Comparative Analysis of Growth Models for Lettuce (Lactuca sativa) in a Plant Factory under Red-Blue LED Treatment

Authors

  • Guyup Mahardhian Dwi Putra Universitas Mataram
  • Gagassage Nanaluih De Side Universitas Mataram
  • Diah Ajeng Setiawati Universitas Mataram
  • Nia Kurniati Universitas Mataram

DOI:

https://doi.org/10.23960/jtepl.v14i4.1452-1464
Abstract View: 98

Keywords:

Gomperzt, Lettuce, Linear regression, Logistic, Polynomial

Abstract

The growth of lettuce (Lactuca sativa) in controlled environments such as Plant Factories is highly influenced by lighting, particularly under red-blue (RB) LED treatment. Accurate growth prediction models are essential for optimizing yield. This study compared four models linear, polynomial, logistic, and Gompertz to determine the best predictor of leaf area expansion. Leaf area measurements over 30 days were analyzed using Easy Leaf Area software. Results showed that the Gompertz model consistently outperformed others with the lowest Mean Absolute Percentage Error (MAPE) of 14.55% (slow), 39.51% (medium), and 29.13% (high), and the highest R² values of 0.99 across all growth categories. In contrast, linear and polynomial models exhibited extremely high MAPE values, exceeding 300% in most cases. The study concludes that the Gompertz model is the most accurate and biologically realistic for modeling lettuce growth in Plant Factory systems, offering robust predictive capability for sustainable precision agriculture.

Downloads

Download data is not yet available.

Author Biographies

Guyup Mahardhian Dwi Putra, Universitas Mataram

Agricultural Engineering Study Program, Faculty of Food Technology and Agroindustry

Gagassage Nanaluih De Side, Universitas Mataram

Agricultural Engineering Study Program, Faculty of Food Technology and Agroindustry

Diah Ajeng Setiawati, Universitas Mataram

Agricultural Engineering Study Program, Faculty of Food Technology and Agroindustry

Nia Kurniati, Universitas Mataram

Agricultural Engineering Study Program, Faculty of Food Technology and Agroindustry

References

Abdulazeez, A.M., Salim, B.W., Zeebaree, D.Q., & Doghramachi, D. (2020). Comparison of vpn protocols at the network layer, focusing on wire guard protocol. International Journal of Interactive Mobile Technologies. 14(18). https://doi.org/10.3991/ijim.v14i18.16507

Acharya, M.S., Armaan, A., & Antony, A.S. (2019). A comparison of regression models for prediction of graduate admissions. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), 1–5. https://doi.org/10.1109/ICCIDS.2019.8862140

Bakhshandeh, E., Soltani, A., Zeinali, E., & Kallate-Arabi, M. (2012). Prediction of plant height by allometric relationships in field-grown wheat. Cereal Research Communications, 40(3), 413–422. https://doi.org/10.1556/crc.40.2012.3.10

Bustomi, S., & Yulianti, M. (2013). Model hubungan tinggi dan diameter pohon akasia (Acacia auriculiformis) sebagai penghasil kayu energi di Kabupaten Purwokerto Provinsi Jawa Tengah. Jurnal Penelitian Hutan Tanaman, 10(3), 155–160.

Çelik, S., Çaçan, E., & Yaryab, S. (2023). Prediction of stem weight in selected alfalfa varieties by artificial neural networks, multivariate adaptive regression splines and multiple regression analysis. The Journal of Animal and Plant Sciences, 33(4), 1006–1020. https://doi.org/10.36899/JAPS.2023.4.0694

Chatterjee, T., Chatterjee, B.K., Majumdar, D., & Chakrabarti, P. (2015). Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochimica et Biophysica Acta (BBA)-General Subjects, 1850(2), 299–306. https://doi.org/10.1016/j.bbagen.2014.10.022

Chicco, D., Warrens, M.J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623

Dada, R.O., & Laseinde, O.T. (2024). Prediction of cumulative biomethane yield using artificial neural network - Case study of an industrial biogas plant. Key Engineering Materials, 974, 113–122. https://doi.org/10.4028/p-oLu4OB

Damgaard, C., & Weiner, J. (2008). Modeling the growth of individuals in crowded plant populations. Journal of Plant Ecology, 1(2), 111–116. https://doi.org/10.1093/jpe/rtn008

Easlon, H.M., & Bloom, A.J. (2014). Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area1. Applications in Plant Sciences, 2(7). https://doi.org/10.3732/apps.1400033

Faaris, M.H.D., Nuha, H.H., & Fathoni, M.F. (2023). Mean square error analysis of temperature and humidity in telkom university landmark tower (TULT) using multiple linear regression (MLR) and internet of things (IoT). 2023 International Conference on Data Science and Its Applications (ICoDSA), 287–291. https://doi.org/10.1109/ICoDSA58501.2023.10277464

Gachoki, P., Muraya, M., & Njoroge, G. (2022). Modelling plant growth based on Gompertz, logistic curve, extreme gradient boosting and light gradient boosting models using high-dimensional image-derived maize (Zea mays L.) phenomic data. American Journal of Applied Mathematics and Statistics, 10(2), 52–64. https://doi.org/10.12691/ajams-10-2-3

Ghasiani, H., Suparto, S.R., & Budiono, M.N. (2021). Pengaruh konsentrasi dan frekuensi pemberian pupuk organik cair dari limbah kulit buah terhadap pertumbuhan tanaman pakcoy (Brassica Rapa L.). Jurnal Sosial Dan Sains, 1(4), 239–246.

Han, T., Vaganov, V., Cao, S., Li, Q., Ling, L., Cheng, X., Peng, L., Zhang, C., Yakovlev, A.N., Zhong, Y., & Tu, M. (2017). Improving “color rendering” of led lighting for the growth of lettuce. Scientific Reports, 7(1). https://doi.org/10.1038/srep45944

Harfenmeister, K., Spengler, D., & Weltzien, C. (2019). Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data. Remote Sensing, 11(13), 1569. https://doi.org/10.3390/rs11131569

Jane, S.A., Fernandes, F.A., Silva, E.M., Muniz, J.A., Fernandes, T.J., & Pimentel, G.V. (2020). Adjusting the growth curve of sugarcane varieties using nonlinear models. Crop Production, 50(3). https://doi.org/10.1590/0103-8478cr20190408

Karadavut, U., Kayis, S.A., Palta, Ç., & Okur, O. (2008). A growth curve application to compare plant heights and dry weights of some wheat varieties. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(6), 888-892.

Karadavut, U., Palta, Ç., Kökten, K., & Bakoğlu, A. (2010). Comparative study on some non-linear growth models for describing leaf growth of maize. International Journal of Agriculture and Biology, 12(2), 227–230.

Kurniawan, D., Tripama, B., & Widiarti, W. (2022). Respon pertumbuhan dan produksi tanaman tomat (Lycopersicum Esculentu, Mill.) terhadap pemberian pupuk kandang sapi dan pupuk npk pada tanah entisol. National Multidisciplinary Sciences, 1(2), 250–261. https://doi.org/10.32528/nms.v1i2.67

Lee, A.-C., Liao, F.-S., & Lo, H.-F. (2015). Temperature, daylength, and cultivar interact to affect the growth and yield of lettuce grown in high tunnels in subtropical regions. Hortscience, 50(10), 1412–1418. https://doi.org/10.21273/hortsci.50.10.1412

Li, Y., Xin, G., Liu, C., Shi, Q., Yang, F., & Wei, M. (2020). Effects of red and blue light on leaf anatomy, co2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum Annuum L.) seedlings. BMC Plant Biology, 20(1). https://doi.org/10.1186/s12870-020-02523-z

Maity, M., Saha, P., & Nath, P.S. (2019). Development of prediction equations for tomato leaf curl virus on tomato at different dates of planting using logistic and Gompertz model. International Journal of Current Microbiology and Applied Sciences (IJCMAS), 8(5), 910–926. https://doi.org/10.20546/ijcmas.2019.805.106

Malekzadeh, M.R., Roosta, H.R., Esmaeilizadeh, M., Dabrowski, P., & Kalaji, H.M. (2024). Improving strawberry plant resilience to salinity and alkalinity through the use of diverse spectra of supplemental lighting. BMC Plant Biology, 24(1). https://doi.org/10.1186/s12870-024-04984-y

Moreira, A., Neto, A.B., Bonini, C.S.B., Moraes, L.A.C., & Heinrichs, R. (2023). Prediction of soybean yield cultivated under subtropical conditions using artificial neural networks. Agronomy Journal, 115(4), 1981–1991. https://doi.org/10.1002/agj2.21360

Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48, 500–506.https://doi.org/10.1016/j.proeng.2012.09.545

Paine, C.E.T., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector, A., & Turnbull, L.A. (2012). How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3(2), 245–256. https://doi.org/10.1111/j.2041-210X.2011.00155.x

Prasad, A.K., Ahadi, M., Thakur, B.S., & Roy, S. (2015). Accurate polynomial chaos expansion for variability analysis using optimal design of experiments. 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1–4. https://doi.org/10.1109/NEMO.2015.7415055

Purwanti, S., Gunawan, B., & Yulianto. (2014). Pengaruh media tanam dan konsentrasi pupuk organik cair terhadap pertumbuhan dan hasil tanaman selada (Lactuca sativa L.). Jurnal Fakultas UNIGA, 1(15), 10-17. https://doi.org/10.31219/osf.io/5m9sg

Putra, G.M.D., Sutiarso, L., Nugroho, A.P., & Chaer, M.S.I. (2022). Plant growth prediction model of red chili (Capsicum annuum L.) by different manipulation environment. International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022), 19–27. https://doi.org/10.2991/978-94-6463-086-2_4

Ribeiro, T.D., de Mattos, R.W.P., de Morais, A.R., & Muniz, J.A. (2018). Description of the growth of pequi fruits by nonlinear models. Revista Brasileira De Fruticultura, 40(4). https://doi.org/10.1590/0100-29452018949

Roopa, H., & Asha, T. (2019). A linear model based on principal component analysis for disease prediction. IEEE Access, 7, 105314–105318. https://doi.org/10.1109/ACCESS.2019.2931956

Roziqin, M.C., Basuki, A., & Harsono, T. (2016). A comparison of montecarlo linear and dynamic polynomial regression in predicting dengue fever case. 2016 International Conference on Knowledge Creation and Intelligent Computing (KCIC), 213–218. https://doi.org/10.1109/KCIC.2016.7883649

Seber, G.A.F., & Lee, A.J. (2012). Linear regression analysis. John Wiley & Sons.

Selvaggi, M., Laudadio, V., Dario, C., & Tufarelli, V. (2015). Modelling growth curves in a nondescript Italian chicken breed: An opportunity to improve genetic and feeding strategies. The Journal of Poultry Science, 52(4), 288–294. https://doi.org/10.2141/jpsa.0150048

Seyedi, F. S., Nafchi, M.G., & Reezi, S. (2024). Effects of light spectra on morphological characteristics, primary and specialized metabolites of Thymus Vulgaris L. Heliyon, 10(1), e23032. https://doi.org/10.1016/j.heliyon.2023.e23032

Smith, B.J., Stafne, E.T., Sakhanokho, H.F., & Sampson, B.J. (2023). Intensity of supplemental greenhouse lighting affects strawberry plant growth, anthracnose infection response, and colletotrichum pathogen development in culture. HortScience, 58(1), 127–133. https://www.doi.org/10.21273/HORTSCI16888-22

Sukhova, E., Yudina, L., Zolin, Y., Popova, A., & Sukhov, V. (2023). Development, verification, and analysis of simple mathematical model of lettuce productivity under different light conditions. Horticulturae, 9(12), 1259. https://doi.org/10.3390/horticulturae9121259

Talib, N.S., Jamaludin, D., & Malek, N.S.A. (2020). Effect of light emitting diode (led) spectra on plant growth. Advances in Agricultural and Food Research Journal, 1(2). https://doi.org/10.36877/aafrj.a0000135

Vanclay, J.K. (1994). Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests. CAB International.

Wallace, R.W., Wszelaki, A., Miles, C.A., Cowan, J.S., Martin, J., Roozen, J., Gundersen, B., & Inglis, D.A. (2012). Lettuce yield and quality when grown in high tunnel and open-field production systems under three diverse climates. Horttechnology, 22(5), 659–668. https://www.doi.org/10.21273/HORTTECH.22.5.659

West, B.J. (2015). Exact solution to fractional logistic equation. Physica A: Statistical Mechanics and Its Applications, 429, 103–108. https://doi.org/10.1016/j.physa.2015.02.073

Wu, J., Liu, C., Cui, W., & Zhang, Y. (2019). Personalized Collaborative Filtering Recommendation Algorithm based on Linear Regression. 2019 IEEE International Conference on Power Data Science (ICPDS), 139–142. https://doi.org/10.1109/ICPDS47662.2019.9017166

Zhou, G., & Yin, X. (2014). Relationship of cotton nitrogen and yield with normalized difference vegetation index and plant height. Nutrient Cycling in Agroecosystems, 100(2), 147–160. https://doi.org/10.1007/s10705-014-9640-y

Zhu, X-G., Wang, Y., Ort, D.R., & Long, S.P. (2013). E‐photosynthesis: A comprehensive dynamic mechanistic model of C3 photosynthesis: From light capture to sucrose synthesis. Plant, Cell & Environment, 36(9), 1711–1727. https://doi.org/10.1111/pce.12025

Downloads

Published

2025-08-08

How to Cite

Putra, G. M. D., De Side, G. N., Setiawati, D. A., & Kurniati, N. (2025). Comparative Analysis of Growth Models for Lettuce (Lactuca sativa) in a Plant Factory under Red-Blue LED Treatment. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 14(4), 1452–1464. https://doi.org/10.23960/jtepl.v14i4.1452-1464