Water Requirements and Water Use Efficiency of Aceh Patchouli (Pogostemon cablin Benth.) at Low Light Intensity

Authors

  • Taufan Hidayat Laboratory of Agroclimatology, Faculty of Agriculture, Universitas Syiah Kuala http://orcid.org/0000-0002-5834-8670
  • Filly Dwifandi Laboratorium Agroklimatologi Departemen Agroteknologi, Fakultas Pertanian Universitas Syiah Kuala, Banda Aceh 23111
  • Hasanuddin Hasanuddin Laboratorium Ilmu Benih, Departemen Agroteknologi, Fakultas Pertanian Universitas Syiah Kuala, Banda Aceh 23111
  • Trisda Kurniawan Laboratorium Ilmu Benih, Departemen Agroteknologi, Fakultas Pertanian Universitas Syiah Kuala, Banda Aceh 23111

DOI:

https://doi.org/10.23960/jtepl.v14i4.1382-1392
Abstract View: 134

Keywords:

Aceh patchouli, Climate change, Low light intensity, Saving water

Abstract

Aceh Patchouli is a C3 plant that does not require high water input and full light intensity to grow optimally, making it suitable for intercropping under main crops. This study aimed to determine the water requirements and adaptability of two Aceh patchouli varieties (Tapak Tuan and Sidikalang) under low light conditions using artificial shade. The experiment employed a nested box design with two factors: shade levels and plant varieties. Observed variables include macroclimate, microclimate, and agronomic parameters such as plant height, number of leaves, leaf area, dry leaf weight, and total biomass. Water requirement and water use efficiency (WUE) were also analyzed. Results showed that shading reduced plant water needs: 33.29% L/plant without shade, 32.80 L/plant under 30% shade (1.5% reduction), and 30.30 L/plant under 60% shade (9% reduction). The Tapak Tuan variety had a higher water requirement (33.30 L/plant) compared to Sidikalang (30.96 L/plant). Importantly, increasing shade levels led to improved water use efficiency, although the variety did not significantly influence WUE.  The findings indicate that the use of shade in patchouli cultivation not only conserves water but also enhances efficiency, supporting its potential for sustainable intercropping systems in shaded or water-limited environments.

Downloads

Download data is not yet available.

References

Ahmed, F., Rafii, M.Y., Ismail, M.R., Juraimi, A.S., Rahim, H.A., Asfaliza, R., & Latif, M.A. (2013). Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Research International, 2013, 963525. https://doi.org/10.1155/2013/963525

Allan, R.P., Barlow, M., Byrne, M.P., Cherchi, A., Douville, H., Fowler, H.J., Gan, T.Y., Pendergrass, A.G., Rosenfeld, D., Swann, A.L.S., Wilcox, L.J., & Zolina, O. (2020). Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472, 49–75. https://doi.org/10.1111/nyas.14337

Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage. Paper 56. https://www.fao.org/4/x0490e/x0490e00.htm

Bai, W., Sun, Z., Zheng, J., Du, G., Feng, L., Cai, Q., Yang, N., Feng, C., Zhang, Z., Evers, J.B., Werf, W.v.d., & Zhang, L. (2016). Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agricultural Water Management, 178, 281-290. http://dx.doi.org/10.1016/j.agwat.2016.10.007

Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Review: Plant adaptation to drought stress. F1000Research, 5, 1554. https://doi.org/10.12688/f1000research.7678.1

Belliappa, S.H., Bomma, N., Pranati, J., Soregaon, C.D., Hingane, A.J., Basavaraj, P.S., Naik, S.J.S., Lohithaswa, H.C., Muniswamy, S., Mushoriwa, H., Kumar, C.V.S., & Gangashetty, P.I. (2024). Breeding for water-logging tolerance in pigeonpea: Current status and future prospects. CABI Agriculture and Bioscience, 5, 98. https://doi.org/10.1186/s43170-024-00299-y

Brendel, O. (2021). The relationship between plant growth and water consumption: A history from the classical four elements to modern stable isotopes. Annals of Forest Science, 78, 47. https://doi.org/10.1007/s13595-021-01063-2

Cao, M.J., Zhang, Y.L., Liu, X., Huang, H., Zhou, X.E., Wang, W.L., Zeng, A., Zhao, C.Z., Si, T., Du, J., Wu, W.W., Wang, F.X., Xu, H.E., & Zhu, J.K. (2017). Combining chemical and genetic approaches to increase drought resistance in plants. Nature Communications, 8, 1183. https://doi.org/10.1038/s41467-017-01239-3

Capua, G.D, & Rahmstorf, S. (2023). Extreme weather in a changing climate. Environmental Research Letters, 18, 102001. http://dx.doi.org/10.1088/1748-9326/acfb23

Chandel, S., Desai, B.S., Jha, S.K., Sinha, S.K., Patel, D.P., & Kumar, N. (2024). Role of organic and inorganic fertilizers in enhancing biomass yield and eugenol content of ornamental basil (Ocimum gratissimum L.). Heliyon, 10, e30928. https://doi.org/10.1016/j.heliyon.2024.e30928

Chen, J.J., Sun, Y., Kopp, K., Oki, L., Jones, S.B., & Hipps, L. (2022). Effects of water availability on leaf trichome density and plant growth and development of Shepherdia × utahensis. Frontiers in Plant Science, 13, 855858. https://doi.org/10.3389/fpls.2022.855858

Dirjenbun (Direktorat Jenderal Perkebunan). (2023). Statistik Perkebunan Jilid I 2023-2025. Sekretariat Direktorat Jenderal Perkebunan. https://ditjenbun.pertanian.go.id/?publikasi=buku-statistik-perkebunan-2023-2025-jilid-i (Accessed on 24 May 2025).

Dirjenbun (Direktorat Jenderal Perkebunan). (2024). Statistik Perkebunan Jilid I 2023-2025. Sekretariat Direktorat Jenderal Perkebunan. https://ditjenbun.pertanian.go.id/?publikasi=buku-statistik-perkebunan-2023-2025-jilid-i (Accessed on 24 May 2025).

Dwifandi, F., Hidayat, T., Hasanuddin, & Kurniawan, T. (2024). Respons dua varietas nilam Aceh (Pogostemon cablin Benth.) pada beberapa tingkat naungan buatan. Jurnal Floratek, 19(2), 65-72. https://doi.org/10.17969/floratek.v19i2.36286

Ehdaie, B., & Waines, J. (1997). Chromosomal location of genes influencing plant characters and evapotranspiration efficiency in bread wheat. Euphytica, 96, 363–375. https://doi.org/10.1023/A:1003098605014

Fanggidae, Y.R., & Impron, I. (2018). Evapotranspirasi bibit cendana (Santalum Album L.) dengan beberapa inang primer. Agromet, 32(1), 21-30.

Gul, M.U., Paul, A., Manimurugan, S., & Chehri, A. (2023). Hydrotropism: Understanding the impact of water on plant movement and adaptation. Water, 15, 567. https://doi.org/10.3390/w15030567

Hartfield, J.L., & Dold, C. (2019). Water-use efficiency: Advances and challenges in a changing climate. Frontiers in Plant Science, 10, 103. https://doi.org/10.3389/fpls.2019.00103

Hidayat, T., Koesmaryono, Y., Impron, I., & Ghulamahdi, M. (2021). The effectiveness of reflective mulch in the intercropping system between soybean and oil palm: Effects on growth, chlorophyll content, and photosynthetic characteristics. Journal of Agricultural Meteorology, 77(2), 128-138. https://doi.org/10.2480/agrmet.D-20-00042

Hidayati, I.N., & Suryanto. (2015). Pengaruh perubahan iklim terhadap produksi pertanian dan strategi adaptasi pada lahan rawan kekeringan. Jurnal Ekonomi & Studi Pembangunan, 16(1), 42-52. https://journal.umy.ac.id/index.php/esp/article/view/1217

Intergovernmental Panel of Climate Change [IPCC]. (2017). Synthesis Report: Intergovernmental Panel of Climate Change. Geneva. https://www.ipcc.ch/synthesis-report/

Khalil, A.M., Murchie, E.H., & Mooney, S.J. (2020). Quantifying the influence of water deficit on root and shoot growth in wheat using X-ray Computed Tomography. AoB Plants, 12(5), plaa036. https://doi.org/10.1093/aobpla/plaa036

Li, Y., Wu, H., Wang, J., Cui, L., Tian, D., Wang, J., Zhang, X., Yan, L., Yan, Z., Zhang, K., Kang, X., & Song, B. (2019). Plant biomass and soil organic carbon are main factors influencing dry-season ecosystem carbon rates in the coastalzone of the Yellow River Delta. PLoS One, 14(1), e0210768. https://doi.org/10.1371/journal.pone.0210768

Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M.K.N., Ghafoor, A., & Du, X. (2020). Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 9, 105. https://doi.org/10.3390/cells9010105

Medrano, H., Tomása, M., Martorella, S., Flexasa, J., Hernándeza, E., Rossellóa, J., Poub, A., Escalonaa, J.M., & Bota, J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal, 3(3), 220-228. http://dx.doi.org/10.1016/j.cj.2015.04.002

Nasruddin, Harahap, E.M., Hanum, C., & Siregar, L.A.M. (2016). Response of three varieties of patchouli (Pogostemon cablin, Benth) due to drought stress. International Journal of Sciences: Basic and Applied Research, 30(2), 286-294. https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/6470

Nisa, K., Sufardi S., Rusdi, M., Indra, I. (2024). Soil quality index and patchouli yields on various cropping systems in Aceh province, Indonesia: Case study in Aceh Barat Regency. Case Studies in Chemical and Environmental Engineering, 10, 100798. https://doi.org/10.1016/j.cscee.2024.100798

Pan, J., Sharif, R., Xu, X., & Chen, X. (2021). Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Frontiers in Plant Science, 11, 627331. https://doi.org/10.3389/fpls.2020.627331

Peng, X., Yang, Y., Yan, X., & Li, H. (2021). The efects of water control on the survival and growth of Alternanthera philoxeroides in the vegetative reproduction and seedling stages. Scientifc Reports, 11, 13556. https://doi.org/10.1038/s41598-021-92674-2

Perdinan, Atmaja, T., Adi, R.F., & Estiningtyas, W. (2018). Adaptasi perubahan iklim dan ketahanan pangan: Telaah inisiatif dan kebijakan. Jurnal Hukum Lingkungan Indonesia, 5(1), 60-87. https://doi.org/10.38011/jhli.v5i1.75

Rejekiningrum, P., Las, I., Amien, I., Pujilestari, N., Estiningtyas, W., Surmaini, E., Suciantini, Sarvina, Y., Pramudia, A., Kartiwa, B., Muharsini, S., Sudarmaji, Hardiyanto, Hermanto, C., Putranto, G.A., Marbun, O. (2011). Pedoman Umum: Adaptasi Perubahan Iklim Sektor Pertanian. Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian, Jakarta.

Ruggiero, A., Punzo, P., Landi, S., Costa, A., Oosten, M.J.V., & Grillo, S. (2017). Improving plant water use efficiency through molecular genetics. Horticulturae, 3, 31. https://doi.org/10.3390/horticulturae3020031

Suliman, M., Scaini, A., Manzoni, S., & Vico, G. (2024). Soil properties modulate actual evapotranspiration and precipitation impacts on crop yields in the USA. Science of the Total Environment, 949, 175172. https://doi.org/10.1016/j.scitotenv.2024.175172

Setiawan, & Sukamto. (2016). Karakter morfologis dan fisiologis tanaman nilam di bawah naungan dan tanpa naungan. Buletin Penelitian Tanaman Rempah dan Obat, 27(2), 137-146.

Tamang, B.G., Monnens, D., Anderson, J.A., Steffenson, B.J., & Sadok, W. (2022). The genetic basis of transpiration sensitivity to vapor pressure deficit in wheat. Physiologia Plantarum, 174, e13752. https://doi.org/10.1111/ppl.13752

Tams, L., Paton, E.N., & Kluge, B. (2022). Impact of shading on evapotranspiration and water stress of urban trees. Ecohydrology, 16(6), e2556. https://doi.org/10.1002/eco.2556

Tong, C., Hill, C.B., Zhou, G., Zhang, X.Q., Jia, Y., & Li, C. (2021). Opportunities for improving waterlogging tolerance in cereal crops-physiological traits and genetic mechanisms. Plants, 10(8), 1560. https://doi.org/10.3390/plants10081560

Wulansari, R., Tahir, M., Indrawati, W., & Riniarti, D. (2018). Karakterisasi morfofisiologi dan hasil minyak 10 genotip nilam (Pogostemon cablin Benth.). Jurnal Agro Industri Perkebunan, 6(1), 40-48. https://doi.org/10.25181/jaip.v6i1.657

Yang, Y., Dou, Y., & An, S. (2017). Environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China. Ecological Indicators, 82, 250–259. https://doi.org/10.1016/j.ecolind.2017.07.010

Downloads

Published

2025-07-25

How to Cite

Hidayat, T., Dwifandi, F., Hasanuddin, H., & Kurniawan, T. (2025). Water Requirements and Water Use Efficiency of Aceh Patchouli (Pogostemon cablin Benth.) at Low Light Intensity. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(4), 1382–1392. https://doi.org/10.23960/jtepl.v14i4.1382-1392