Merrill) di lingkungan pesisir. Berkala Penelitian Agronomi (Journal of Agronomy Research), 12(1), 21–32.

Rodrigues, M.Â., Ladeira, L.C., & Arrobas, M. (2018). Azotobacter-enriched organic manures to increase nitrogen fixation and crop productivity. European Journal of Agronomy, 93, 88–94. https://doi.org/10.1016/j.eja.2018.01.002

Salewan, A., Thaha, A.R., & Khaliq, M.A. (2022). Pengaruh waktu pemberian pupuk kandang sapi terhadap tersedia dan serapan P serta hasil tanaman bawang merah (Allium ascalonicum L.) varietas Bima. e-Jurnal Agrotekbis, 10(6), 959–967.

Suud, H.M., Syuaib, M.F., & Astika, I.W. (2015). Pengembangan model pendugaan kadar hara tanah melalui pengukuran daya hantar listrik tanah. Jurnal Keteknikan Pertanian, 3(2), 105–112. https://doi.org/10.19028/jtep.03.2.105-112

Tarigan, D.M., Barus, W.A., Munar, A., Lestami, A., & Nufus, N.H. (2024). Teknik budidaya sorgum di tanah salin. UMSU Press

Tolib, R., Kusmiyati, F., & Lukiwati, D.R. (2017). Pengaruh sistem tanam dan pupuk organik terhadap karakter agronomi turi dan rumput benggala pada tanah salin. Journal of Agro Complex, 1(2), 57-64. https://doi.org/10.14710/joac.1.2.57-64

Widawati, S. (2015). Uji bakteri simbiotik dan nonsimbiotik pelarutan Ca vs. P dan efek inokulasi bakteri pada anakan turi (Sesbania grandiflora L. Pers.). Jurnal Biologi Indonesia, 11(2), 295–307.

Downloads

Published

2025-12-05

How to Cite

Aisyah, A. N., Priyadarshini, R., & Siswanto, S. (2025). Effect of Azotobacter sp. and Cow Manure on Nitrogen Availability in Saline Soil, Root Length, and Vitamin C Content of Tomato. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(6), 2111–2119. https://doi.org/10.23960/jtepl.v14i6.2111-2119